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Abstract 

Inquiry learning environments increasingly incorporate modelling facilities for students to 

articulate their research hypotheses and (acquired) domain knowledge. This study compared 

performance success and scientific reasoning of university students with high prior knowledge 

(n = 11), students from senior high-school (n = 10), and junior high-school (n = 10) with 

intermediate and low prior knowledge respectively, in order to reveal domain novice’s need 

for support in such environments. Results indicated that the scientific reasoning of both 

groups of high-school students was comparable to that of the experts. As high-school students 

achieved significantly lower performance success scores, their expert-like behaviour was 

rather ineffective; qualitative analyses substantiated this conclusion. Based on these findings, 

implications for supporting domain novices in inquiry learning environments are advanced. 
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Finding out how they find it out: An empirical analysis of 

inquiry learners' need for support 

Computer-supported inquiry learning environments essentially enable students to learn 

science by doing science, offering resources to develop a deep understanding of a domain by 

engaging in scientific reasoning processes such as hypothesis generation, experimentation, 

and evidence evaluation. The central aim of this investigative learning mode is twofold: 

students should develop domain knowledge and proficiency in scientific inquiry (cf. Gobert & 

Pallant, 2004). Unfortunately the educational advantages of inquiry learning are often 

challenged by students’ poor inquiry skills (e.g., de Jong & van Joolingen, 1998). Researchers 

and designers therefore often attempt to compensate for students’ skill deficiencies by 

offering support such as proposition tables to help generate hypotheses (Shute, Glaser, & 

Raghavan, 1989), adaptive advice for extrapolating knowledge from simulations (Leutner, 

1993), or regulative scaffolds to assist students in planning, monitoring, and evaluating their 

inquiry (Davis & Linn, 2000; Manlove, Lazonder, & de Jong, 2006) 

Although much has been learned from these approaches, the empirical foundations 

underlying the contents of these support tools often remain hidden to the public eye. The work 

of Quintana et al. (2004) forms a notable exception. They argued that more insight into the 

specific problems students face is called for, and accordingly based their scaffolding 

framework on a descriptive analysis of students’ inquiry learning problems. Yet even this 

well-documented framework lacks a specific frame of reference: if anything, there is an 

implicit reference to expert behaviour as yardstick of proficiency.  

This study therefore sought to gain insight into students’ scientific reasoning skill 

deficiencies by contrasting domain novices’ inquiry behaviour and performance to that of a 

considerably more knowledgeable reference group (hereafter: experts). A group of students 

with intermediate levels of prior knowledge was included in this comparison to shed more 
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light on the developmental trajectories of students’ scientific reasoning and domain 

knowledge. Before elaborating the design of the study, a brief overview of the literature is 

given in order to contextualize the design rationale. This overview starts from classic novice-

expert literature and results in a descriptive framework of the core scientific reasoning 

processes.     

 

Theoretical background 

Novice-expert differences have been studied extensively in the field of problem solving. 

This research has identified key characteristics of expert performance, some of which were 

found to be robust and generalizable across domains. In short, problem solving research has 

shown that people who have developed expertise in a certain area mainly excel within that 

area, perceive large meaningful patterns in their domain of expertise, perform fast (even 

though they spend a great deal of time analysing a problem), and have superior short-term and 

long-term memory. Experts also represent a problem in their domain at a deeper, more 

principled level than novices do and have strong self-monitoring skills (Bransford, Brown, & 

Cocking, 2002; Chi, Glaser, & Farr, 1988). 

These general characteristics, although informative, are not specific enough to guide 

instructional designers and science educators in determining what exactly their support should 

focus on. A further complicating issue is that novice-expert differences in problem solving do 

not necessarily generalize to inquiry learning. According to Batra and Davis (1992), most 

problem solving tasks require participants to find a unique correct solution. In inquiry 

learning this search for a single optimal outcome (often referred to as an engineering 

approach) is generally considered less effective in facilitating students’ understanding of a 

domain than a so-called science model of experimentation (Schauble, Klopfer, & Raghavan, 

1991). Performing an inquiry task effectively and efficiently might thus require different skills 
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and strategies than proficient problem solving does. As a result, the general instructional 

implications from problem solving research should be substantiated by, or supplemented with, 

insights gleaned from novice-expert differences in inquiry learning.  

Inquiry learning attempts to mimic authentic scientific inquiry by engaging students in 

processes of orientation, hypothesis generation, experiment design, and data interpretation to 

reach conclusions (Shrager & Klahr, 1986; Zimmerman, 2007). While some have argued that 

the inquiry tasks given to students in schools evoke different cognitive processes than the 

ones employed in real scientific research (Chinn & Malhotra, 2002), the advancement of 

computer technology has significantly narrowed this gap. Contemporary electronic learning 

environments offer a platform for students to examine scientific phenomena through computer 

simulations. These environments increasingly provide opportunities for students to build 

computer models of the phenomena they are investigating. As in authentic scientific inquiry, 

modelling is considered an integral part of the inquiry learning process. Students can use 

models to express their understanding of a relation between variables (Jackson, Stratford, 

Krajcik, & Soloway, 1994; White, Shimoda, & Frederiksen, 1999); these propositions can be 

tested by running the model; evidence evaluation then occurs by weighting model output 

against prior knowledge or the data from the simulation. These comparisons yield further 

insight into the phenomenon and assist students in generating new hypotheses. 

