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Heat-kernels and maximal Lp − Lq−estimates:

the non-autonomous case

Matthias Hieber Sylvie Monniaux

Abstract. In this paper, we establish maximal Lp−Lq es-
timates for non autonomous parabolic equations of the type
u′(t) + A(t)u(t) = f(t), u(0) = 0 under suitable conditions
on the kernels of the semigroups generated by the opera-
tors −A(t), t ∈ [0, T ]. We apply this result on semilinear
problems of the form u′(t) +A(t)u(t) = f(t, u(t)), u(0) = 0.

1 Introduction

Maximal regularity results for linear initial value problems are very effective
tools when dealing with nonlinear, in particular quasilinear or fully non-
linear, problems. In fact, it is known that the standard evolution operator
approach is in particular not applicable to reaction-diffusion equations where
the “diffusion matrices” depend on ∇u. However, involving maximal regular-
ity results and techniques based on the implicit function theorem, one is able
to treat problems of the kind described above. For an up-to-date overview of
the results and techniques known in this context, we refer to the monographs
[2], [19], [16] and [5].

From the point of view of harmonic analysis, it is natural to replace
the property of maximal Lp−regularity by the Lp−boundedness of certain
Banach space valued singular integrals. More precisely, let 1 < p, q < ∞,
Ω ⊂ IRN open and −A be the generator of an analytic semigroup on Lq(Ω).
Then there is maximal Lp − Lq−regularity for the problem

u′(t) + Au(t) = f(t), t ∈ [0, T ]
u(0) = 0

(1)
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if and only if the convolution operator R given by

(Rf)(t) =
∫ t

0
Ae−(t−s)Af(s) ds

acts boundedly on Lp(0, T ;Lq(Ω)). Since Mihlin’s theorem for operator-
valued symbols is applicable in this situation if and only if q = 2 one is forced
to use other techniques in order to prove Lp−boundedness of R. By using the
transference principle, Lamberton [15] proved maximal Lp − Lq−regularity
for (1) provided the semigroup T generated by −A acts as a contraction on
Lq(Ω) for all q ∈ [1,∞]. Observe that his approach is necessarily restricted
to second order differential operators and does in particular not allow to
treat parabolic systems. On the other hand assuming suitable heat-kernel
bounds on the semigroup generated by −A, maximal Lp −Lq−regularity for
the solution of (1) was proved recently by Hieber and Prüss in [14]. For
generalizations see [7]). It seems that the idea of using heat-kernel bounds
in this context was first used in [21] by Strook and Varadhan. The problem
of maximal Lp−Lq−regularity for arbitrary parabolic evolution equations of
the form (1) with −A being the generator of an analytic semigroup on some
Lp−space, as formulated by Brézis (see e.g. [6]), seems to remain open, in
general.

Considering quasilinear problems of the form u′(t)+A(t, u(t))u(t) = f(t),
u(0) = 0, maximal regularity results for the non-autonomous linear equation

u′(t) + A(t)u(t) = f(t), t ∈ [0, T ]
u(0) = 0

(2)

are of great interest. If the domains of A(t) are constant, i.e. if D(A(t)) = D
for all t ∈ [0, T ] one obtains maximal regularity results for (2) by the one for
the autonomous case simply by writing

u′(t) + A(0)u(t) = (A(0)−A(t))u(t) + f(t), u(0) = 0

and by using perturbation arguments. Observe, however, that the domains
D(A(t)) vary with t for example when A(t) is the Lq−realization of a second
order differential operator subject to co-normal Neumann boundary condi-
tions.

In this paper we do not only prove maximal Lp − Lq−regularity results
for examples of this kind, but treat the general case where {A(t), t ∈ [0, T ]}
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satisfies the Acquistapace-Terreni commutator condition and the heat-kernels
of the semigroups Tt generated by−A(t) satisfy suitable bounds. The method
we use is very much inspired by the ones used in [14] and [7]. Essentially
it is based on the technique developed in [11] and [10] allowing to prove
L1 − L1

w−boundedness of singular integrals with weaker conditions on the
kernel than the classical Hörmander almost L1−condition.

In order to treat parabolic differential operators acting on Riemannian
manifolds we choose spaces of homogeneous type as underlying setting.

This paper is organized as follows. In Section 2, we give the precise
assumptions and state our main theorem. The proof of the main result is
given in Section 3. In Section 4, we apply of our result to semilinear problems
of the form u′(t)+A(t)u(t) = f(t, u(t)), u(0) = 0, where the domains of A(t)
may vary with t.

Throughout this paper, we denote by L(X, Y ) the space of all bounded
linear operators from X to Y , whenever X and Y are Banach spaces. If A
is a linear operator in X , we denote its domain by D(A), its resolvent set
by ρ(A) and its spectrum by σ(A). Moreover, for any θ ∈ (0, π), we set
Σθ := {z ∈ lC \ {0}; | arg(z)| < θ}.

