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ABSTRACT 

The search for susceptibility loci in gene-gene interactions imposes a methodological and 

computational challenge for statisticians due to the large dimensionality inherent to the 

modelling of gene-gene interactions or epistasis.  In an era where genome-wide scans have 

become relatively common, new powerful methods are required to handle the huge amount 

of feasible gene-gene interactions and to weed out the false positives and negatives from 

these results.  One solution to the dimensionality problem is to reduce the data by 

preliminary screening of markers to select the best candidates for further analysis.  Ideally, 

this screening step is statistically independent of the testing phase.  Initially developed for 

small numbers of markers, the Multifactor Dimensionality Reduction method is a 

nonparametric, model-free data reduction technique to associate sets of markers with 

optimal predictive properties to disease. In this study, we examine the power of Multifactor 

Dimensionality Reduction in larger datasets and compare it to other approaches that are 

able to identify gene-gene interactions. Under a variety of interaction models (purely and 

not purely epistatic), we use a Random Forests –based pre-screening method, before 

executing the Multifactor Dimensionality Reduction, to improve its performance. We find 

that the power of Multifactor Dimensionality Reduction increases when noisy SNPs are 

first removed by creating a collection of candidate markers with Random Forests. We 

validate our technique by extensive simulation studies and by application to asthma data 

from the ECRHS II study. 

Keywords: gene-gene interactions; pre-screening; Random Forests; Multifactor 

Dimensionality Reduction 
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INTRODUCTION 

In genetic association studies, the goal is to unravel the genetic basis of certain diseases. 

For a long time, the focus has been on detecting associations between single SNPs and 

disease.  However, it has become clear that research in epistasis is able to reveal 

information that could not be obtained by performing single marker analyses1.   

A range of methods have already been developed to detect gene-gene interactions, for 

example the Multifactor Dimensionality Reduction method (MDR) 2.  MDR is a non-

parametric data reduction method that builds prediction models by pooling multilocus 

genotype groups in high and low risk groups. In this way it tries to find the combination of 

k loci that has the lowest average prediction error. A permutation test is used to determine 

whether this combination is a significant gene-gene interaction or not.  

Detecting gene-gene interactions on data containing a large number of SNPs is a complex 

analysis, since one has to deal with difficulties such as data sparseness and multiple testing.  

One way of coping with the number of interactions is to find a pre-screening method that 

makes a first selection of good candidate markers.  The software MDR3 has several 

measures to make a selection of SNPs.  However, when selection decisions are based on 

single SNP effects only, pre-screening techniques are unlikely to work well on pure 

epistasis models.  In contrast, machine learning techniques may better serve the purpose of 

identifying candidate clusters of SNPs for epistasis analysis2.  When using machine-

learning tools as a pre-screening method, it is more interesting to determine which markers 

play an important role in the classification model than the classification of subjects itself.  

'Importance scores' allow making a selection of informative markers.  For Random Forests 
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(RF), the Z-score4 of a variable is the deviation of the prediction error of the RF on the 

original data from the prediction error of the RF on the data where this variable is 

permuted, divided by its standard error.  Based on these scores, a selection of SNPs can be 

made that play an important part in predicting the outcome (e.g. disease status).  However, 

a two-stage epistasis analysis will benefit from a first stage pre-screening technique that 

exploits mutual information provided by several markers at once.  The Joint Importance 

Scores capture this idea5.  These Importance Scores are constructed similarly to Z-scores in 

the sense that now the values of multiple variables instead of just one variable are 

permuted and the importance of several variables is measured instead of one variable.  We 

refer to the Appendix A for detailed information about these importance scores. 

In this paper, we construct a pre-screening methodology for MDR based on RF 

methodology so as to reduce the number of noisy or less informative SNPs.  We note this 

method by RFcouple.  RFcouple is compared to other methods: alternative techniques 

based on RF and pre-screening based on 2χ -statistics. The power and type I error rate of 

MDR is compared to the power and type I error rate of  the combination of MDR and 

RFcouple. We study several epistasis models: models with and without main effects and 

additive and non-additive epistasis models.  We also consider datasets of different sizes.  

We conclude that the combination of RFcouple and MDR performs well in most situations 

and  increases the power of MDR in several of the investigated epistasis models. The 

method is applied to data from the ECRHS II initiative.   