The effectiveness and efficiency with which students perform these processes can be 

expected to differ as function of their level of domain expertise. In the present research, Klahr 

and Dunbar’s (1988) SDDS model was used to describe and explain these differences. This 

descriptive framework captures the core scientific reasoning processes and is sensitive to 

students’ evolving domain knowledge. SDDS conceives of scientific reasoning as a search in 

two problem spaces (hence its name: Scientific Discovery as Dual Search): the hypothesis 

space and the experiment space. The former space comprises the hypotheses a learner can 
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generate during the inquiry process; the latter consists of all possible experiments that can be 

conducted with the equipment at hand. Search in the hypothesis space is guided by either 

prior knowledge or experimental results. Search in the experiment space can be guided by the 

current hypothesis; in case learners do not have a hypothesis they can search the experiment 

space for exploratory experiments that will help them formulate new hypotheses. 

According to the SDDS model, inquiry learning consists of three iterative processes: 

hypothesizing, experimenting, and evaluating evidence. The way students perform these 

processes is assumed to depend on their knowledge of the task domain. Students with domain 

expertise can generate hypotheses from prior knowledge and then test their hypotheses by 

conducting experiments (i.e., a ‘theory-driven’ approach). After experimenting, students can 

evaluate their hypotheses against the cumulative experimental results and prior knowledge. 

Evaluation has three possible outcomes: the current hypothesis can either be accepted, 

rejected, or considered further. Depending on this evaluation the student may start a new 

search for hypotheses, continue investigating the current hypothesis (which generally involves 

some alteration), or end the inquiry. Students without domain expertise cannot generate initial 

hypotheses from prior knowledge. They have to search the experiment space for a series of 

exploratory experiments (i.e., a ‘data-driven’ approach). Once performed and evaluated, these 

experiments may help students to formulate an initial hypothesis, which can then be tested 

through experimentation.   

Research has generally confirmed the alleged influence of domain knowledge on scientific 

reasoning. The original study by Klahr and Dunbar (1988) provides evidence that prior 

knowledge reduces time on task and the number of experiments conducted. Performance 

success was independent of prior knowledge: all participants succeeded in discovering how an 

unknown function of an electronic device worked. Klahr and Dunbar also identified two 

distinct investigative strategies, a Theorist approach and an Experimenter approach. One of 
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the key differences between the two was that Experimenters conduct more experiments than 

Theorists and that this extra experimentation is conducted without an explicit hypothesis 

statement (Klahr & Dunbar, 1988). 

However, these results could not be replicated under more controlled circumstances. 

Wilhelm and Beishuizen (2003) for instance compared learning activities and outcomes 

across a concrete and abstract inquiry task. These tasks were designed so that participants had 

no prior knowledge of the abstract task and ample prior knowledge of the concrete task. 

Participants were found to perform better when their task was embedded in a concrete 

context. Compared to the students in the concrete condition, students in the abstract condition 

stated fewer hypotheses, but performed as many experiments (time on task was not assessed). 

Lazonder, Wilhelm, and Hagemans (2008) replicated these findings in a within-subject 

comparison. They too found that participants perform better on a concrete task with familiar 

content. Results also confirmed that participants generate more, and more specific hypotheses 

on the concrete task. The number of experiments was again comparable on both tasks. 

Lazonder et al. (2008) also confirmed the existence of two distinct investigative strategies. 

They argued that as individuals have little domain knowledge they are presumed to start off in 

a data-driven approach, meaning that they start experimenting without having formulated 

specific hypotheses, but gradually switch to a more theory-driven mode of experimentation. 

Individuals who do posses domain knowledge, in contrast, approach the task by generating 

and testing specific hypotheses, which is the Theorist approach.  

These findings suggest that, although prior knowledge does not reduce the number of 

experiments per se, it does reduce the number of experiments not guided by a hypothesis. 

Students with prior knowledge thus engage in more theory-driven experimentation which 

leads to superior task performance. The latter part of this conclusion was corroborated by 

Lazonder, Wilhelm, and van Lieburg (in press), who found that the number of hypotheses 
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stated by participants was a strong predictor of performance success. This study further 

showed that students learning by inquiry benefit little from knowledge of the meaning of 

variables per se, but it is the knowledge of the relations of the variables that is of pivotal 

importance.  

In line with the previously mentioned studies, the research reported here investigated how 

prior domain knowledge influences students’ scientific reasoning and performance in an 

inquiry task. In contrast to the previous studies, this study was designed as a novice-expert 

comparison that aimed to replicate and extend previous findings under more ecologically 

valid conditions. Toward this end the study utilized a genuine physics task that was situated in 

a realistic setting, and performed with an inquiry learning environment designed for 

secondary education –which stands in marked contrast to the fictitious small-scale inquiry 

tasks used in laboratory studies cited above. Another key difference with prior research is that 

modelling was treated as integral part of the inquiry process. Toward this end the learning 

environment housed a modelling tool students could use to articulate their hypotheses and 

(acquired) domain knowledge.  

 

Research design and hypotheses 

This study compared scientific reasoning and performance success of low-level novices, 

high-level novices and experts on an inquiry task that involved modelling a charging 

capacitor. Low-level novices had no prior knowledge of the task content, but could induce 

this knowledge by interacting with a computer simulation so as to build a model of the 

capacitor. High-level novices were familiar with the physics laws that govern the behaviour of 

a charging capacitor, whereas the experts’ knowledge of capacitors was well beyond the 

needs to complete the task. 
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In line with previous findings participants’ prior domain knowledge was expected to 

influence their performance success and scientific reasoning. As participants could infer all 

knowledge by interacting with the learning environment, the quality of their final models was 

expected to be comparable and therefore independent of prior domain knowledge. However, it 

was expected that novices would need more time to create their models than experts.  

