
HAL Id: hal-00535671
https://hal.science/hal-00535671

Submitted on 12 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Navier-Stokes equations in arbitrary domains: the
Fujita-Kato scheme

Sylvie Monniaux

To cite this version:
Sylvie Monniaux. Navier-Stokes equations in arbitrary domains: the Fujita-Kato scheme. Mathemat-
ical Research Letters, 2006, 13 (3), pp.455-461. �hal-00535671�

https://hal.science/hal-00535671
https://hal.archives-ouvertes.fr


NAVIER-STOKES EQUATIONS IN ARBITRARY DOMAINS :

THE FUJITA-KATO SCHEME

SYLVIE MONNIAUX

Abstract. Navier-Stokes equations are investigated in a functional setting in 3D
open sets Ω, bounded or not, without assuming any regularity of the boundary
∂Ω. The main idea is to find a correct definition of the Stokes operator in
a suitable Hilbert space of divergence-free vectors and apply the Fujita-Kato
method, a fixed point procedure, to get a local strong solution.

1. Introduction

Since the pioneering work by Leray [3] in 1934, there have been several studies on
solutions of Navier-Stokes equations

(NS)















∂u
∂t

−∆u+∇π + (u · ∇)u = 0 in ]0, T [×Ω,
div u = 0 in ]0, T [×Ω,

u = 0 on ]0, T [×∂Ω,
u(0) = u0 in Ω.

Fujita and Kato [2] in 1964 gave a method to construct so called mild solutions in
smooth domains Ω, producing local (in time) smooth solutions of (NS) in a Hilbert
space setting. These solutions are global in time if the initial value u0 is small enough
in a certain sense. The case of non smooth domains has been studied by Deuring
and von Wahl [1] in 1995 where they considered domains Ω ⊂ R3 with Lipschitz
boundary ∂Ω. They found local smooth solutions using results contained in Shen’s
PhD thesis [4]. Their method does not cover the critical space case as in [2]. One
of the difficulty there was to understand the Stokes operator, and in particular its
domain of definition.

In Section 2, we give a “universal” definition of the Stokes operator, for any domain
Ω ⊂ R3 (Defintion 2.3). In Section 3, we construct a mild solution of (NS) with a
method similar to Fujita-Kato’s [2] (Theorem 3.2) for initial values u0 in the critical

space D(A
1
4 ). We show in Section 4 that this mild solution is a strong solution, i.e.

(NS) is satisfied almost everywhere.

2. The Stokes operator

Let Ω be an open set in R3. The space

L2(Ω)3 = {u = (u1, u2, u3);ui ∈ L2(Ω), i = 1, 2, 3}
endowed with the scalar product

〈u, v〉 =
∫

Ω

u · v =

3
∑

i=1

∫

Ω

ui vi

is a Hilbert space. Define

G = {∇p; p ∈ L2
loc(Ω) and ∇p ∈ L2(Ω)3};

2000 Mathematics Subject Classification. Primary 35Q10, 76D05 ; Secondary 35A15.

1



2 SYLVIE MONNIAUX

the set G is a closed subspace of L2(Ω)3. Let

H = G⊥ =
{

u ∈ L2(Ω)3; 〈u,∇p〉 = 0, ∀p ∈ H1(Ω)
}

.

The space H, endowed with the scalar product 〈·, ·〉 is a Hilbert space. We have the
following Hodge decomposition

L2(Ω)3 = H
⊥
⊕ G.

We denote by P the projection from L2(Ω)3 onto H : P is the usual Helmoltz projec-
tion. We denote by J the canonical injection H →֒ L2(Ω)3 : J ′ = P (J ′ beeing the
adjoint of J) and PJ is the identity on H. Let now D(Ω)3 = C ∞

c (Ω)3 and

D = {u ∈ D(Ω)3; divu = 0}.
It is clear that D is a closed subspace of D(Ω)3. We denote by J0 : D →֒ D(Ω)3 the
canonical injection : J0 ⊂ J . Let P1 be the adjoint of J0 : P1 = J ′

0 : D ′(Ω)3 → D′.
We have P1 ⊂ P. The following theorem characterizes the elements in kerP1.