2 Assumptions and the main result

Let (Ω, m, d) be a space of homogeneous type. This means that Ω is a
topological space, m is a σ−finite measure on Ω and d is a quasi-metric (i.e.
d(x, z) ≤ γd(d(x, y) + d(y, z)) for all x, y, z ∈ Ω, where γd ≥ 1) on Ω. We
assume the doubling property : there exists a constant CD ≥ 1 such that
m(BΩ(x, 2r)) ≤ CD m(BΩ(x, r)) holds for all x ∈ Ω and all r > 0, where
BΩ(x, r) := {y ∈ Ω; d(x, y) < r}. We remark that this property implies the
strong homogeneity property (H) given as follows :

(H) there exists two constants CH ≥ 1 and ℓ > 0 such that

m(BΩ(x, ar)) ≤ CH aℓm(BΩ(x, r))

holds for all x ∈ Ω, a ≥ 1, r > 0.

We consider now M, a measurable subset of Ω, and we let T > 0. Let
{A(t), t ∈ [0, T ]} be a family of linear densely defined operators in L2(M, m).
We assume that
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(A) there exists ϕ ∈ (0, π
2
) such that σ(A(t)) ⊂ Σϕ, and for all ϑ ∈ (ϕ, π)

there exists a constant Mϑ > 0 such that

‖(λ−A(t))−1‖L(L2(M,m)) ≤
Mϑ

1 + |λ|

holds for all λ ∈ lC \ Σϑ, t ∈ [0, T ].

The condition (A) implies that the operators−A(t) generate uniformly bounded
analytic C0−semigroups (e−σA(t))σ≥0 on L2(M, m). We assume that for all
t ∈ [0, T ] and for all σ > 0, there exists kt(σ, ·, ·), bounded and measurable
on M×M such that

(e−σA(t)f)(x) =
∫

M
kt(σ, x, y)f(y)dm(y) m− a.a. x ∈ M

for all f ∈ L2(M, m). We assume moreover that the kernels satisfy a uniform
estimate of the following type :

(K) there exist a constant n > 0 and a bounded decreasing function g
defined on (0,∞) satisfying lim

r→∞
r2ℓ+γg(r) = 0 for some γ > 0 such

that

|kt(σ, x, y)| ≤ min

(

1

m(BΩ(x, σ
1

n ))
,

1

m(BΩ(y, σ
1

n ))

)

g

(

d(x, y)

σ
1

n

)

holds for all t ∈ [0, T ], σ > 0, and for m− a.a. x, y ∈ M.

It is well-known that condition (K) is satisfied for a large class of differential
operators. For details in the context, we refer to [4], [9], [12], [3], [8]. The
condition (K) implies that the semigroups {(e−σA(t))σ≥0, t ∈ [0, T ]} act con-
sistently also on Lq(M, m) for 1 ≤ q ≤ ∞. Moreover, they are uniformly
bounded and analytic on Lq(M, m) for 1 < q < ∞ (see [11], Proposition 2.3).
Denote their generators by −Aq(t). We assume moreover that the operators
{Aq(t), t ∈ [0, T ]} verify the following commutator conditions on Lq(M, m),
for all q ∈ (1,∞).
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(Cq) There exists ωq ∈
(

ϕ, π
2

)

, αq, βq ∈ [0, 1] with αq < βq and a constant
cq > 0 such that

‖Aq(t)(λ− Aq(t))
−1(Aq(t)

−1 − Aq(s)
−1)‖L(Lq(M,m)) ≤

cq |t− s|βq

(1 + |λ|)1−αq

for all λ ∈ lC \ Σωq
and s, t ∈ [0, T ].

The condition (C2) and the assumption (A) imply in particular that

(c2) ‖(λ−A(t))−1 − (λ− A(s))−1‖L(L2(M,m)) ≤
c2(Mω2

+ 1) |t− s|β2

(1 + |λ|)1−α2

for all λ ∈ lC \ Σω2
and s, t ∈ [0, T ].

We assume also the following commutator condition on L1(M, m) and L∞(M, m).
For q = 1 and q = ∞, it holds

(cq) There exists ωq ∈
(

ϕ, π
2

)

, αq, βq ∈ [0, 1] with αq < βq and a constant
cq > 0 such that

‖(λ− Aq(t))
−1 − (λ− Aq(s))

−1‖L(Lq(M,m)) ≤
cq |t− s|βq

(1 + |λ|)1−αq

for all λ ∈ lC \ Σωq
and s, t ∈ [0, T ].

Definition 2.1 The family of operators {A(t), t ∈ [0, T ]} belongs to the class
MR(p, q), and we say that there is maximal Lp−regularity on Lq(M, m) if
for all function f in Lp(0, T ;Lq(M, m)), there exists a unique function

u ∈ W 1,p(0, T ;Lq(M, m)) with Aq(·)u(·) ∈ Lp(0, T ;Lq(M, m)),

verifying (2) in the Lp(0, T ;Lq(M, m))−sense.