MATERIALS AND METHODS 

RFcouple: PRE-SCREENING BASED ON RF 
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We propose an alternative way to the aforementioned RF-based ways to select candidate 

SNPs for further analysis.  RFcouple combines information of multiple SNPs, rather than a 

single SNP at the time, and uses a selection measure as in MDR, in particular the ratio of 

cases to controls for each multilocus genotype group. This idea is illustrated for 2-way 

interactions in Figure 1.  In the first step, we consider the full marker data set and 

determine all couples of SNPs. In the second step, the ratio of cases to controls is 

calculated for each multilocus genotype, for each pair of SNPs. The third step consists of 

defining a new variable for each couple of SNPs, by replacing the observed genotype 

groups with the corresponding ratio of cases to controls. In this way, we obtain a 

transformed dataset where each variable represents a couple of SNPs rather than a single 

SNP.  A RF is constructed on these data and we select k newly constructed variables (i.e., 

couples of SNPs) by looking at the Z-scores in a classical RF framework. After selection of 

the best couples, the set of SNPs that are represented by the selected couples are retained. 

This reduced set of markers is subsequently subjected to an epistasis analysis technique 

(MDR).  Since the pre-screening procedure harbours information on disease status, special 

attention needs to be given to keeping the false discovery rate under control (see further in 

this section).  

The optimal number k of couples of SNPs to select in pre-screening is determined by 

simulations using several epistasis models. The chosen k is a trade off between having a 

large probability of detecting both susceptibility loci in the pre-screening step and 

reducing the number of SNPs so as to improve the power of MDR.  It is influenced by the 

underlying epistasis model and the number of trees in the RF.   
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The performance of RFcouple is evaluated by comparing it to the performance of other 

pre-screening methods: 1) RFjoint is a RF-based selection technique on the original data 

that selects k couples of SNPs having the largest Joint Importance Scores.  2) RFz 

represents a RF-based pre-screening on the original data where we select 2k single SNPs 

that have the largest Z-Scores.  Finally, we also pre-screen single SNPs based on 2χ -

statistics (denoted as 2χ ).  For the latter, the top 2k SNPs are selected that have the largest 

2χ -statistics in the original dataset.  Note that these test statistics are not corrected for 

multiple testing, since we are not interested in the significance of the associations at this 

stage.   

Using RFcouple in conjunction with MDR (from now on referred to as RFcouple + MDR) 

is bound to give rise to inflated type I error rates, since both pre-screening and testing rely 

on ratios of cases to controls. Related to this type of dependence is the fact that the type I 

error rate is affected by the number k of couples of SNPs that are pre-selected.  To deal 

with both problems, we incorporate the pre-screening technique RFcouple into the 

permutation testing procedures of MDR2 .  

SIMULATION STUDY 

For every simulation setting, we generate 100 datasets.  The simulations only discuss 

balanced case-control datasets (datasets containing an equal number of cases and controls) 

and bi-allelic markers.  The number of SNPs is set to 10, 100 and 250.  For all datasets, we 

simulate 200 cases and 200 controls.  Sample sizes are chosen to be able to compare the 

results with earlier published data6. We maintain the same number of cases and controls for 

varying amounts of SNPs to obtain honest power comparisons. 2 

1 
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Datasets are simulated according to two types of epistasis models: additive and non-

additive.   

In particular, we consider 7 non-additive epistasis models (Figure 2) of which the first 6 

models contain no main effects6. The 7th model incorporates 2 loci that have main effects5.  

For all these models, 2 susceptibility loci are generated according to these scenarios and 

the additional SNPs are simulated independently according to Hardy Weinberg 

Equilibrium with minor allele frequencies (MAF) randomly generated between 0.05 and 

0.5. 

We consider the following additive epistasis models (Table 1): Model I represents a model 

without explicit main effects, model II is a model with 1 strong main effect and the same 

interaction effect as model I, and model III has the same main and interaction effect as 

model II, with an extra (weaker) main effect.  Note that for model I, the 2 susceptibility 

loci will have some marginal effects7.  The marginal effect of this model for locus 1, 

defined as the heterozygote odds ratio, has a value between 1.2 and 1.77. 