Scientific reasoning was expected to differ as function of participants’ prior domain 

knowledge. Low-level novices, in absence of prior domain knowledge, were expected to start 

off in a data-driven mode of inquiry and gradually shift to a more theory-driven approach, 

resulting in increasingly domain-specific hypotheses. High-level novices possessed some 

prior domain knowledge, and were therefore expected to approach the beginning of the task 

more theory driven than low-level novice. Still, high-level novices were expected to show an 

increase in their hypotheses’ domain specificity. Experts on the other hand, were predicted to 

engage in theory-driven experimentation throughout their inquiry, expressing highly domain-

specific hypotheses. As participants engaging in a data-driven approach will conduct more 

experiments than participants engaging in a theory-driven approach, a negative relationship 

was expected between prior domain knowledge and the number of conducted experiments.  

Relatively many studies have been conducted investigating learners’ evidence evaluation. 

This kind of research generally focuses on developmental differences and reasoning errors 

people make during evidence evaluation (for an extensive overview see Zimmerman, 2000). 

However, as the influence of prior domain knowledge on evidence evaluation has remained 

unexplored, this study does not start from an assumption regarding the process of evaluating 

evidence, and addressed this scientific reasoning process in an explorative way.  
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Method 

Participants 

Thirty-one Dutch students participated in this study. They were selected for their levels of 

prior domain knowledge and classified as either low-level novice, high-level novice, or 

expert. Low-level novices (n = 10) were junior high-school students (aged 14 - 15) who had 

no prior domain knowledge: as capacitors were not part of their curriculum they were 

unfamiliar with the relevant formulas. However, they did have modelling experience, as they 

had recently attended an 8-hour modelling unit in which they built system dynamics models 

of several phenomena (i.e., influenza, fluid dynamics, and greenhouse gasses). High-level 

novices (n = 10) were senior high-school students (aged 18 - 20) from the science track with 

some prior domain knowledge (capacitors had been taught in their curriculum and all relevant 

formulas were addressed), and modelling experience. One year prior to the experiment they 

had attended the same modelling unit as the low-level novices. Additionally, they had just 

finished a modelling refreshment course that, among other things, involved modelling a 

capacitor. Experts (n = 11) were university students (aged 20 - 27) who had finished their first 

year in electrical engineering. They thus had extensive prior domain knowledge (their 

curriculum involved knowledge about capacitors well beyond the scope of the task), as well 

as ample modelling experience.  

 

Materials 

Participants engaged in an inquiry task in a modified standalone version of the Co-Lab 

learning environment (van Joolingen, de Jong, Lazonder, Savelsbergh, & Manlove, 2005). 

The task was to replace parts of the electrical circuit of a speed control camera so it would 

match new specifications. The cover story told participants that a modification to speed 

control cameras (adding a transmitter that activates a matrix board) caused too long 
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recharging times of the capacitor in the electrical circuit. Participants were told that by 

replacing the resistor in the electrical circuit the recharging times could be influenced. They 

had to suggest a possible resistance value which would lead to smaller capacitor recharging 

times.  

In order to tackle the problem, participants first had to investigate how resistance affects 

the time to charge a capacitor. The behaviour of a charging capacitor could be studied by 

running experiments with a simulation (see Figure 1). The simulation represented an electrical 

circuit containing a power source, a resistor, a device that activates a matrix board (which has 

resistance), and a capacitor. Experiments could be conducted with this electrical circuit to 

examine the influence of the resistance on the charging of the capacitor. In the simulation the 

resistor value could be manipulated (five possible values), which changed the current in the 

circuit. Simulation output of all variables could be inspected through a table and graph.  

 

Insert Figure 1 about here 

 

Participants could infer knowledge by interacting with the learning environment. Four 

knowledge components about electrical circuits can be distinguished: Ohms Law, Kirchhoff’s 

law (including its two rules: the junction rule, and the loop rule), and the behaviour of 

capacitors. Students who are unfamiliar in the domain can generate this knowledge by 

conducting experiments with the simulation. For instance, from viewing the animation 

students can grasp the notion that a capacitor is a device where charge is stored (hence the 

animation was designed including a “peeled off” capacitor, so students could see a potential 

difference arising across the plates). Furthermore, the knowledge components could be 

inferred through (systematic) inspection of the results generated from these experiments (in a 

graph or table). For instance, students can plot the potential difference across the capacitor 
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during charging in a graph. From inspection of this graph it can be hypothesized that as the 

potential difference across the capacitor increases, the charging speed decreases. Therefore, 

the increase in potential difference across the capacitor should be dependent (among others) 

on the potential difference across the capacitor itself. Such reasoning concerns knowledge 

about the behaviour of capacitors and the loop rule.   

The model editor (see Figure 1) enabled participants to build and test a model that 

represents their conceptions of the charging behaviour. (A reference voltage of 0 Volts at the 

negative battery pole was assumed so that absolute voltages could be used in the model.) The 

syntax of this system dynamics model makes use of ‘stocks’, ‘auxiliaries’, ‘constants’, ‘flows’ 

and ‘relations arrows’. A model consists of several components: basic elements (i.e., elements 

that represent the model ‘input’: constants and stocks), auxiliary elements (i.e., elements that 

specify the integration of elements) and connecting arrows. An example looks like this: A 

basic element that changes over time and has an initial value (Charge) is represented in a 

stock. Connected to a stock are flows, indicating the changes in the stock. These changes are 

specified from the basic elements that remain constant (i.e., constants) (e.g., capacitance (C), 

power source (S), resistance (R1 and R2)) and auxiliary elements (i.e., auxiliaries) (e.g., 

potential difference across the capacitor (Vc), potential difference across the resistances (Vr), 

current (I), resistance total (R)) which are connected by relation arrows. 