We are now in the position to state the main result of this paper.

Theorem 2.2 Assume that the family {A(t), t ∈ [0, T ]} satisfies the assump-
tions (A), (K), (Cq) for all q ∈ (1,∞), (c1) and (c∞). Let 1 < p, q < ∞.
Then the family {A(t), t ∈ [0, T ]} belongs to the class MR(p, q).
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3 Proofs

The results in [1], [18] imply the following facts. If u is a solution of (2) then
u fulfills the equation

A(t)u(t) =
∫ t

0
A(t)2e−(t−s)A(t)(A(t)−1 −A(s)−1)A(s)u(s) ds

+
∫ t

0
A(t)e−(t−s)A(t)f(s) ds

for a.a. t ∈ (0, T ). For the time being, let q ∈ (1,∞) be fixed. If the con-
stant cq in (Cq) is sufficiently small, the operator Q ∈ L(Lp(0, T ;Lq(M, m)))
defined by

(Qg)(t) :=
∫ t

0
A(t)2e−(t−s)A(t)(A(t)−1 −A(s)−1)g(s) ds, t ∈ (0, T ),

has norm less than 1
2
for all p ∈ (1,∞). Observe, however, (see also [17],

Remark before Corollary 2), that the family {A(t), t ∈ [0, T ]} belongs to the
class MR(p, q) if and only if this holds true for {A(t)+ν, t ∈ [0, T ]}, where ν
is an arbitrary constant. Hence, there is no loss of generality in choosing the
constants cq in (Cq) as small as we want, by choosing αq slightly larger. It
follows that the operator 1−Q is then invertible in L(Lp(0, T ;Lq(M, m))).
We summarize our observations in the following proposition.

Proposition 3.1 The family {A(t), t ∈ [0, T ]} belongs to the class MR(p, q)
if and only if the operator S defined by

(Sf)(t) :=
∫ t

0
A(t)e−(t−s)A(t)f(s) ds t ∈ [0, T ]

acts as a bounded operator on L(Lp(0, T ;Lq(M, m))).

In [13], Theorem 3.2, we proved that assuming (A) and (C2), the family
{A(t), t ∈ [0, T ]} belongs to MR(2, 2). Hence the operator

S : L2((0, T )×M, λ⊗m) → L2((0, T )×M, λ⊗m)

defined by

(Sf)(t, x) =
(∫ t

0
A(t)e−(t−s)A(t)f(s, ·)ds

)

(x)(3)
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for λ ⊗ m − a.a. (t, x) ∈ (0, T ) × M acts boundedly on L2((0, T ) × M).
Here λ denotes the Lebesgue measure on (0, T ). Moreover, we proved in
[13], Theorem 3.1, that MR(p, q) is independent of p ∈ (1,∞). Hence, the
Marcinkiewicz interpolation theorem implies the following result.

Proposition 3.2 Let S be defined as in (3). Then the assertion of Theorem
2.2 holds true provided S, as well as its adjoint, is of weak type (1, 1).

At this point some remarks on our strategy how to prove that S is of weak
type (1, 1) are in order. For the time being consider the autonomous case,
i.e. A(t) = A for t ∈ [0, T ] and write f ∈ L1((0, T ) × M) in its Calderòn-
Zygmund decomposition as f = g + b with b =

∑

bi. The strategy used in
[14] and [7] to show that R defined as in Section 1 is of weak type (1, 1) is
to decompose Rbi as

RVτibi + (R−RVτi)bi

with an appropriate “smoothing term” Vτi . Observe that in the non-autonomous
situation the operator S defined as in (3) seems not to be treatable directly
with the semigroup methods developed for the autonomous case. However,
semigroup methods do work for S̃ with

S̃f(t) =
∫ t

0
A(s)e−(t−s)A(s)f(s) ds.

In fact, we decompose Sbi in the following as

S̃Uτibi + (Sτi − S̃Uτi)bi + (S − Sτi)bi

with S̃ defined below associated to the kernel −∂1ks(t − s, x, y)1l(0,t)(s). In
order to control the above three terms we need assumptions (Cq), (c1) and
(c∞).

The rest of this section is devoted to the proof of the fact that S is of
weak type (1, 1). To this end, let Q = (0, T )×M and µ = λ⊗m. Let S be
the bounded operator on L2(Q, µ) defined as above. Denote the kernel of S
by p. Then p : Q×Q → IR is of the form

p(t, x; s, y) = −∂1kt(t− s, x, y)1l(0,t)(s) µ− a.a (t, x), (s, y) ∈ Q
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with the notation ∂1kt(σ, x, y) =
∂kt
∂σ

(σ, x, y). This means that

Sf(t, x) = −
∫ t

0

∫

M
∂1kt(t− s, x, y)f(s, y) ds dm(y)

holds for each continuous function f with compact support in Q, for µ−a.a.
(t, x) /∈ supp(f).