For each simulation based on an additive epistasis model (Table 1), we construct the 

genotypes of all loci independently and according to Hardy Weinberg Equilibrium.  The 

MAF for all SNPs are randomly generated between 0.1 and 0.338.  The probability p of 

disease conditional on the given genotype configuration is determined by the regression 

models described in Table 1, for which 0β  refers to the prevalence of the baseline 

population (homozygotes for the major allele at the 2 susceptibility loci) and is set to 0.1.  

The disease status of the subjects is then drawn from a binomial distribution based on p.    
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For each of the additive epistatis models, we first choose to generate a large population, 

and second to sample balanced case-control datasets from this population.    

For the MDR data analysis, we carry out a 1-2 locus search with 10 cross-validation 

intervals. The threshold of the ratio of cases to controls to determine high and low risk is 

set to 1. Cells with ratio of cases to controls equal to 1 are assigned ‘low risk’.  The 

random seed is set to 2. One thousand permutations are run for each application of MDR. 

In each application of RF, 250 trees are constructed for the forest.  As suggested in the 

manual of the RF software4, the number of variables used to construct node splitting is set 

to the square root of the number of variables in the dataset. 

The type I error rate and power of MDR is compared to the type I error rate and power of 

the combined technique (RFcouple + MDR).   One thousand null datasets containing 100 

SNPs and 400 subjects are simulated to compute the type I error rate of RFcouple + MDR.  

The type I error rate of the combination of RFcouple and MDR is defined as the percentage 

of the 1 000 null datasets for which MDR assigns a p-value less than 5% to the model that 

MDR proposes as the best 2-locus model.  We define power for both MDR and RFcouple 

+ MDR as the percentage of the simulated datasets where MDR identifies the 2 

susceptibility loci as the best 2-locus model and assigns this 2-locus model a p-value 

smaller than 5%.    

RESULTS 

SIMULATION STUDY 

Determining the number of couples to select (k) 
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Figure 3 shows power results of RFcouple + MDR for the non-additive epistasis models 4 

and 5 (see Figure 2) as a function of k, based on datasets containing 100 SNPs and 400 

subjects.  It illustrates that, for model 5, the number of trees in the RF doesn’t have much 

influence and that the largest power for RFcouple + MDR is obtained for k=1.  However 

we also notice that the power decreases a lot when varying k from 1 to 5 and stabilizes for 

larger values of k.  Since we are looking for a cut-off value that works well for different 

epistasis models, a good rule of thumb may be k=5.  The power results for RFcouple + 

MDR for model 4 confirm this choice.  Based on similar investigations, the optimal value 

for k in datasets containing 400 subjects is 1 for data sets with 10 SNPs, for data sets with 

100 and 250 SNPs, the preferred value for k is respectively 5 and 15. 

Performance of the pre-screening techniques 

First, we consider the different pre-screening methods applied to all epistasis models 

(Table 2).  The measure used to evaluate these techniques is the percentage of simulated 

datasets where both susceptibility loci are in the set of selected SNPs.  In the datasets 

containing 10 SNPs, RFcouple is the best selection technique for model 1 to 6 (models 

representing no main effects). When main effects are present (models 7, I-III), pre-

screening based on 2χ - statistics and RF also gives good results.  Actually, RFjoint and 

screening based on 2χ  - statistics only show good results for model 7 and models I to III.  

As these models contain one or two main effects, this is also in line with expectations.  The 

adopted 2χ  - statistics conceptually target main effects, and RFjoint has been shown to 

perform well in the presence of main effects5.   
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As the number of SNPs (k) to preselect is determined so that RFcouple has a high selection 

probability, the good performance of RFcouple in all scenarios is not surprising.  In 

general, although no single method has optimal performance,  RFcouple performs best in 

the majority of the considered simulation settings.   

We observe in Table 2 that RFcouple has screening probabilities equal to or higher than 

the power of MDR to select the 2 interacting loci. If this were not the case, the power of 

MDR in combination with the pre-screening method would be worse than the power of 

MDR.   

Acknowledging that 10 SNPs are not very informative for the evaluation of pre-screening 

methods, we increase the number of SNPs from 10 to 100 and 250.  In these larger 

simulated datasets, the comparative results are very similar and the conclusion of RFcouple 

being an optimal screening method remains.  The results for the selection techniques of the 

datasets containing 10, 100 and 250 SNPs can not be compared, because they condition on 

the determined cut-off value k.  

