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Abstract A type h12; 1i quantifier F is symmetric iff FðX;XÞðYÞ ¼ FðY; YÞðXÞ. It

is shown that quantifiers denoted by irreducible binary determiners in natural lan-

guages are both conservative and symmetric and not only conservative.

Keywords Binary determiners � Higher type quantifiers � Symmetry � Language

universals

1 Introduction

It is generally admitted that in natural languages nominal unary determiners, that is

functional expressions which form noun phrases when applied to a common noun,

denote not arbitrarily type h1; 1i quantifiers (binary relations between sets) but only

those which satisfy the constraint of conservativity. This constraint, stated some-

what imprecisely, indicates that to determine the truth conditions of sentences with

such determiners it is not necessary to take into account all sets determined by the

arguments of the function; in particular the complement of the first set-theoretic

argument does not matter. It follows from this that some type h1; 1i quantifiers are

not ‘‘naturally’’ denotable even by complex unary determiners.

The conservativity of natural language determiners is sometimes considered as

a language universal: all types of determiners in all natural languages are con-

servative in the sense that they denote only conservative functions. Even though
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some non-conservative determiners are known, it appears that they are rare and

not arbitrary since they are systematically related to conservative determiners

(cf. Zuber 2004a).

It has also been established that NLs display binary or even n-ary determiners,

that is functional expressions which form noun phrases with more than one common

noun (cf. Keenan and Moss 1985). A simple example of such a binary determiner is

given by the comparative determiner more . . . than as it occurs in the noun phrase

more students than teachers. Such n-ary determiners denote higher type quantifiers

which are nþ 1-ary relations between sets.

The notion of conservativity has been extensively discussed mainly in the context

of unary determiners and type h1; 1i quantifiers (Keenan and Stavi 1986; Keenan

and Westerståhl 1997; Peters and Westerståhl 2006). However, it easily generalises

to higher type quantifiers denoted by n-ary determiners. Consequently the univer-

salistic claim concerning conservativity of n-ary determiners extends implicitly as

well. Thus one considers as a language universal the claim that n-ary, or more

specifically binary, determiners in all NLs are conservative.

Since higher type quantifiers take more arguments than ‘‘simple’’ type h1; 1i
quantifiers, there are obviously ‘‘more’’ higher type quantifiers. For instance in the

finite universe with n elements there are 24n

of all type h1; 1i quantifiers and 28n

of

all type h1; 1; 1i quantifiers (that is functions from three set arguments to truth-

values). A striking empirical observation is, however, that the set, or at least the

number of patterns, of expressions denoting type h1; 1; 1i quantifiers seems to be

very limited, as we will see. This means very likely that there are additional con-

straints governing the semantics of such ‘‘higher type’’ determiners.

The purpose of this paper is to show that binary determiners in addition to

conservativity satisfy the natural constraint of symmetry. In the case of unary

determiners symmetry just means that in simple sentences with such determiners

one can permute verbal and nominal arguments without changing the truth-value of

the whole. The notion of symmetry can be generalised to quantifiers denoted by

binary (or even n-ary) determiners (Zuber 2007). It appears than that a huge

majority of binary determiners, if not all of them, denote symmetric quantifiers. For

instance the comparative determiner more . . . than denotes a symmetric quantifier

because in particular sentences in (1) are equivalent:

(1a) More students than teachers are Buddhists.

(1b) More Buddhists are students than teachers.

So in this paper we are interested in a sub-set of monadic quantifiers, that is,

specific relations between sets. A unary monadic quantifier, or type h1i quantifier, is

a function from sets to truth-values. It is a denotation of a noun phrase (used in

subject position in a sentence). The type of nþ 1-ary monadic quantifiers is often

noted as h1; 1; . . . ; 1i (‘‘nþ1-times’’ ‘‘1’’) or h1nþ1i. We will not quite follow this

notation. In order to distinguish between ‘‘nominal’’ (or ‘‘restrictive’’) and ‘‘verbal’’

(or ‘‘predicative’’) arguments of a quantifier we will make a difference between type
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h1n; 1i and type h1; 1ninþ 1-ary monadic quantifiers. The former class corresponds

to monadic quantifiers which have n nominal arguments and one verbal argument

whereas the latter class corresponds to monadic quantifiers which have one nominal

argument and n verbal arguments. This notation partially indicates different struc-

ture (‘‘syntax’’) of expressions denoting quantifiers. More importantly, it accounts

for the fact that some properties of quantifiers may depend on the type—nominal or

verbal—of the argument. We will see, for instance, that the cardinality of conser-

vative type h12; 1i quantifiers is not the same as the cardinality of conservative type

h1; 12i quantifiers.