Next, let p̃ be given by

Q×Q ∋ (t, x; s, y) 7−→ p̃(t, x; s, y) = −∂1ks(t− s, x, y)1l(0,t)(s)

for µ−a.a. (t, x), (s, y) ∈ Q. Denote by S̃ the operator in L2(Q, µ) associated
with p̃.

Lemma 3.3 Under the conditions (A) and (c2), the operator S̃ is bounded
on L2(Q, µ).

Proof. Since S is bounded on L2(Q, µ) (Proposition 3.1 and [13], Theorem
3.2), it suffices to prove that S̃ − S is bounded on L2(Q, µ). By assumption
(A), we have

(S̃ − S)f(t, ·) =
∫ t

0
(A(s)e−(t−s)A(s) −A(t)e−(t−s)A(t))f(s, ·) ds

=
∫ t

0

(

1

2iπ

∫

Γω2

λe−(t−s)λ((λ− A(s))−1 − (λ−A(t))−1)f(s, ·) dλ

)

ds

where ω2 is defined as in (C2) and Γω2
= (∞, 0)eiω2 ∪ e−iω2(0,∞). Therefore,

taking into account the estimates (A) and (c2) it holds for all f ∈ L2(Q, µ)

‖(S̃ − S)f(t, ·)‖L2(M,m) ≤

≤ (Mω2
+ 1)c2

1

π

∫ t

0

(

∫ ∞

0
re−(t−s)r cos ω2

(t− s)β2

(1 + r)1−α2
dr

)

‖f(s, ·)‖L2(M,m)ds

≤ C(Mω2
, cosω2, c2, α2, β2)

∫ t

0
(t− s)β2−α2−1‖f(s, ·)‖L2(M,m)ds,

where C(Mω2
, cosω2, c2, α2, β2) is a constant depending only on the listed

quantities. Applying Young’s inequality, we have

‖(S̃ − S)f‖L2(Q,µ) ≤ C(Mω2
, cosω2, c2, α2, β2, T )‖f‖L2(Q,µ).
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2

Consider next for τ > 0, the operator Uτ ∈ L(L2(Q, µ)) associated to the
kernel uτ given by

Q×Q ∋ (t, x; s, y) 7−→ uτ (t, x; s, y) = 1l((t−τ)+,t)(s)
1

τ
kt(τ, x, y).

Moreover, define Sτ ∈ L(L2(Q, µ)) to be the operator associated to the kernel
pτ given by

pτ : Q×Q ∋ (t, x; s, y) 7−→ −
1

τ

∫ s+τ

s
∂1kt(t− σ + τ, x, y) 1lσ<t dσ.

Let D := (0, T )× Ω and define the quasi-metric δ on D by

δ((t, x); (s, y)) := |t− s|+ d(x, y)n (t, x), (s, y) ∈ D,

where n was defined in (K). Then (D, µ, δ) is a space of homogeneous type.
Define Hτ ∈ L(L2(D, µ)) associated to the kernel hτ given by

hτ (t, x; s, y) =
e

τ
e−

|t−s|
τ min

(

1

m(BΩ(x, τ
1

n )
,

1

m(BΩ(y, τ
1

n )

)

g

(

d(x, y)

τ
1

n

)

for (t, x), (s, y) ∈ D × D. Finally, set BD(ξ, ρ) = {η ∈ D; δ(η, ξ) < ρ}, the
ball in D with center ξ and radius ρ.

Lemma 3.4 Under the conditions (A), (K), (c2) and (c1), the following
assertions hold

(a) |uτ(ξ, η)| ≤ hτ (ξ, η) for µ− a.e. ξ, η ∈ Q and for all τ > 0 ;

(b) (Harnack inequality) there exist a constant c ≥ 1 such that

sup
η∈BD(ζ,τ)

hτ (ξ, η) ≤ c inf
η∈BD(ζ,τ)

h2nτ (ξ, η)

holds for all ζ, ξ ∈ D and all τ > 0 ;

(c) there exists a constant C > 0 such that for all τ > 0,
∣

∣

∣

∣

∫

D
hτ (η, ξ)v(η) dµ(η)

∣

∣

∣

∣

≤ C sup
ρ>0

1

µ(BD(ξ, ρ))

∫

BD(ξ,ρ)
|v(η)| dµ(η)

holds for all ξ ∈ D and all v ∈ L2(D, µ) ;
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(d) for all τ > 0, the operator S−Sτ ∈ L(L2(Q, µ)) associated to the kernel
p− pτ verifies

ν̺ := sup
η∈Q,τ>0

∫

δ(ξ,η)≥̺τ
|p(ξ, η)− pτ (ξ, η)|dµ(ξ) < ∞

for all ̺ > 0 ;

(e) for all τ > 0, the operator Sτ−S̃Uτ ∈ L(L2(Q, µ)) extends to a bounded
operator on L1(Q, µ). Moreover, ‖Sτ − S̃Uτ‖L(L1(Q,µ)) is independent of
τ > 0.

Proof. (a) Taking into account assumption (K), the assertion follows by the
choice of uτ and hτ .