As explained in van Joolingen et al. (2005), participants could build their initial model 

early on by selecting pre-specified, qualitative relations from a drop-down menu (not shown 

in Figure 1). During the later stages, when participants’ knowledge of the capacitor had 

increased, qualitative relations could gradually be replaced by quantitative ones using 

scientific formulas. Thus participants could use their models to express propositions about a 

relation between variables. Hence, students’ modifications to a model were considered 

hypotheses that could be tested by running the model and analyzing its output through the 
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table and graph. These tools further allowed students to compare model and simulation output 

in a single window.  

The Co-Lab learning environment stored participants’ actions in a log file; Camtasia 

Studio ("Camtasia Studio", 2003) was used to record participants’ actions and verbalizations 

in real time. 

  

Procedure 

Students participated in the experiment one at a time. As experts had no prior experience 

with the syntax of the modelling tool, they completed a brief tutorial prior to the assignment. 

All other instructions and procedures were identical for the three groups of participants.  

At the beginning of a session, the experimenter explained the experimental procedures. 

Participants were then presented with the cover story that introduced them to the inquiry task. 

Next, the experimenter demonstrated the procedural operation of the simulation, the model 

editor, and the graph and table tool. During this demonstration, the experimenter handed out a 

paper instruction manual on the modelling syntax participants could consult at any time 

during the task. All participants were familiar with this manual: both novices groups used it 

during their modelling unit and the experts studied the manual during their modelling tutorial 

prior to the assignment. 

Participants were asked to think aloud during the task. Thinking aloud was practiced on a 

simple task (tying a bowline knot). After this final instruction, participants received the 

problem statement and started their inquiry. They had 1.5 hours maximum to complete the 

task.  

During task performance the experimenter prompted the participants to think aloud when 

necessary. Thinking aloud was further encouraged by asking participants to state their 

hypotheses upon running the simulation and to verbalize their evaluation of evidence upon 
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inspecting experimental results in the table or a graph. Towards this end the experimenter 

used non-directive probes to elicit the factor under investigation (“What are you going to 

investigate?”) and its alleged effect on the output variable (“What do you think will be the 

outcome?”) that have been shown to have no disruptive influence on participants’ inquiry 

learning processes (Wilhelm & Beishuizen, 2004).  

 

Coding and scoring 

Variables under investigation in the study were time on task, performance success, and the 

three scientific reasoning processes of hypothesising, experimentation, and evidence 

evaluation. Time on task was assessed from the log-files. Performance success was scored 

from the participants’ final models. Both a model content and a model structure score were 

calculated. The model content score represented participants’ understanding of the four 

distinct knowledge components about electrical circuits within the task (i.e., Ohms Law:  I = 

V/R, resistances connected in parallel: 1/Rt = 1/R1 + 1/R2, the potential difference in the 

circuit depends on the power source and the potential difference across the capacitor: ∆V = Vs 

- Vc, and the relationship between the potential difference across the capacitor and the amount 

of charge that gathers on the capacitor: C = Q/Vc). In a correct, fully specified model these 

components are correctly integrated and meet Equation 1. One point was awarded for each 

correctly specified component, leading to a four-point maximum score. Two raters scored the 

models of three randomly selected low-level novices, three randomly selected high-level 

novices and three randomly selected experts. Inter-rater reliability estimate was 1.0 (Cohen’s 

κ). 
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(dQ/dt) =  (Vs- Q/C) * (1/R1 + 1/R2)    (1)
1
 

 

The model structure score was scored in accordance with Manlove et al.’s (2006) model 

coding rubric. This score represented the number of correctly specified variables and relations 

in the models. “Correct” was judged from the reference model shown in Figure 1. One point 

was awarded for each correctly named variable; an additional point was given if that variable 

was of the correct type. Concerning relations, one point was awarded for each correct link 

between two variables and one point was awarded for the direction. The maximum model 

structure score was 38. Two raters coded the models of three randomly selected low-level 

novices, three randomly selected high-level novices and three randomly selected experts. 

Inter-rater reliability estimates were .74 (variables) and .92 (relations) (Cohen’s κ). 

Participants’ simulation hypotheses concerned statements about variables and relations 

accompanying simulation runs, and were assessed from the think-aloud protocols. Each 

hypothesis was classified according to the level of domain specificity using a hierarchical 

rubric consisting of fully-specified, partially-specified, and unspecified hypotheses (as did 

Lazonder et al., in press). A fully-specified hypothesis comprised a prediction of the direction 

and magnitude of the effect (“I think a 10 times larger resistance will extend the capacitors’ 

recharging period by 10”). Partially-specified hypotheses predicted the direction of effect (“I 

think increasing the resistance will increase the capacitors’ recharging period”). Unspecified 

hypotheses merely denoted the existence of an effect (“I think the resistance influences the 

capacitors’ recharging period”). Statements of ignorance or experimentation plans (“I’ll just 

see what happens”) were not considered hypotheses. Two raters coded the simulation 

hypotheses of three randomly selected low-level novices, three randomly selected high-level 

                                                 

1
 Equation 1 can also be written as dQ/dt = (V/R) exp[-t/RC], with R being the total resistance of the parallel 

resistors. The formula used here was preferred because it is consistent with the system dynamics formalism.  
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novices, and three randomly selected experts (in total 74 hypotheses). Inter-rater agreement 

was .77 (Cohen’s κ). 

In accordance with van Joolingen et al. (2005), model changes were also considered 

hypotheses. A model hypothesis was operationally defined as the changes in a participant’s 

model between subsequent runs. Model hypotheses were coded based on the same 

hierarchical rubric as simulation hypotheses. Any change to a quantitatively specified 

relationship between two elements in the model was coded as fully-specified hypothesis. 