Power and Type I error rate of MDR and RFcouple + MDR 

In Table 2, we also compare the power of MDR with the power of RFcouple + MDR for 

the three types of datasets (10, 100 and 250 SNPs).  We conclude that for most of the 

models, we achieve at least comparable power levels by first constructing a subset of 

interesting SNPs. There are 3 models (4, 7 and I) where we lose some power. The largest 

increase in power is observed for models 5 and 6 (power increase between 4% and 27%).  

The type I error rate of RFcouple + MDR based on our simulations is 3.9%, which is 

slightly higher than the type I error rate of MDR (2.9%), but still upper-bounded by the 

targeted 5% type I error rate. 

3 
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APPLICATION TO THE ECRHS II DATA 

The European Committee of Respiratory Health Study is a large European population-

based cohort study that intends to collect information on respiratory symptoms such as 

atopy and asthma.  The study wants to identify the environmental and genetic factors that 

play a role in asthma.  In a first phase (ECRHS I), a short questionnaire is given to a large 

random sample of 20-44 aged people.  From this sample, a random sub-sample is taken 

together with a symptomatic sub-sample.  The latter contains subjects not selected in the 

random sub-sample who reported respiratory symptoms in the questionnaire.  The second 

phase (ECRHS II) consists of the follow-up study for the two sub-samples together (5065 

subjects). 

In the ECRHS II, 105 SNPs are genotyped (see Appendix B for complete list of the SNPs) 

among which two are of particular interest: TNFA-308 (rs 1800629) and LTA+252 (rs 

909253).  These SNPs are previously shown to be associated with asthma, but the results 

are inconsistent9.  Comments on the actual genotyping techniques used are reported 

elsewhere9.  A few covariates are also measured: bmi index, region, sex, age and smoke.   

The phenotype that we analyze is asthma_ever (whether the subject ever had asthma or 

not).   

To prepare the data for the analysis, Hardy-Weinberg equilibrium exact tests are performed 

for each SNP in the control population.  One SNP is not in HWE (rs1816702) and is 

removed for further analysis.  SNPs with MAF less than 0.01 are also removed (rs1800031 

and rs5030839).  Continuous covariates (age, bmi) are categorized based on 33% and 66% 

quantiles to be able to apply MDR.  Because RF has problems with missing data, we 

remove 3 SNPs (rs1112005, rs11536889 and rs324381) that contain a lot (more than 10%) 
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of missing values. After removing the 3 SNPs, we remove the incomplete subjects and 

ended up with 2873 subjects (524 cases and 2349 controls).   

This dataset is imbalanced because the number of cases and controls differs.  The 

classification models constructed by RF suffer from imbalanced data. On such data, a RF 

focuses on the prediction accuracy of the majority class (the class containing the most 

subjects) and neglect the prediction accuracy of the minority class.  To overcome this 

problem, we construct a balanced dataset by taking a random sample of 524 controls.  We 

select 5 couples of SNPs with the RFcouple procedure and construct 250 trees for each run 

of RFcouple. 

When executing MDR on the data without pre-screening techniques, the best 1-locus 

model identified the importance of geographical location of the subjects (region) with a 

reported p-value equal to 0 based on the testing balanced accuracy.  The detection of 

region as main effect could be an indication of population stratification9.  When taking 9 

extra random samples of 524 controls, it appears that in all analyses the geographical 

location seems to be very important. The same conclusion can be drawn from an RFcouple 

+ MDR analysis. 

Since we suspect the presence of population stratification, we stratify all analyses 

according to region.  In the results presented in Table 3, we notice that for some of the 

analyses different models are selected with and without pre-screening. This suggests that 

the SNPs in the models selected without pre-screening didn’t make it through the screening 

and may therefore simply represent noise.  The results also highlight a significant 2-way 

interaction model between rs714588 and rs10496465 for Southern Europe.  The SNP 

rs714588 is located at 5’UTR of the neuropeptide S receptor 1 (NPSR1) gene and the SNP 
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rs10496465 is located in the dipeptidyl-peptidase 10 (DPP10) gene.  The NPSR1 and 

DPP10 genes were identified by positional cloning as asthma related genes10,11.The 

biological mechanism of these genes leading to the disease is poorly understood. However, 

functional and expression evidence genes suggest that both could be involved in the same 

biological pathways supporting the potential interaction between the two loci (rs714588 

and rs10496465). The two genes are expressed in immune cells suggesting a role in 

immunological response. NPSR1 is up-regulated in macrophages after antigen 

stimulation12,13 while DPP10 may modulate the activity of various proinflammatory and 

regulatory chemokines and cytokines11,14. However, both genes are also expressed in 

neuronal cells suggesting a potential effect of this gene on airway smooth muscle 

constriction by neuronally mediated mechanisms14,15. Indeed, DPP10 protein regulates a 

K+ channel function important for neural regulation of airway smooth-muscle tone14,16.  