(b), (c) Assertions (b) and (c) were shown in [14], Lemma 4.2 and Lemma
4.3.

(d) The proof of assertion (d) follows the lines of [7], Section 3.4. We
omit the details.

(e) For all τ > 0 and for all f ∈ L2(Q, µ) ∩ L1(Q, µ), we have

(Sτ − S̃Uτ )f(t, ·) =

=
∫ T

0

1

τ

(∫ s+τ

s
(A1(t)e

−(t−σ+τ)A1(t) − A1(σ)e
−(t−σ+τ)A1(σ))1lσ≤t dσ

)

f(s, ·) ds

=
∫ T

0
ds

1

τ

∫ s+τ

s
1lσ≤t dσ

(

1

2iπ

∫

Γω1

λe−(t−σ+τ)λ((λ−A1(t))
−1− (λ−A1(σ))

−1)f(s, ·) dλ

)

.

Taking into account the estimate (c1), the argument given in the proof of
Lemma 3.3 implies

‖(A1(t)e
−(t−σ+τ)A1(t) − A1(σ)e

−(t−σ+τ)A1(σ))f(s, ·)1lσ≤t‖L1(M,m) ≤

≤ c1
1

π

∫ ∞

0
re−(t−σ+τ)r cosω1

(t− σ)β1

(1 + r)1−α1
1lσ≤t dr‖f(s, ·)‖L1(M,m)

≤ C(cosω1, c1, α1, β1)
(t− σ)β1

(t− σ + τ)α1+1
1lσ≤t‖f(s, ·)‖L1(M,m).

Therefore, we obtain

‖(Sτ − S̃Uτ )f(s, ·)‖L1(M,m) ≤
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≤ C(cosω1, c1, α1, β1)
∫ T

0

1

τ

∫ s+τ

s

(t− σ)β1

(t− σ + τ)α1+1
1lσ≤tdσ ‖f(s, ·)‖L1(M,m)ds

≤ C(cosω1, c1, α1, β1)
∫ t

0
(t− s)β1−α1−1‖f(s, ·)‖L1(M,m)ds.

Then, applying Young’s inequality, we have

‖(Sτ − S̃Uτ )f‖L1(Q,µ) ≤ C(Mω1
, cosω1, c1, α1, β1, T )‖f‖L1(Q,µ),

which implies the assertion. 2

Proposition 3.5 Under the conditions (A), (K), (c2) and (c1), the operator
S is of weak type (1, 1) on Q.

Proof. First, remark that the operator S is of weak type (1, 1) on Q if and
only if the operator R defined by Rf := 1lQS(1lQf) is of weak type (1, 1) on
D = (0, T )×Ω. To prove this last assertion, we define the following bounded
operators on L2(D, µ) :

R̃f := 1lQS̃(1lQf), Rτf := 1lQSτ (1lQf), Vτf := 1lQUτ (1lQf).(4)

Consider the Calderón-Zygmund decomposition of a function f ∈ L1(D, µ)
(see [20], I4, Theorem 2). Then there exist N ∈ IN and κ > 0, depending only

on (D, µ, δ), such that for each function f ∈ L1(D, µ) and for all r > ‖f‖1
µ(D)

if

µ(D) < ∞ and for all r > 0 otherwise, there exist functions g, bi (i ∈ IN) in
L1(D, µ) such that we can write f as f = g +

∑

i∈IN
bi and with the following

properties

(i) |g(t, x)| ≤ κr for µ− a.e. (t, x) ∈ D ;

(ii) for all i ∈ IN, there exist (ti, xi) ∈ D and τi > 0 such that supp(bi) ⊂
Bi := {(t, x) ∈ D; δ((t, x); (ti, xi)) < τi} and

‖bi‖1 ≤ κrµ(Bi);

(iii)
∑

i∈IN
µ(Bi) ≤

κ

r
‖f‖1 ;

(iv) each point of D is contained in at most N balls Bi.
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In order to prove Proposition 3.5, we have to show that there exists a
constant C > 0 such that for all function f ∈ L2(Q, µ)∩L1(Q, µ), and for all
r > 0,

r µ({(t, x) ∈ D; |Rf(t, x)| > r}) ≤ C‖f‖1.

To this end, let f ∈ L2(D, µ) ∩ L1(D, µ) be fixed. For 0 < r ≤ ‖f‖1
µ(D)

, we
have

r µ({(t, x) ∈ D; |Rf(t, x)| > r}) ≤ rµ(D) ≤ ‖f‖1.

Let r > ‖f‖1
µ(D)

be fixed. The Calderón-Zygmund decomposition for (f, r) gives

then f = g +
∑

i∈IN
bi where g, bi (i ∈ IN) satisfy (i) − (iv). Remark that the

condition (i) of the decomposition implies that g ∈ L∞(D, µ) and ‖g‖∞ ≤ κr.
Moreover, the conditions (ii) and (iii) imply that

∑

i∈IN
‖bi‖1 ≤ κ2‖f‖1, and

then ‖g‖1 ≤ (1 + κ2)‖f‖1.
The idea of the following proof is to decompose Rbi as

Rbi = R̃Vτibi + (Rτi − R̃Vτi)bi + (R− Rτi)bi

with operators R̃, Rτ and Vτ defined as in (4) and τi chosen suitably.
We subdivide the proof in four steps.