Changes in qualitative relationships were coded as partially-specified hypothesis, and changes 

to relation arrows not accompanied by a qualitative or quantitative specification was coded as 

unspecified hypothesis. Two raters coded the models of three randomly selected low-level 

novices, three randomly selected high-level novices and three randomly selected experts (in 

total 145 models). Inter-rater agreement was .85 (Cohen’s κ). 

The number of conducted experiments with the simulation and the number of model runs 

were retrieved from the log files. Every time participants clicked the ‘Start’ button in the 

simulation window was considered a simulation experiment. Experiments that were not 

accompanied by a hypothesis were considered exploratory experiments. Simulation 

experiments were further classified as unique or duplicated depending on whether the 

experiment had been previously run with the same resistance value. As the learning 

environment enabled participants to choose from 5 different resistance values, a maximum of 

5 unique experiments could be conducted. Every time participants clicked the ‘Start’ button in 

the model editor was considered a model run. If the model had been conceptually altered 

since the previous run, this run was considered an experiment.  

The results of participants’ evidence evaluation was assessed from the progression of 

participants’ models during their session. This evaluation of evidence process was coded 

based on participants’ subsequent models. Based on cumulative evidence resulting from 
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experimenting (and prior knowledge) participants could decide to (temporarily) accept, reject, 

or alter their current hypothesis (contrary to Klahr and Dunbar’s (1988) study, further 

consideration of the current hypothesis with different experiments is conceptually not possible 

when a model is considered an hypothesis). Modifications to the previous version of the 

model were considered ‘alterations’, except when these modifications were deletions or 

additions that were not related to the previous hypothesis. Deletions of elements in prior 

models were considered ‘rejections’, as they reject the hypothesis in the prior model specified 

by this element. Additions of elements in models signalled ‘acceptations’, as the prior model 

was (temporarily) accepted as it was, and now a new hypothesis is considered by addition of 

this new element. 

 

Results 

Both groups of novices needed more than 80 minutes to complete the task (low level 

novices: M = 81.80, SD = 11.39; high-level novices: M = 81.30, SD = 19.61); experts took 

about 20 minutes less time (M = 63.36, SD = 22.12). Univariate analysis of variance 

(ANOVA) showed this difference to be statistically significant, F(2,28) = 3.45, p < .05). 

Planned contrasts indicated that experts needed less time on task than novices (t(28) = -18.19, 

p =.01), whereas the high-level novices and low-level novices needed as much time to 

complete the task (t(28) = -.50, p = .95).  

Table 1 presents a summary of participants’ performance. Performance success was 

assessed from participants’ final models. Multivariate analysis of variance (MANOVA) 

showed that the quality of the participants’ models differed as function of their prior 

knowledge (F(4,56) = 9.50, p < .01). Subsequent univariate ANOVA’s indicated that prior 

knowledge influenced both model content (F(2,28) = 59.105, p < 0.01) and model structure 

score (F(2,28), p < .01). Planned contrasts revealed that experts achieved significantly higher 
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model content (t(28) = 3.09, p <.01) and model structure scores (t (28) = 9.05, p < .01) than 

novices. The comparison among both groups of novices showed that high-level novices had 

higher model content scores than low-level novices (t(28) = 1.10, p < .01). However, the 

model structure score indicated no significant difference between both novice groups (t(28) = 

3.30, p = .24).  

 

Insert Table 1 about here  

 

From Table 1 it can be seen that participants differed in the number of hypotheses they 

generated. Although MANOVA with the number of simulation and model hypotheses as 

dependent variables did not reach significance (F(4,56)= 2.01, p = .11), the large standard 

deviations indicate a considerable variation in scores. Therefore, the content of these 

hypotheses was analysed using the percentages of all stated hypotheses as measure.  

As few participants (4 low-level novices, 3 high-level novices, and 7 experts) stated 

hypotheses with both the simulation and the models, data were analyzed with non-parametric 

Kruskal-Wallis’ ranks tests. Results indicated that the groups neither differed in mean model 

hypothesis’ specificity (χ
2
(2, N = 20) = 5.59, p = .06), nor on their mean simulation 

hypothesis specificity (χ
2
(2, N = 20) = .72, p = .70).  

Figure 2 depicts the specificity of participants’ hypotheses through time (as time on task 

differed between groups, it was standardized using quartiles). An increase in domain 

specificity was expected for both novice groups, whereas experts were expected to generate 

highly domain specific hypotheses throughout the task. Contrary to expectations however, the 

mean domain specificity of participants’ hypotheses remained relatively stable through time. 

One noticeable finding is that low-level novices had substantially more domain specific 
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simulation hypotheses in the fourth quartile. Yet the domain specificity of their model 

hypotheses failed to follow this trend.  

 

Insert Figure 2 about here 

 

Participants could experiment either by running the simulation or their models. 

MANOVA with the number of unique and duplicated simulation experiments as dependent 

variables produced no significant differences (F(4,56) = 1.63, p = .18). ANOVA of the 

number of model experiments was not significant either (F(2,23) = 1.61, p = .22), and nor was 

the percentage of these experiments that was exploratory (simulation experiments: F(2,28) = 

0.62, p = .55; model experiments: F(2,23) = 1.25, p = . 31). These results indicate that 

participants with varying levels of prior knowledge performed as many experiments, and used 

these experiments as often to test hypotheses.  