Binary monadic quantifiers, that is type h1; 1i quantifiers, will be called simple

quantifiers. Quantifiers of type h1n; 1i or of type h1; 1ni, for n > 1, will be called

higher type quantifiers.

Final introductory remark. As already stated, we will distinguish quantifiers from

determiners. Determiners, as understood here, are linguistic expressions which

denote quantifiers or give rise to other expressions denoting quantifiers. They are

functional expressions, often discontinuous, which apply to one or many arguments

of the same category. Their arguments all denote either nominal or verbal arguments

of a quantifier. This means that the arity of a determiner is one less than the arity of

the quantifier they denote. Thus a unary determiner is a functional expression taking

one argument, a common noun. It denotes a binary monadic quantifier since it

induces a binary relation between the denotation of its argument and the denotation

of the verb phrase of the sentence in which it occurs. For instance the determiner all
denotes a simple quantifier which corresponds to a binary relation ALL between sets

such that ALLðXÞðYÞ holds iff X � Y . Similarly the binary determiner

more . . . than . . ., when occurring in a NP on subject position, denotes a ternary

monadic type h12; 1i quantifier since its two ‘‘nominal’’ arguments denote sets and

the verb phrase of the sentence in which the determiner occurs (in the NP on the

subject position) also denotes a set (as assumed here).

As we will see, the syntactic status of determiners is not always so clear, in

particular with respect to binary determiners taking verbal arguments (the so-called

identity comparatives discussed in Sect. 4 below). This fact does not prevent us,

however, from making some semantic generalisations based on clearer syntactic

cases.

The paper is organised as follows. First, I will recall some basic properties of

simple, type h1; 1i, quantifiers, focusing on symmetric ones, and their duals, con-

trapositional quantifiers. It will be generally assumed that the universe of discourse

is finite. Then in the next section I will show how various properties, in particular

conservativity and symmetry, extend to higher type quantifiers. Finally various

known types of binary determiners will be examined in order to show that all of

them are symmetric (denote symmetric quantifiers). All this will be done using the

framework of Boolean semantics (Keenan and Faltz 1985) since, as will be shown,

various involved classes of quantifiers have the Boolean structure. This fact will be

used to make more precise various formal claims about denotations of binary

determiners. They will be stated precisely though (usually simple) proofs will be

omitted.
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2 Varieties of simple quantifiers

In this section we are interested in the denotations of (unary) nominal determiners.

These are expressions (like every; no; some . . . including Lea; most) which

combine with common nouns to form noun phrases. Thus, semantically, they are

functions from PðEÞ onto type h1i quantifiers, where E is the universe of discourse

and a type h1i quantifier is a set of sub-sets of E. They are type h1; 1i quantifiers and

will be called here simple quantifiers. These quantifiers can be viewed as binary

relations on sets. Indeed a type h1; 1i quantifier F, which is a function in

½PðEÞ ! ½PðEÞ ! f0; 1g��, corresponds to the binary relation Q between sets de-

fined by QXY , FðXÞðYÞ ¼ 1. The set of all type h1; 1i quantifiers, or the set of

unrestricted functions belonging to ½PðEÞ ! ½PðEÞ ! f0; 1g�� will be denoted by

PDET . This set forms an atomic Boolean algebra. Any member F of PDET has a

Boolean complement :F and a post-complement F: defined in the usual way.

It has been noticed that the class PDET is too ‘‘large’’ to be the set of possible

denotations for unary determiners since all functions denoted by such determiners

satisfy various constraints. One of the best known such constraints on possible

denotations of determiners is conservativity. By definition:

D1 F is conservative or F 2 CONS iff for any property X; Y and Z if X \ Y ¼ X \ Z
then FðXÞðYÞ ¼ FðXÞðZÞ.

Conservativity of type h1; 1i quantifiers can additionally be formulated in two

different ways:

Fact 1 (cf. Keenan and Faltz 1986) F 2 CONS iff for any property X;Y one has

FðXÞðYÞ ¼ FðXÞðX \ YÞ.