• Step 1
The function g defined as above belongs to L1(D, µ) ∩ L∞(D, µ) and

‖g‖22 ≤ ‖g‖1‖g‖∞ ≤ r κ(1 + κ2)‖f‖1.

Since the operator R is bounded on L2(D, µ) we have by Chebychev’s in-
equality

µ({(t, x) ∈ D; |Rg(t, x)| >
r

4
}) ≤

16

r2
‖Rg‖22 ≤

16

r2
‖R‖2L(L2(D,µ))‖g‖

2
2

≤
1

r
16 κ(1 + κ2)‖R‖2L(L2(D,µ))‖f‖1.

• Step 2
The function

∑

i∈IN
Vτibi belongs to L2(D, µ), where τi is the radius of the ball

Bi and the operators Vτ were defined in (4). This follows from the estimates

12



(a), (b) and (c) of Lemma 3.4 (see also [14], Section 5, Step II, or [7], proof
of Theorem 2.6). Moreover, there exists a constant cst (depending only
on N , κ, the constant C appearing in the assertion (c) of Lemma 3.4 and
the norm of the maximal Hardy-Littlewood operator on L2(D, µ)) such that
∥

∥

∥

∥

∥

∥

∑

i∈IN
Vτibi

∥

∥

∥

∥

∥

∥

2

2

≤ cst r‖f‖1.

Therefore, using the the fact that the operator R̃ is bounded on L2(D, µ)
(Lemma 3.3) and Chebychev’s inequality we have, as in the first step

µ











(t, x) ∈ D;

∣

∣

∣

∣

∣

∣

R̃





∑

i∈IN
Vτibi



 (t, x)

∣

∣

∣

∣

∣

∣

>
r

4











≤
16

r2

∥

∥

∥

∥

∥

∥

R̃





∑

i∈IN
Vτibi





∥

∥

∥

∥

∥

∥

2

2

≤
16

r2
‖R̃‖2L(L2(D,µ))

∥

∥

∥

∥

∥

∥

∑

i∈IN
Vτibi

∥

∥

∥

∥

∥

∥

2

2

≤
1

r
16 cst‖R̃‖2L(L2(D,µ))‖f‖1.

• Step 3
By Lemma 3.4 (e), there exist a constant K > 0 such that for all i ∈ IN

‖(Rτi − R̃Vτi)bi‖1 ≤ K‖bi‖1.

Therefore, by Chebychev’s inequality, it holds

µ











(t, x) ∈ D;

∣

∣

∣

∣

∣

∣

∑

i∈IN
(Rτi − R̃Vτi)bi(t, x)

∣

∣

∣

∣

∣

∣

>
r

4











≤
4

r
K
∑

i∈IN
‖bi‖1

≤
1

r
4 K(1 + κ2)‖f‖1.

• Step 4

13



We have now to estimate the quantity

r µ











(t, x) ∈ D;

∣

∣

∣

∣

∣

∣

∑

i∈IN
(R− Rτi)bi(t, x)

∣

∣

∣

∣

∣

∣

>
r

4









 .

For that purpose, set B∗
i := BD((ti, xi), 5γδτi), where γδ ≥ 1 is the constant

appearing in the triangle inequality for the quasi-metric δ. Choose γδ =
(2γd)

n if the constant γd correspond to the quasi-metric d. We then have using
the strong homogeneity property (H), µ(B∗

i ) ≤ CH(5γδ)
ℓµ(Bi). Therefore,

using Lemma 3.4 (d) with ̺ = 4 and the properties of the Calderón-Zygmund
decomposition, it holds

µ











(t, x) ∈ D;

∣

∣

∣

∣

∣

∣

∑

i∈IN
(R−Rτi)bi(t, x)

∣

∣

∣

∣

∣

∣

>
r

4









 ≤

≤
∑

i∈IN
µ(B∗

i ) + µ











(t, x) ∈ D \ (∪
i∈INB∗

i );

∣

∣

∣

∣

∣

∣

∑

i∈IN
(R− Rτi)bi(t, x)

∣

∣

∣

∣

∣

∣

>
r

4











≤ CH(5γδ)
ℓ
∑

i∈IN
µ(Bi) +

∑

i∈IN

4

r

∫

D\B∗
i

|(R−Rτi)bi(t, x)| dt dx

≤ CH(5γδ)
ℓ κ

r
‖f‖1 +

4

r



 sup
i∈IN,η∈Q

∫

δ(ξ,η)≥4τi
|p(ξ, η)− pτi(ξ, η)|dµ(ξ)





∑

i∈IN
‖bi‖1

≤
1

r

(

CH(5γδ)
ℓκ+ 4ν4κ

2
)

‖f‖1.