Theorem 2.1 (de Rahm). Let T ∈ D ′(Ω)3 such that P1T = 0 in D′. Then there

exists S ∈ (C ∞
c (Ω))′ such that T = ∇S. Conversely, if T = ∇S with S ∈ (C ∞

c (Ω))′,
then P1T = 0 in D′.

We denote by H1
0 (Ω)

3 the closure of D(Ω)3 with respect to the scalar prod-

uct (u, v) 7→ 〈u, v〉1 = 〈u, v〉 +∑3
i=1〈∂iu, ∂iv〉. By Sobolev embeddings, we have

H1
0 (Ω)

3 →֒ L6(Ω)3. Define

V = H ∩H1
0 (Ω)

3.

The space V is a closed subspace of H1
0 (Ω)

3 ; endowed with the scalar product 〈·, ·〉1,
V is a Hilbert space. The canonical injection J̃ : V →֒ H1

0 (Ω)
3 is the restriction

of J to V . Let H−1(Ω)3 = (H1
0 (Ω)

3)′ ; P1 maps H−1(Ω)3 to V ′ : the restriction

of P1 to H−1(Ω)3 is P̃, the adjoint of J̃ . On V × V we define now the form a by

a(u, v) =

3
∑

i=1

〈∂iJ̃u, ∂iJ̃v〉 : a is a bilinear, symmetric, δ + a is a coercive form on

V × V for all δ > 0, then defines a bounded self-adjoint operator A0 : V → V ′ by
(A0u)(v) = a(u, v) with δ +A0 invertible for all δ > 0.

Proposition 2.2. For all u ∈ V, A0u = P̃(−∆Ω
D)J̃u, where ∆Ω

D denotes the Dirichlet-

Laplacian on H1
0 (Ω)

3.

Proof. For all u, v ∈ V , we have

(A0u)(v)
(1)
= a(u, v)

(2)
=

3
∑

i=1

〈∂iJ̃u, ∂iJ̃v〉

(3)
= 〈(−∆Ω

D)J̃u, J̃v〉H−1,H1
0

(4)
= 〈P̃(−∆Ω

D)J̃u, v〉V′,V .

The first two equalities come from the definition of A0 and a. The third equality
comes from the definition of the Dirichlet-Laplacian on H1

0 (Ω)
3 and the fact that for

v ∈ V , J̃v = v. The last equality is due to J̃ ′ϕ = P̃ϕ in V ′ for all ϕ ∈ H−1(Ω)3. This

shows that A0u and P̃(−∆Ω
D)J̃u are two continuous linear forms on V which cöıncide

on V , they are then equal. �

Definition 2.3. The operator A defined on its domain D(A) = {u ∈ V ;A0u ∈ H}
by Au = A0u is called the Stokes operator.
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Theorem 2.4. The Stokes operator is self-adjoint in H, generates an analytic semi-

group (e−tA)t≥0, D(A
1
2 ) = V and satisfies

D(A) = {u ∈ V ; ∃π ∈ (C∞
c (Ω))′ : ∇π ∈ H−1(Ω) and −∆u +∇π ∈ H}

Au = −∆u+∇π.

Remark 2.5. Since H1
0 (Ω)

3 →֒ L6(Ω)3, it is clear by interpolation and dualization
that P1 maps Lp(Ω)3 to D(As)′ for 6

5 ≤ p ≤ 2, 0 ≤ s ≤ 1
2 and s = − 3

4 + 3
2p . Since

A is self-adjoint, one has (δ + A0)
−sD(As)′ = {(δ + A0)

−su;u ∈ D(As)′} = H. In

particular, (δ +A0)
− 1

4P1 maps L
3
2 (Ω)3 into H.