Fact 2 (Zuber 2005) F 2 CONS iff for any property X; Y one has

FðXÞðYÞ ¼ FðXÞðX0 [ YÞ.

The constraint of conservativity considerable reduces the number of conservative

functions in comparison with the number of unrestricted functions. Thus we have

(Beghelli 1992):

Proposition 3 If jEj ¼ n then jPDET j ¼ 24n
and jCONSj ¼ 23n

.

It follows from Proposition 3 that in the universe with just two elements we have

65,536 of unrestricted type h1; 1i quantifiers among which there are only 512

conservative ones.

There are various empirically and theoretically important sub-classes of the

CONS algebra. Thus CONS has two sub-algebras, the algebra INT of intersective

functions, and the algebra CO-INT of co-intersective functions (Keenan 1993). By

definition:

D2 F 2 INT , iff for all properties X, Y , Z and W , if X \ Y ¼ Z \W then

FðXÞðYÞ ¼ FðZÞðWÞ.
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D3 F 2 CO-INT iff for all properties X, Y , Z and W , if X � Y ¼ Z �W then

FðXÞðYÞ ¼ FðZÞðWÞ.

Intersective and co-intersective type h1; 1i quantifiers can be defined in four

equivalent ways as indicated by the following facts (Zuber 2007):

Fact 4 The following four conditions are equivalent:

(i) F 2 INT
(ii) FðXÞðYÞ ¼ FðX \ YÞðX \ YÞ
(iii) FðXÞðYÞ ¼ FðEÞðX \ YÞ
(iv) FðXÞðYÞ ¼ FðX \ YÞðEÞ
Fact 5 The following four conditions are equivalent:

(i) F 2 CO-INT
(ii) FðXÞðYÞ ¼ FðX � YÞðX0 [ YÞ
(iii) FðXÞðYÞ ¼ FðX � YÞð;Þ
(iv) FðXÞðYÞ ¼ FðEÞðX0 [ YÞ
Both sets, INT and CO-INT , form atomic (and complete) Boolean algebras (sub-

algebras of CONS). Atoms of INT and of CO-INT are determined by a property.

Exclusion determiners denote atoms of these algebras: no . . . except Leo and Lea
denotes an atom of the algebra of intersective function determined by the set

composed of two elements, Leo and Lea (Zuber 1998).

The algebra INT contains a sub-algebra CARD of cardinal determiners: they are

denotations of, roughly speaking, various numerals. By definition:

D4 F 2 CARD iff for all properties X, Y , W and Z, if jX \ Y j ¼ jW \ Zj then

FðXÞðYÞ ¼ FðWÞðZÞ.

Any cardinal number determines an atom of CARD. The determiner exactly n
denotes an atomic cardinal function.

As might be expected the algebra CO-INT has an analogous sub-algebra. This is

the algebra CO-CARD of co-cardinal functions (Keenan 1993):

D5 F 2 CO-CARD iff for all properties X, Y , W and Z, if jX � Y j ¼ jW � Zj then

FðXÞðYÞ ¼ FðWÞðZÞ.

Determiners like every . . . except five denote co-cardinal functions. Moreover, every

post-complement of a cardinal quantifier is a co-cardinal quantifier.

Unary determiners whose semantics also involves cardinality of sets denoted by

their arguments are those denoting proportional quantifiers PROPORT . They are

defined as follows (Keenan 2002):

D6 F 2 PROPORT iff for all sets X; Y ;W ; Z � E if jW j � jX \ Yj ¼ jXj � jW \ Zj
then FðXÞðYÞ ¼ FðWÞðZÞ

Proportional quantifiers form an atomic Boolean algebra (Zuber 2005).
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A classical example of a proportional quantifier is the quantifier denoted by the

determiner most (in the sense of more than half).
Let me mention in addition the algebra of so-called generalised cardinals or

GCARD introduced in Keenan and Faltz 1985 (under the name of cardinality

dependent) and, independently in Zuber 2004b and studied in more detail in Zuber

2005. By definition:

D7 F 2 GCARD iff for all properties X; Y ; Z if jX \ Y j ¼ jX \ Zj then FðXÞðYÞ ¼
FðXÞðZÞ.

What definition D7 says intuitively is that a generalised cardinal is a function

which cannot distinguish among properties Y1 and Y2 at the argument X if X \ Y1

and X \ Y2 have the same cardinality.