We have proved the existence of a constant C > 0 such that for all f ∈
L1(D, µ) ∩ L2(D, µ), ‖Rf‖1,w ≤ C‖f‖1, which means that R is of weak type
(1, 1) on D. Hence S is of weak type (1, 1) on Q. 2

By interpolation, we know that the operator S acts as a bounded operator
on Lq(Q, µ) = Lq(0, T ;Lq(M, m)) , for all q ∈ (1, 2]. In order to prove that
this is also the case for q ∈ [2,∞), we will show that S ′, the adjoint of S, is
also of weak type (1, 1).

Proposition 3.6 Under the conditions (A), (K), (c2) and (c∞), the operator
S ′, the adjoint of S, is of weak type (1, 1).

14



Proof. For f ∈ L2(Q, µ), we have µ− a.e.

S ′f(t, ·) =
∫ T

t
A(s)′e−(s−t)A(s)′f(s, ·)ds

where the operators A(s)′ (s ∈ [0, T ]), acting on L2(M, m), are the adjoints
of A(s) (s ∈ [0, T ]). We now set G(s) := A(T − s)′ (s ∈ [0, T ]) and let ϕ
be given as in (A). Then the family {G(s), s ∈ [0, T ]} satisfies the following
estimates :

(G) σ(G(s)) ⊂ Σϕ and for all ϑ ∈ (ϕ, π), there exists a constant Mϑ >

0 such that ‖(λ−G(s))−1‖L(L2(M,m)) ≤
Mϑ

1 + |λ|
holds for all λ ∈ lC \

Σϑ, s ∈ [0, T ];

(c′2) ‖(λ−G(t))−1 − (λ−G(s))−1‖L(L2(M,m)) ≤
c2(Mω2

+ 1) |t− s|β2

(1 + |λ|)α2

for all λ ∈ lC \ Σω2
and s, t ∈ [0, T ].

The semigroups generated by G(s) (s ∈ [0, T ]) are associated to kernels
k′
s(σ, x, y) = ks(σ, y, x) m − a.e. satisfying estimate (K). The operators

G1(s) = A∞(T − s)′ (s ∈ [0, T ]) acting on L1(M, m) verify an assumption
analog to the assumption (c1):

(c′1) ‖(λ−G1(t))
−1 − (λ−G1(s))

−1‖L(L1(M,m)) ≤
c∞ |t− s|β∞

(1 + |λ|)1−α∞

for all λ ∈ lC \ Σω∞ and s, t ∈ [0, T ].

With the previous notations, we may express S ′f , for f ∈ L2(Q, µ), as

(S ′f)T (t, ·) =
∫ t

0
G(s)e−(t−s)G(s)fT (s, ·)ds

for a.a. t ∈ (0, T ), where for φ ∈ L2(0, T ;L2(M, m)) the function φT is
defined by φT (s) := φ(T − s) for a.a. s ∈ (0, T ). Using the same argument
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as in the proof of Lemma 3.3, and (c′2) and (c′1), it follows that the operator
S̃ ′ defined by

(S̃ ′f)T (t, ·) :=
∫ t

0
G(t)e−(t−s)G(t)fT (s, ·)ds

is bounded on L2(Q, µ). Hence the operator S ′ − S̃ ′ is bounded on L1(Q, µ).
It remains to show that the operator S̃ ′ is of weak type (1, 1). Since S̃ ′ has
the same form as S, we may apply Proposition 3.5 and the estimates (c′2)
and (c′1)to conclude that S ′ is of weak type (1, 1). 2

Combining Proposition 3.2 with Proposition 3.5 and 3.6 the proof of Theorem
2.2 is complete.

4 Applications to semilinear problems

Let Ω ⊂ IRN be a bounded domain with smooth boundary and T > 0. We
consider the following parabolic initial value problem

∂u

∂t
+ A(t, x,D)u = f(t, u,∇u) in (0, T )× Ω

B(t, x,D)u = 0 on (0, T )× ∂Ω
u(0, x) = 0 in Ω

(5)

where
f ∈ C1−,1−,1−([0, T ]× IR× IRN).(6)

The operators A(t, x,D) and B(t, x,D) are given by

A(t, x,D)u = −
n
∑

i,j=1

∂

∂xi

(

ai,j(t, x)
∂u

∂xj

)

+ a(t, x)u

B(t, x,D)u =
n
∑

i,j=1

ai,j(t, x)νi(x)
∂u

∂xj

.

Here (ν1(x), ..., νN(x)) denotes the outer normal vector at a point x ∈ ∂Ω.
We assume moreover that

(i) ai,j ∈ C([0, T ];C1(Ω)), a ∈ C([0, T ];C(Ω)), 1 ≤ i, j ≤ N

(ii) ai,j = aj,i, 1 ≤ i, j ≤ N

16



(iii) there exists a constant δ > 0 such that

N
∑

i,j=1

ai,j(t, x)ξiξj ≥ δ|ξ|2 for all ξ ∈ IRN .