Participants could perform these experiments during the task as they deemed necessary, 

resulting in large inter-individual differences in experimenting behaviour over time. Figure 3 

depicts the spread of the number of experiments conducted with the simulation and the 

models over time (as with hypotheses, time was divided in quartiles). As can be seen, in 

general the number of experiments with the simulation decreased over time, whereas the 

number of experiments with the models tended to increase. There was also a decline in the 

number of participants who experimented with the simulation. Even though an initial 

knowledge base could be acquired by experimenting with the simulation, seven low-level 

novices chose not to experiment with the simulation in the first quartile. Actually, three low-

level novices did not experiment with the simulation at all. Even more participants did not 

make use of the modelling tool to experiment with, one low-level novice and four high-level 

novices never executed one of their own models. 
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Insert Figure 3 about here 

 

For subsequent models, results of participants’ evidence evaluating processes were 

analysed in light of the number of hypotheses. Therefore comparable to hypotheses’ data, 

these data were also converted to percentages and analysed with non-parametric Kruskal-

Wallis’ ranks test. From Table 1 it can be seen that groups did not differ in percentage of 

evidence evaluation resulting in accepting (χ
2
 (2, N = 20) = 0.10, p = .95) and alteration (χ

2
 (2, 

N = 20) = 2.61, p = .27). However, prior knowledge affected the percentage of evidence 

evaluation processes resulting in rejection (χ
2
 (2, N = 20) = 6.72, p < .05). Low-level novices 

rejected more model hypotheses than high-level novices and experts.  

 

Qualitative analyses 

From these statistical analyses it appears that novices predominantly followed the same 

approach as experts. Performance success scores suggest that this approach suited experts 

better than novices. Qualitative analyses of participants’ modelling activities were performed 

to reveal why novices’ behaviour was less effective.  

When looking at participants’ initial models (i.e., the first model they tried to run), it 

appeared that participants with domain knowledge were only a fraction better at deciding 

which components to include in their model. Experts’ initial models contained nearly all basic 

elements from the target model (i.e., 1 stock and 4 constants) (M = 4.45, Range = 3-5), 

indicating that they could oversee the entire problem and correctly identified the relevant 

pieces of information from the problem statement. Novices included as many elements in 

their first model (low-level novices: M = 4.33, Range = 2-6; high-level novices: M = 4.00, 

Range = 3-5). However, low-level novices’ initial models contained a few erroneous elements 
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such as ‘loading time’ and ‘switch’ (M = 0.89, Range = 0-2), whereas high-level novices and 

experts’ models had no such elements. The low-level novices’ final models contained a 

comparable number of incorrect elements (M = 1.22, Range = 0-4). 

Although low-level novices had a pretty good sense of which elements to include in their 

initial models, they were probably ignorant of the relationships between model elements. The 

modelling tool in Co-Lab anticipated this by offering participants the possibility to specify 

relationships qualitatively. Participants could thus specify relationships before they fully 

grasped the mathematical formula governing the relation between two variables. Surprisingly 

however, only two low-level novices and one expert made use of this feature. While this may 

seem a defendable choice for the experts and high-level novices, it may not be a wise decision 

for the low-level novices. Yet they generally ignored, and sometimes even deliberately 

rejected qualitative modelling by saying that it produced a less specific model that would not 

help them to discover the capacitor’s behaviour.  

These findings support the idea that low-level novices tried to build their models in an 

expert manner. But due to their lack of prior knowledge, low-level novices could only base 

their modelling efforts on insights gained through experimentation, or engage in trial and 

error activities. Therefore, participants’ think-aloud protocols were analyzed to reveal the 

reasoning behind subsequent model changes (i.e., model hypotheses). Results indicated that 

low-level novices hardly reasoned at all. Nine low-level novices utilized the modelling tool to 

experiment with their models, eight of them also experimented with adjusted models. These 

eight low-level novices did not motivate 87% of the changes they made to their models at all. 

The changes to models that were guided by reasoning could be considered ‘data-driven’; this 

is illustrated in Excerpt 1. 

 

Excerpt 1 (low-level novice)  
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“They [the resistances] ought to be 4.4 Volts. 

Participant inspects model output in the table 

Hmmz, 410 kilo Ohm, so with every kilo Ohm there will be approximately 0.1 Volts 

resisted. Thus this resistance resists 3 Volts and the other 1.1 Volts.  

 

The experts, in contrast, relied heavily on their prior knowledge for their model changes. 

Eight experts performed more than one model experiment, and 83% of their model changes 

were motivated from prior knowledge; a typical example is shown in Excerpt 2. Of the 

remaining model changes, 12% was ‘data-driven’, often involving statements about previous 

model runs, 2% was based on logical reasoning, and 3% was not motivated.  

 

Excerpt 2 (expert) 

“Now I have the, ehm, source power I’ve got let’s say to the…the source power is 

influenced by the resistances, from that I’ve made this current. That is the current behind 

the parallel resistances. As that is necessary to charge the capacitor. The formula to charge 

the capacitor is: the value of the capacitor times the current time derivative. So now I’m 

going, ehm, then you have the current over there…” 

 

Only four high-level novices performed more than one model experiment. In the think-

aloud protocols of the four high-level novices who found subsequent experimenting 

worthwhile, 89% percent of the changes made to the model were motivated. This reasoning 

was based on prior domain knowledge (28%), data from prior experiments (33%), 

information found in the assignment (28%; see Excerpt 3), or logical reasoning (11%). 

 

Excerpt 3 (high-level novice)  
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“With these [the arrows connecting elements in the model] I want to indicate that there is 

a charge directly towards the capacitor…and that it goes through the sender or the 

resistance let’s say…and then again through the capacitor, like in that circuit [the circuit 

depicted in the assignment paper].” 

 

Discussion 

The aim of this study was to reveal domain novices’ need for support by comparing their 

scientific reasoning and performance success to that of students with higher levels of domain 

knowledge. The experts’ task performance served as standard against which the scientific 

reasoning and knowledge acquisition of low-level novices and high-level novices were 

compared. The first comparison in particular elucidates the issues support for students without 

prior domain knowledge should address. The discussion concludes with implications for the 

design of such support. 