Obviously the algebra GCARD is a proper sub-algebra of CONS and contains as

proper sub-algebras CARD and, only in finite universes, CO-CARD. Moreover the

following fact is also true (Zuber 2005):

Fact 6 PROPORT is a sub-algebra of GCARD.

Proof It is enough to show that any proportional quantifier is a generalised cardinal.

Suppose that D is proportional and that for arbitrary X; Y and Z one has

jX \ Yj ¼ jX \ Zj. Then it is also true that jXj � jX \ Yj ¼ jXj � jX \ Zj. Since D
is proportional this means that FðXÞðYÞ ¼ FðXÞðZÞ and thus D is generalised

cardinal. �

I mentioned the algebra GCARD because, as indicated by above properties, many

classes of conservative quantifiers are generalised cardinals. Let us see some

examples. Quantifiers NO and FIVE are generalised cardinals because they are

cardinals. Similarly EVERY and EVERY . . . EXCEPT 10 are generalised cardinals

because they are co-cardinals. Notice that this last claim is true only for finite

universes since only in this case is it true that jX \ Y1j ¼ jX \ Y2j iff

jX \ Y 01j ¼ jX \ Y 02j (where Y 01 and Y 02 are Boolean complements of Y1 and Y2,

respectively).

Consider now the determiner the n. It denotes the quantifier THE n defined as

follows: THE nðXÞðYÞ ¼ 1 iff jXj ¼ n and X � Y . Observe that THE n is neither

cardinal nor co-cardinal. One can also check that it is not proportional: to see this

(for n ¼ 1) take X; Y ;W ; Z such that jXj ¼ 1, jW j ¼ 2, X � Y and W � Z. It is easy

to see, however, that the n denotes a generalised cardinal quantifier.

Similarly one can show that the determiners like most but less than 10 or most or at
least 10 denote (proper, that is neither cardinal, nor co-cardinal, nor proportional)

generalised cardinals. We show now that the quantifier MOST OR AT-LEASTð10Þ is

neither cardinal nor proportional. We show first that it is not cardinal. Suppose for this

that jX \ Y j ¼ jW \ Zj < 10, jX \ Y j � jX \ Y 0j and jW \ Zj > jW \ Z 0j. In this case

MOSTðXÞ OR AT-LEASTð10ÞðXÞðYÞ ¼ 0 and MOSTðWÞ OR AT-LEASTð10ÞðWÞ
ðZÞ ¼ 1 which means that MOST OR AT-LEASTð10Þ is not cardinal.

Suppose now that jX \ Yj ¼ jX \ Y 0j ¼ 10, jW \ Zj ¼ 8, jXj ¼ 20 and jW j ¼ 16.

In this case jW � jX \ Y j ¼ jXj � jW \ Zj. However in this case MOSTðXÞ OR
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AT-LEASTð10ÞðXÞðYÞ ¼ 1 and MOSTðWÞ OR AT-LEASTð10ÞðWÞðZÞ ¼ 0 which

means that the considered quantifier is not proportional. It is, however, a generalised

cardinal because it is a join of two generalised cardinals.

The important point in the context of unary determiners in the above examples is

that not all of them denote generalised cardinals. To see this it is enough to take

a properly intersective (non-cardinal) quantifier or a properly co-intersective (non-

co-cardinal) quantifier. For instance No . . . except Leo; most=some . . . including
Leo and every . . . except Leo are not generalised cardinals. We will see, however,

that many binary determiners denote (appropriately generalised to the higher type

case) generalised cardinals.

We can now introduce two other classes of type h1; 1i quantifiers: symmetric and

contrapositional ones. When extended to higher type quantifiers they will play an

essential role in our analysis of binary determiners. In addition they allow us to

better understand the relationship between conservative quantifiers in general and

their various sub-classes.

Symmetric and contrapositional type h1; 1i quantifiers are defined as follows

(Zuber 2007):

D8 F 2 SYM iff for all properties X; Y one has FðXÞðYÞ ¼ FðYÞðXÞ
D9 F 2 CONTR iff for all sets X; Y one has FðXÞðYÞ ¼ FðY 0ÞðX0Þ.

Both sets, SYM and CONTR form atomic Boolean algebras. Their elements need not

to be conservative. In addition SYM and CONTR are not disjoint. For instance for

any set A, the set of pairs fhA;Ai; hA0A0ig corresponds to a non-conservative simple

quantifier which is symmetric and contrapositional at the same time.