DISCUSSION 

In this paper, we propose a data reduction technology based on RF to improve the power of 

MDR.  In an era in which methods need to cope with large datasets (for instance, in terms 

of number of SNPs), the capacity of the corresponding software is of utmost importance.  

MDR has been programmed to deal with datasets of 500K SNPs for 4000 subjects, but it is 

not clear what the power of MDR is in this setting.  The performance of MDR in large-

scale studies is evaluated by calculating the proportion of simulated datasets where MDR 

proposes the underlying epistasis model as the best model17.  Since no permutation tests 

are run, these percentages overestimate the power of MDR and can not be compared to our 
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results.  Pre-screening the data to narrow down the number of SNPs in the dataset remains 

an appealing strategy in this context, as was shown in Table 2. 

RFcouple as pre-screening tool 

Our pre-screening technology is based on a RF data reduction and includes a data 

transformation to improve the pre-screening.  An excessive simulation study to evaluate 

our pre-screening technique reveals that RFcouple is the only considered pre-screening 

method where the selection probabilities exceed the power of MDR in nearly all inspected 

models.  The only exceptions are epistasis models 4 and 7 (Table 2).  

Using a higher cut-off k value for the RFcouple procedure may possibly increase the 

selection probability and therefore may improve the power of RFcouple + MDR over 

MDR.  We recommend though to consider a range of different cut-off values, inspect 

whether the same best model is proposed by RFcouple + MDR (if this is not the case, it is 

highly unlikely that one of these models will represent a true epistasis model) and to check 

whether this model is significant for one of the inspected cut-off values. 

Whereas for model 7, increasing k leads to increased selection probabilities, for model 4, 

increasing the cut-off value does not give rise to increased selection probabilities (Figure 

3).  However, increasing the number of trees in the RF will. Therefore, it is generally a 

good idea to use a sufficient large number of trees in the forest (depending on the number 

of markers in the data).  This will also assure more stable RFcouple results.   

 

Future work 

For the purpose of showing the properties of a new screening methodology RFcouple (+ 

MDR), we have used small to moderate sample sizes in the simulation study.  At this 
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moment, the available software can not handle genome-wide data.  Future adaptations to 

extend its applicability include: 1) using a better Random Forests algorithm (for example 

Random Jungle18), 2) constructing importance scores that are based on entropy measures 

rather than permutation-based measures and 3) parallelization to limit computation time. 

Finally, we can apply methods to restrict the number of permutations19, 20. 

 

In conclusion, the take-home message is that no one method is best for all genetic epistasis 

scenarios and one should select the method that best reflects the nature of the data.  In 

practice, the true underlying epistasis model is generally unknown. Hence, given the 

overall good performance of RFcouple +MDR, this method, which uses RFcouple as pre-

screening strategy, may be the preferred first choice when using MDR to search for genetic 

interactions.  

SOFTWARE 

A Linux version of the MDR software was used for the simulated data analysis (compiled 

and benchmarked on  PC with a 600 MHz Pentium-III running Red Hat 2.2.5-15, written in 

C and compiled with the GNU C compiler).  RF analyses are performed using Java code 

based on the Random Forests software4.  Software for the combined method RFcouple + 

MDR was implemented in C++.  The simulations are run on Intel Xeon X3220 2.4 Ghz 

processors.  Finally, we note that running RFcouple + MDR on a dataset with 100 SNPs 

and 400 individuals takes approximately 3 days to finish on an Intel 2.4 Ghz processor. 
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TABLE 1. The additive epistatis models  

 1β  2β 12β  
Model I 0 0 log(2) 
Model II log(1.5) 0 log(2) 
Model III log(1.5) log(0.7) log(2) 

Coefficients in the regression model ))(( 1YPlogit = ~ 0β + 1β X1 + 2β X2 + 12β X1 X2 + ε with ε ~ N(0, 2σ ). Y is the 
disease status and X1 and X2 are the genotypes at the 2 susceptibility loci. 
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TABLE 2.  Comparison of pre-screening methods for all simulated epistatis models: 

Percentage of datasets (of 100) containing 400 subjects where both susceptibility loci 

are selected when selecting k couples of SNPs or 2k single SNPs, compared to the 

power of MDR and RFcouple + MDR. 