Consistent with problem-solving research, the experts required less time for task 

completion than both groups of novices. Other findings suggest that these time differences 

were attributable to the experts’ rich knowledge base. That is, experts needed only a few 

simulation experiments to create comprehensive initial models that generally contained all 

basic elements from the target model. Their model runs were always intended to test a 

hypothesis, and nearly all changes to the model were motivated from prior knowledge.  

Low-level novices were predicted to perform these scientific reasoning processes in a 

different way. Contrary to expectations, however, their hypothesizing and experimenting did 

not differ from that of experts. Although the latter result is consistent with previous laboratory 

studies (Lazonder et al., 2008, in press; Wilhelm & Beishuizen, 2003), the higher proportion 

of exploratory experiments found in these studies could not be confirmed. Together these 

findings suggest that low-level novices based their rather specific hypotheses on mere 
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guesswork. The qualitative analyses bore this out: most low-level novices did not engage in 

qualitative modelling, and very few of the changes to their models (i.e., model hypotheses) 

were guided by reasoning. Therefore, many of these hypotheses inevitably were incorrect and 

should be rejected. This is indeed what appears to have happened since low-level novices 

rejected a larger proportion of their model hypotheses than experts did.  

Performance success scores reflect to what extent participants’ scientific reasoning was 

effective. Based on Klahr and Dunbar (1988), performance success was assumed to be 

independent of participants’ prior knowledge because, contrary to most problem solving tasks, 

low prior knowledge participants could infer all knowledge by interacting with the learning 

environment. Results indicate that they did not: the quality of the experts’ models was higher 

compared to that of the high-level novices’ models, whereas high-level novices built better 

models than low-level novices. A closer look at these results shows that the experts achieved 

an almost perfect model content score; a few minor inaccuracies caused that not every expert 

produced a fully correct model. Low-level novices, in contrast, had rather low performance 

success scores. The magnitude of their model content scores indicates that they did not 

acquire complete understanding of any of the four formulas that governed the behaviour of 

the charging capacitor. Although the learning environment provided them with all necessary 

tools to induce this knowledge, low-level novices did not succeed in doing so –which suggests 

that their scientific reasoning was rather ineffective.  

From these findings it can be concluded that low-level novices predominantly exhibit 

expert-like behaviour during an unsupported inquiry task, and that this approach apparently 

does not suit them that well. This conclusion is consistent with the findings of Lazonder et al. 

(2008). Their within-subject comparison revealed that students generally adopt a similar 

approach to inquiry tasks in familiar and unfamiliar domains, but perform better on tasks they 

possess prior knowledge of. Therefore, it can be concluded that the current results 
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complement existing evidence on the influence of prior knowledge on inquiry behaviour. 

Findings from prior laboratory studies in which prior knowledge was manipulated by 

differences in task design, can now be generalized to more ecologically valid classroom 

situations.  

This study added an intermediate group (i.e., high-level novices) to the novice-expert 

comparison. Insight into high-level novices’ inquiry behaviour and difficulties is of interest 

for the design of support because low-level novices will probably encounter the same 

problems once they have gained some knowledge of the topic they are investigating. As high-

level novices’ prior knowledge was higher than the low-level novices’ and lower than the 

experts’, they were expected to perform better than the low-level novices, though possibly not 

as good as experts. Contrary to expectations, however, their hypothesizing and experimenting 

neither differed from that of experts, nor from that of low-level novices. The qualitative 

analyses suggest that this expert-like behaviour suits the high-level novices as there appeared 

to be sound reasoning behind the high-level novices’ highly specific hypotheses. 

Consequently, most of their experiments resulted in either acceptation or alteration of the 

hypotheses, which was comparable to experts’ evidence evaluation results.   

The high-level novices’ performance success scores were higher than low-level novices’. 

Yet these scores were still fairly low, considering that the high-level novices were familiar 

with all relevant domain knowledge. It appears that, despite their prior knowledge, 

performance on this task was difficult for the high-level novices, suggesting that they were 

unable to effectively apply their knowledge. These findings lead to the conclusion that 

learners who are somewhat familiar in the domain also need support in order to help them 

manage their knowledge to effectively perform an inquiry task. 

However, there was one slightly a-typical finding. Several high-level novices were found 

not to perform any model experiment. This could be a result of the task difficulty. If high-
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level novices had difficulty expressing their knowledge in a model during the task, they 

probably did have enough domain knowledge to realize that the model was not good enough 

yet. As such, it would make sense not to run that model as they knew it to be incorrect. Future 

research might give more insight on this problem and how it can be overcome.  

These conclusions lead to implications for support. Bearing in mind that what constitutes 

effective and efficient inquiry behaviour is dependent on domain knowledge, it can be argued 

that novices’ (having no prior knowledge) unsupported inquiry behaviour was not effective on 

this task, but could be effective if they were familiar in the domain and would apply and 

expand this knowledge through iterative cycles of model testing. Conclusions for support for 

inquiry learning can therefore go into two directions, either providing domain support in order 

to increase the effectiveness of their students’ natural inquiry behaviour, or process support to 

better attune students’ inquiry behaviour to their level of domain knowledge. These two 

directions correspond with what Quintana et al. (2004) called content support and process 

support respectively.          