3. Mild solution to the Navier-Stokes system

Let T > 0.
Define the following Banach space

ET =
{

u ∈ C ([0, T ];D(A
1
4 ) ∩ C

1(]0, T ];D(A
1
4 ))

such that sup
0<s<T

‖s 1
4A

1
2u(s)‖H + sup

0<s<T

‖sA 1
4 u′(s)‖H < ∞

}

endowed with the norm

‖u‖ET
= sup

0<s<T

‖A 1
4 u(s)‖H + sup

0<s<T

‖s 1
4A

1
2u(s)‖H + sup

0<s<T

‖sA 1
4 u′(s)‖H.

Let α be defined by α(t) = e−tAu0 where u0 ∈ D(A
1
4 ). Then α ∈ ET . Indeed, it

is clear that α ∈ C ([0, T ];D(A
1
4 )). We also have that t

1
4A

1
2α(t) = t

1
4A

1
4 e−tAA

1
4u0

is bounded on (0, T ) since (e−tA)t≥0 is an analytic semigroup. Moreover, one has

α′(t) = −Ae−tAu0 which yields to tA
1
4α′(t) = −tAe−tAA

1
4u0 continuous on ]0, T ],

bounded in H. For u, v ∈ ET , we define now

Φ(u, v)(t) =

∫ t

0

e−(t−s)A(− 1
2P1)((u(s) · ∇)v(s) + (v(s) · ∇)u(s))ds, 0 < t < T.

Proposition 3.1. The transform Φ is bilinear, symmetric, continuous from ET ×ET
to ET and the norm of Φ is independent of T .

Proof. The fact that Φ is bilinear and symmetric is clear. Moreover, Φ(u, v) = e−·A∗f ,
where f is defined by

f(s) = (− 1
2P1)((u(s) · ∇)v(s) + (v(s) · ∇)u(s)), s ∈ [0, T ].

For u, v ∈ ET , it is clear that (u(s) · ∇)v(s) + (v(s) · ∇)u(s) ∈ L
3
2 (Ω)3 and therefore

(δ+A0)
− 1

4 f(s) ∈ H with sup
0<s<T

s
1
2 ‖(δ +A0)

− 1
4 f(s)‖H ≤ c‖u‖ET

‖v‖ET
. We have then

Φ(u, v) = e−·A ∗ f = (δ +A)
1
4 e−·A ∗ ((δ +A0)

− 1
4 f)

and therefore

‖A 1
4Φ(u, v)(t)‖H ≤

∫ t

0

‖A 1
4 (δ +A)

1
4 e−(t−s)A‖L (H)‖(δ +A0)

− 1
4 f(s)‖Hds

≤ c

(
∫ t

0

1√
t− s

1√
s
ds

)

‖u‖ET
‖v‖ET

≤ c

(
∫ 1

0

1√
1− σ

1√
σ

dσ

)

‖u‖ET
‖v‖ET

≤ c‖u‖ET
‖v‖ET

.
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Continuity with respect to t ∈ [0, T ] of t 7→ A
1
4Φ(u, v)(t) is clear once we have proved

the boundedness. We also have

‖A 1
2Φ(u, v)(t)‖H ≤

∫ t

0

‖A 1
2 (δ +A)

1
4 e−(t−s)A‖L (H)‖(δ +A0)

− 1
4 f(s)‖Hds

≤ c

(
∫ t

0

1

(t− s)
3
4

1√
s
ds

)

‖u‖ET
‖v‖ET

≤ ct−
1
4

(
∫ 1

0

1

(1− σ)
3
4

1√
σ

dσ

)

‖u‖ET
‖v‖ET

≤ ct−
1
4 ‖u‖ET

‖v‖ET
.

Continuity with respect to t ∈]0, T ] is clear once we have proved the boundedness.
To prove the last part of the norm of Φ(u, v) in ET , we have for s ∈]0, T [
f ′(s) = (− 1

2P1)((u
′(s) · ∇)v(s) + (u(s) · ∇)v′(s) + (v′(s) · ∇)u(s) + (v(s) · ∇)u′(s))

and therefore

sup
0<s<T

‖s 5
4 (δ +A0)

− 1
2 f ′(s)‖H ≤ c‖u‖ET

‖v‖ET
.