The following propositions show when symmetric and contrapositional quanti-

fiers are conservative (Zuber 2007):

Proposition 7 CONS \ SYM ¼ INT .

Proposition 8 CONS \ CONTR ¼ CO-INT .

It follows from Propositions 7 and 8 that under conservativity type h1; 1i symmetric

quantifiers are the same as the intersective ones and contrapositional quantifiers are

the same as co-intersective ones. As we will see this is not the case for higher order

quantifiers.

Interestingly, we have similar relations between algebras GCARD, CARD,

CO�CARD and SYM and CONTR. More precisely, the following propositions hold

(Zuber 2007):

Proposition 9 GCARD \ SYM ¼ CARD.

Proposition 10 GCARD \ CONTR ¼ CO-CARD.

Thus cardinal and intersective quantifiers are symmetric. For example FIVE, SOME,

SOME . . . ; INCLUDING LEA and NO; . . . ;EXCEPT LEO are symmetric quantifiers.

It is interesting that one can define symmetric quantifiers in the format we use in

other definitions and which can be easily generalised to quantifiers of higher types.

The following trivial proposition which indicates such an equivalent definition will

A semantic constraint on binary determiners 101

123



be used as a convenient handle for generalising symmetry to higher types (Zuber

2007):

Proposition 11 F 2 SYM iff there exists a commutative binary function ‘‘�’’ taking
sets as arguments such that for all X; Y ;W ; Z if X � Y ¼ W � Z then
FðXÞðYÞ ¼ FðWÞðZÞ:

A similar property holds for contrapositional quantifiers:

Proposition 12 F 2 CONTR iff there exists a commutative binary function ‘‘�’’

taking sets as arguments such that for all X; Y;W ; Z if X � Y 0 ¼ W � Z 0 then
FðXÞðYÞ ¼ FðWÞðZÞ:

Propositions 11 and 12 will allow us to generalise the notion of symmetry and

contraposition to quantifiers of higher types. We will see, however, that in this case

the distinction between symmetry and contraposition disappears.

3 Quantifiers of higher types

In the previous section we presented various properties of type h1; 1i quantifiers.

They are denotations of unary determiners. Since we are going to make some claims

about constraints on denotations of binary determiners we need to consider how to

extend various properties discussed in the previous section to a more general case of

higher type quantifiers. Though we are basically interested in denotations of binary

determiners, in most definitions we propose we will not limit the number of argu-

ments corresponding to the arguments of the determiner. Thus we define various

properties of higher type quantifiers so that they are applicable to denotations of

n-ary determiners in general, for arbitrary n. This move will allow us to understand

better the basic ideas underlying various definitions. Thus most definitions to be

given concern type h1n; 1i quantifiers, that is binary relations whose first argument is

an element of an n-ary relation between sets and the second argument is a set.

Most of the definitions we will use have already been suggested (cf. Keenan and

Moss 1984; Beghelli 1994; Keenan 2002; Zuber 2005). After the discussion from

the previous section we have a relatively clear intuition of how to define conser-

vative quantifiers of higher types. Here are two general definitions: the definition of

conservative quantifiers and the definition of straightforwardly related generalised

cardinals (Zuber 2005):

D10 D 2 CONSh1n;1i iff 8Xi; Y1; Y2, DðX1; . . . ;XnÞðY1Þ ¼ DðX1; . . . ;XnÞðY2Þ if

Xi \ Y1 ¼ Xi \ Y2, for every 1 � i � n.

D11 D 2 GCARDh1n;1i iff 8Xi; Y1; Y2, DðX1; . . . ;XnÞðY1Þ ¼ DðX1; . . . ;XnÞðY2Þ if

jXi \ Y1j ¼ jXi \ Y2j, for every 1 � i � n.

As in the case of simple quantifiers, conservative type h1n; 1i quantifiers can be

defined in two other ways. This is indicated by the following facts;
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Fact 13 D 2 CONSh1n;1i iff DðX1; . . . ;X2ÞðYÞ ¼ DðX1; . . . ;XnÞðY \
S

n XiÞ, for

every 1 � i � n.

Fact 14 D 2 CONSh1n;1i iff DðX1; . . . ;X2ÞðYÞ ¼ DðX1; . . . ;XnÞðY [
T

n X0iÞ, for

every 1 � i � n.