In a literature review, de Jong and van Joolingen (1998) conclude that providing direct 

access to domain information seems effective as long as the information is presented 

concurrently with the simulation, so that the information is available at the appropriate 

moment. Lazonder, Hagemans, and de Jong (in press) found that offering domain support 

before and during the task is even more effective. Students who received domain information 

before and during the task not only inferred more knowledge from their investigations, but 

also exhibited more sophisticated scientific reasoning. This confirms the notion that providing 

domain knowledge to students is an effective type of support. However, as our low-level 

novices already exhibited quite sophisticated scientific reasoning, while still being rather 

unsuccessful on the task, providing domain knowledge appears not to be the most appropriate 

type of support. Moreover, as Lazonder et al. (in press) also mention, providing domain 
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knowledge is somewhat at odds with the concept of inquiry learning, where learners have to 

discover domain knowledge themselves.  

Therefore, it seems more appropriate to support students’ inquiry behaviour by better 

attuning students’ inquiry behaviour to their level of domain knowledge. Directions for such 

process support can be derived from this study’s results. The bottleneck for novice learners 

was found not to be the identification of relevant elements, as it was the inquiry of the nature 

of the relationship between these elements that caused problems. Novice learners knew quite 

well which elements to include in the model (even their initial model contained nearly all 

correct elements and few erroneous elements). However, novice learners attempted to infer 

the relationships between those elements by means of testing hypotheses that were very 

specific in nature. Moreover, novices most likely based these hypotheses on guesswork, as 

there was hardly any underlying reasoning. As such inferring the correct relationships 

becomes very difficult and it is no surprise that they hardly succeeded in inferring these 

relationships.  

The modelling tool in the learning environment aims to support learners’ hypotheses 

construction in a graphical way (van Joolingen et al., 2005) Learners in this study were given 

a choice as to how detailed they wanted to specify relationships. They could opt for a self-

generated, full-fletched scientific formula (i.e., quantitative relations), or select less detailed 

pre-specified, qualitative relations from a drop-down menu (i.e., qualitative relations). 

Qualitatively specified relations are more appropriate at the beginning of the modelling 

process when learners do not yet have a clear idea about the model they are making (Löhner, 

van Joolingen, & Savelsbergh, 2003; Sins, Savelsbergh, & van Joolingen, 2005). Therefore it 

is surprising that in the present study, where participants did not receive any kind of support, 

only 2 low-level novices made use of the possibility to state qualitative relations.  
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In view of these findings it might be fruitful to restrain domain novices’ natural tendency 

to engage in quantitative modelling from scratch by first having them create models that are 

qualitatively specified, and then enabling them to transfer these qualitative relations into 

quantitative ones. This type of support is in line with the model progression approach 

described by White and Frederiksen (1990). Model progression was found to lead to higher 

performance (Rieber & Parmley, 1995; Swaak, van Joolingen, & de Jong, 1998). However, 

these authors interpret model progression as a type of support where the model at first is not 

offered in its full complexity, but variables are gradually introduced (or, in terms of White and 

Frederiksen (1990), a model progression where the degree of elaboration of a model is 

increased). Our proposed support, as suggested by Gobert and Clement (1999), can be 

considered a more fine-grained kind of model progression, where the specificity of the models 

is increased. This kind of model progression resembles what White and Frederiksen (1990) 

call model progression where the order of a model is increased.  

To conclude, we propose to support learners on an inquiry learning task with model 

progression, where the model is progressed in specificity. In line with the coding of the model 

hypotheses, three increasingly specific stages of modelling can be identified: a stage in which 

relationships between elements are unspecified, a stage in which relationships between 

elements are specified qualitatively, and a stage in which these relationships are specified 

quantitatively. In the first stage of model progression, students investigate a phenomenon 

(e.g., an electrical circuit containing a capacitor) and have to make a model structure of that 

phenomenon without having to specify the relationships in the model. In the second stage, 

students continue to investigate the phenomenon in order to specify the relationships in their 

model qualitatively. In the third stage, students finalize their investigation of the phenomenon 

by replacing the qualitatively specified relationships with quantitatively specified 

relationships.  
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One important condition for this form of model progression to be effective is that students 

should have enough opportunity to build and test hypotheses. The simulation that was used in 

the present study might not satisfy this requirement: although output of all elements in the 

simulation interface could be inspected in the table or graph, only one element (the resistor) 

could be manipulated. Allowing students to change the values of the other elements as well 

extends the possibilities for students to validate the hypotheses they generate from interacting 

with the simulation and running their own model. Model progression could then be an 

effective way to support students’ inquiry and modelling process. Validating this assumption 

in science classrooms is an important topic for future research.  
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Figure Captions 

Figure 1. Screen capture of the simulation (left pane) and model editor tool (right pane). 

Pressing the start button in the simulation started an animation of moving green 

dots representing current, a flow of charge over time (see Equation 1). The 

charging of the capacitor was visualized by green dots piling up on the top plate of 

the capacitor. The model editor shows the reference model students had to build 

from their prior knowledge and/or insights gained through experimenting with the 

simulation.  

Figure 2.  Mean specificity of participants’ hypotheses accompanying simulation experiments 

(left pane) and model experiments (right pane) over time and by group. 

Figure 3.  Mean number of experiments conducted with the simulation (left pane) and with the 

model (right pane) over time and by group. 
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Figure 1. Screen capture of the simulation (left pane) and model editor tool (right pane). Pressing 
the start button in the simulation started an animation of moving green dots representing current, a 
flow of charge over time (see Equation 1). The charging of the capacitor was visualized by green 

dots piling up on the top plate of the capacitor. The model editor shows the reference model 
students had to build from their prior knowledge and/or insights gained through experimenting with 

the simulation.  
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Table 1. Summary of participants’ performance. 
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Figure 2.  Mean specificity of participants’ hypotheses accompanying simulation experiments (left 
pane) and model experiments (right pane) over time and by group.  
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Figure 3.  Mean number of experiments conducted with the simulation (left pane) and with the 
model (right pane) over time and by group.  
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