We have

Φ(u, v)(t) =

∫ t

2

0

e−sAf(t− s)ds+

∫ t

2

0

e−(t−s)Af(s)ds t ∈]0, T [,

and therefore

Φ(u, v)′(t) = e−
t

2Af( t2 ) +

∫ t

2

0

(δ +A)
1
2 e−sA(δ +A0)

− 1
2 f ′(t− s)ds

+

∫ t

2

0

−A(δ +A)
1
4 e−(t−s)A(δ +A0)

− 1
4 f(s)ds,

which yields

‖A 1
4Φ(u, v)′(t)‖H ≤ c√

t

∥

∥

∥
(δ +A0)

− 1
4 f( t2 )

∥

∥

∥

H
+ c

(

∫ t

2

0

1

s
1
2

1

(t− s)
5
4

ds

)

‖u‖ET
‖v‖ET

+c

(

∫ t

2

0

1

(t− s)
5
4

1

s
1
2

ds

)

‖u‖ET
‖v‖ET

≤ c

t

(

∫ 1
2

0

dσ

(1 − σ)
5
4 σ

1
2

)

‖u‖ET
‖v‖ET

.

This last inequality ensures that Φ(u, v) ∈ ET whenever u, v ∈ ET . �

Theorem 3.2. For all u0 ∈ D(A
1
4 ), there exists T > 0 such that there exists a unique

u ∈ ET solution of u = α+Φ(u, u) on [0, T ]. This function u is called the mild solution

to the Navier-Stokes system.

Proof. Let T > 0. Since Φ : ET × ET → ET is bilinear continuous, it suffices to apply
Picard fixed point theorem, as in [2]. The sequence in ET (vn)n∈N defined by v0 = α

as first term and

vn+1 = α+Φ(vn, vn), n ∈ N

converges to the unique solution u ∈ ET of u = α + Φ(u, u) provided ‖A 1
4u0‖H is

small enough (‖α‖ET
< 1

4‖Φ‖L (ET ×ET ;ET )
). In the case where ‖A 1

4u0‖H is not small
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(that is, if ‖α‖ET
≥ 1

4‖Φ‖L (ET ×ET ;ET )
) then for ε > 0, there exists u0,ε ∈ D(A) such

that ‖A 1
4 (u0 − u0,ε)‖H ≤ ε. If we take as initial value u0,ε ∈ D(A), we have

‖αε‖ET
≤ cT

3
4 ‖Au0,ε‖H −−−→

T→0
0.

Therefore, we can find T > 0 such that ‖α‖ET
< 1

4‖Φ‖L (ET ×ET ;ET )
. �

4. Strong solutions

Let u be the mild solution to the Navier-Stokes system. We show in this section
that u in fact satisfies the equations of the Navier-Stokes system in an Lp−sense (for
a suitable p). To begin with, we know that u ∈ ET and satisfies

u = α+Φ(u, u) = α+ e−·A ∗ ϕ(u),
where ϕ(u) = −P1((u · ∇)u) and we have ‖t 1

2 (u(t) · ∇)u(t)‖ 3
2
≤ c‖u‖2ET

. Therefore,
we get

(4.1) u(0) = α(0) = u0,

(4.2) divu(t) = 0 in the L2 − sense for t ∈]0, T [,
and

u′ +Au = f in C (]0, T [;V ′),

which means that for all t ∈]0, T [,
P1(u

′(t)−∆Ω
Du(t) + (u(t) · ∇)u(t)) = 0.

Then, by Theorem 2.1, there exists (−π)(t) ∈ (C ∞
c (Ω))′ such that ∇π(t) ∈ H−1(Ω)3

and

(4.3) ∇(−π)(t) = u′(t)−∆Ω
Du(t) + (u(t) · ∇)u(t)

and we have for 0 < t < T

−∆Ω
Du(t) +∇π(t) = −u′(t)− (u(t) · ∇)u(t) ∈ L3(Ω)3 + L

3
2 (Ω)3.

The equation (4.3), together with (4.1) and (4.2), give the usual Navier-Stokes equa-
tions which are fulfilled in a strong sense (a.e.) where we consider the expression
−∆u+∇π undecoupled.
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