 Model: 1 2 3 4 5 6 7 I II III
 10 SNPs – k=1:   

 
Screening 
probability 

2χ
1 2 3 8 8 0 0 100 38 49 12

RFz2 100 100 92 94 82 84 100 25 41 18 
RFjoint3 0 0 0 0 0 0 95 2 4 3 
RFcouple4 100 100 100 99 94 98 82 16 28 19 

 
Power 

MDR5 100 100 94 96 55 71 100 5 13 5
RFcouple + MDR6 100 100 97 98 82 89 82 7 22 12 

 100 SNPs  – k=5:   

 
Screening 
probability 

2χ
1 2 4 3 2 0 0 100 35 50 19

RFz2 16 92 12 15 7 8 100 27 45 19 
RFjoint3 7 23 0 0 0 0 86 16 24 10 
RFcouple4 100 100 100 82 48 63 95 21 31 15 

 
Power 

MDR5 100 100 84 83 7 12 100 1 6 1
RFcouple + MDR6 100 100 91 79 17 26 95 1 10 1 

 250 SNPs  – k=15:   

 
Screening 
probability 

2χ
1 11 10 6 6 0 0 100 42 58 17

RFz2 7 33 2 7 3 3 100 23 46 6 
RFjoint3 14 13 0 0 0 0 98 12 23 8 
RFcouple4 100 100 92 57 24 43 100 15 29 4 

 
Power 

MDR5 100 100 70 71 0 4 100 2 2 0
RFcouple + MDR6 100 100 76 53 7 8 100 1 4 0 

 1 2χ : probability (in  %) to select both susceptibility loci  when selecting the 2k SNPs  having the highest 2χ -statistics; 

 2RFz: probability (in  %) to select both susceptibility loci  when selecting the 2k SNPs having the highest RF Z-scores; 

 3RFjoint: probability (in  %) to select both susceptibility loci  when selecting the k couples of SNPs having the highest 

RF joint importance scores;   

4RFcouple: probability (in  %) to select both susceptibility loci  when selecting the k couples of SNPs having the highest 

RF Z-scores after  the data transformation (Figure 1); 

5MDR: power (in  %) of MDR to detect the 2 interacting susceptibility loci; 

6RFcouple + MDR: power (in  %) of RFcouple combined with MDR to detect the 2 interacting susceptibility loci. 
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TABLE 3.  Results of the stratified analysis of the ECRHS data according to region: 

Nothern Europe (UK, Norway, Sweden, Australia), Central Europe (Belgium, 

Estonia, Germany, Switzerland) and Southern Europe (France, Spain). 

 Nothern Europe  Central Europe Southern Europe 
 1-locus1  2-locus2 1-locus1 2-locus2 1-locus1 2-locus2  
MDR sex(0.25) sex 

rs3756688 
(0.58) 

rs1900758
(0.9) 

rs714588 
rs3850751
(0.72) 

rs1430090 
(0.99) 

rs714588 
rs10496465
(0.45) 

RFcouple + 
MDR 

sex(0.35) rs324981 
rs1554973
(0.81) 

rs4271002
(0.8) 

rs714588 
rs3850751
(0.2) 

rs1898830 
(0.86) 

rs714588 
rs10496465
(0.02) 

1The best 1-locus model suggested by MDR or RFcouple + MDR and the p-value for this model based on the testing 

balanced accuracy 

2The best 2-locus model suggested by MDR or RFcouple + MDR and the p-value for this model based on the testing 

balanced accuracy 
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Titles and legends to figures 

Figure 1. Data transformation before applying RF to select the most interesting candidate SNPs to be 

used to detect  gene-gene interactions associated with disease 

Figure 2. Penetrance functions and allele frequencies of the 2 susceptibility loci for 7 epistasis models 

used to simulate data 

Figure 3. Determination of the number of couples (k) to select and the number of trees (ntree) in the 

random forest  for data sets containing 100 SNPs and 400 subjects  
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