In order to apply our maximal Lp−Lq− regularity result to the semilinear
equation (5), we can rewrite (5) as an equation in Lq(Ω) for 1 < q < ∞. To
this end, define

D(Aq(t)) := {u ∈ W 2,q(Ω);B(t, x,D)u(x) = 0, x ∈ ∂Ω}

Aq(t)u(x) := A(t, x,D)u(x), for a.e. x ∈ Ω.

Then, for each t ∈ [0, T ], the operator Aq(t) generates an analytic semigroup
{Tt(σ), σ ≥ 0} on Lq(Ω), which is bounded provided a is sufficiently large.
Assume in addition to (i) that

(iv) ai,j ∈ Cµ([0, T ];L∞(Ω)) (1 ≤ i, j ≤ N) and a ∈ Cµ([0, T ];LN(Ω)) for
one µ > 1

2
.

Then it was proved by Yagi [22], Theorem 4.1 that (Cq) is satisfied, for all
q ∈ (1,∞) provided properties (i) − (iv) hold. Moreover, it is known (see
e.g. [9], [3], [8]) that the heat-kernel kt(σ, x, y) of Tt(σ) fulfills

|kt(σ, x, y)| ≤
M

σ
N
2

e−b
|x−y|2

σ , x, y ∈ Ω, σ > 0, t ∈ [0, T ]

for suitable constants M, b > 0. Finally, assumptions (c1) and (c∞) hold by
[22], Theorem 4.2.

Summing up, it follows that {Aq(t), t ∈ [0, T ]} fulfills the assumptions of
Theorem 2.2. Hence, it follows from this theorem that the family {A(t), t ∈
[0, T ]} belongs to MR(p, q). Now we rewrite (5) as

u′(t) + A(t)u(t) = F (t, u(t)), t ∈ (0, T )

u(0) = 0

with F ∈ C1−,1−([0, T ]× C1(Ω);Lq(Ω)) given by

F (t, u)(x) := f(t, u(x),∇u(x)) x ∈ Ω, t ∈ [0, T ].
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Let τ ∈ (0, T ] and define Zτ := W 1,p(0, τ ;Lq(Ω)) ∩ Dτ (Ap,q) for 1 < p, q <
∞, where Dτ (Ap,q) = {u ∈ Lp(0, τ ;Lq(Ω)); u(t) ∈ D(Aq(t)) for a.e. t ∈
(0, τ) and Aq(·)u(·) ∈ Lp(0, τ ;Lq(Ω))}. The space Zτ is a Banach space with
the norm

‖u‖Zτ
:= ‖u‖W 1,p(0,τ ;Lq(Ω)) + ‖Aq(·)u(·)‖Lp(0,τ ;Lq(Ω))

for u ∈ Zτ . By choosing p and q large enough, we find s ∈
(

1
p
, 1− 1

2
− N

2q

)

such that

Zτ →֒ W s,p(0, τ ;W 2(1−s),q(Ω)) →֒ C([0, τ ];C1(Ω)).(7)

Let now u ∈ Zτ and consider the mapping Φ : u 7→ v, where v is the solution
of the linear problem

v′(t) + A(t)v(t) = F (t, u(t)), t ∈ (0, τ)

v(0) = 0.

Since {A(t), t ∈ [0, T ]} ∈ MR(p, q), there exists a constant M > 0 (indepen-
dent of τ) such that

‖Φ(u)− Φ(u)‖Zτ
≤ M‖F (·, u(·))− F (·, u(·))‖Lp(0,τ ;Lq(Ω))

for all u, u ∈ Zτ and all τ ∈ (0, T ]. The assumption (6) implies that

‖F (·, u(·))− F (·, u(·))‖Lp(0,τ ;Lq(Ω)) ≤ L‖u− u‖Lp(0,τ ;C1(Ω)).

Hence we have

‖Φ(u)− Φ(u)‖Zτ
≤ MLτ

1

p‖u− u‖C([0,τ ];C1(Ω))

for u, u ∈ Zτ . It follows from (7) that

‖Φ(u)− Φ(u)‖Zτ
≤ MLτ

1

p‖u− u‖Zτ
.

By choosing τ small enough, the Banach fixed point theorem implies the
following result.

Theorem 4.1 Assume that ai,j (1 ≤ i, j ≤ N), a and f satisfy the assump-
tions above. Then there exist p1, q1 ∈ (1,∞), T1 ∈ (0, T ] such that for all
p ∈ [p1,∞) and all q ∈ [q1,∞) there exists a unique u ∈ W 1,p(0, T1;L

q(Ω))
with u(t) ∈ D(Aq(t)) for a.e. t ∈ (0, T1) and Aq(·)u(·) ∈ Lp(0, T1;L

q(Ω)),
satisfying (5) on (0, T1)× Ω.
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