Notice that conservativity of type h1n; 1i quantifiers does not mean that we can

replace the predicative argument by its meet with subject forming arguments

without changing the truth-value. In particular the conservativity of the quantifier

denoted by more . . . than . . . (thus for n ¼ 2) means that (2a) is equivalent to (2b)

and not to (2c):

(2a) More females than males are students.

(2b) More females than males are among female or male students.

(2c) More females than males are male and female students.

As in the case of simple quantifiers it is not difficult to establish that:

Fact 15 GCARDh1n;1i � CONSh1n;1i.

Both sets, GCARDh1n;1i and CONSh1n;1i, form atomic Boolean algebras. More spe-

cifically we have (Zuber 2005):

Proposition 16 Let 1 � i � n;Pi � E and P �
S

i Pi: Then the function FP1;...;Pn;P

such that FP1;...;Pn;PðX1; . . . ;XnÞðYÞ ¼ 1 iff Xi ¼ Pi and P ¼ Y \
S

i Xi is an atom of
CONSh1n;1i: All atoms of CONSh1n;1i are of this form.

Comparing the above definitions with the definitions of intersective, co-intersective,

cardinal and co-cardinal simple quantifiers we see how to define higher type inter-

sective, co-intersecive, cardinal and co-cardinal quantifiers of type h1n; 1i. Thus:

D12 D 2 INTh1n;1i iff 8Xi; Yi; Z1; Z2, if Xi \ Z1 ¼ Yi \ Z2 then DðX1; . . . ;XnÞ
ðZ1Þ ¼ DðY1; . . . ; YnÞðZ2Þ, for every 1 � i � n.

D13 D 2 CO-INTh1n;1i iff 8Xi; Yi; Z1; Z2, if Xi � Z1 ¼ Yi � Z2, for every 1 � i � n
then DðX1; . . . ;XnÞðZ1Þ ¼ DðY1; . . . ; YnÞðZ2Þ.
D14 D 2 CARDh1n;1i iff 8Xi; Yi; Z1; Z2, if jXi \ Z1j ¼ jYi \ Z2j, for every 1 � i � n
then DðX1; . . . ;XnÞðZ1Þ ¼ DðY1; . . . ; YnÞðZ2Þ.
D15 D 2 CO-CARDh1n;1i iff 8Xi; Yi; Z1; Z2, DðX1; . . . ;XnÞðZ1Þ ¼ DðY1; . . . ; YnÞðZ2Þ
if jXi � Z1j ¼ jYi � Z2j, for every 1 � i � n.

Various classes of quantifiers specified in these definitions are related between

themselves. We have in particular (Keenan and Moss 1985; Zuber 2005):

Fact 17 CONSh1n;1i, GCARDh1n;1i, INTh1n;1i, CO-INTh1n;1i, CARDh1n;1i, CO-CARDh1n;1i
form Boolean algebras.

Fact 18 CARDh1n;1i � INTh1n;1i � CONSh1n;1i.
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Another relation (holding in finite models) which is easy to establish, and which

is analogous to that established in the previous section concerning quantifiers of

type h1; 1i, is indicated in:

Fact 19 CARDh1n;1i [ CO-CARDh1n;1i � GCARDh1n;1i � CONSh1n;1i.

To be more precise, the above set inclusions can in fact be replaced by statements

indicating that included sets are sub-algebras of sets in which they are included.

It is easy to check that the quantifier MORE . . . THAN . . . denoted by the binary

determiner more . . . than . . . (occurring in NPs on the subject position) is a type

h12; 1i cardinal quantifier. We will discuss many other examples in the next section.

All the above definitions specify various classes of type h1n; 1i quantifiers.

Natural languages also have clear cases of type h1; 1ni quantifiers or at least of type

h1; 12i. An example of such a quantifier is the quantifier MORE . . . ARE . . .
THAN . . . (as the denotation of the determiner occurring in More students are
Buddhists than shogi players. This means that various classes of type h1; 1ni
quantifiers should be distinguished and defined as well. We give here only defini-

tions of conservativity and intersectivity for such quantifiers. These definitions, in

conjunction with other definitions given above show how to define other properties

of type h1; 1ni quantifiers (cf. Zuber 2005):

D16 D 2 CONSh1;1ni iff for all X; Yi; Zi if X \ Yi ¼ X \ Zi, for every 1 � i � n then

DðXÞðY1; . . . ; YnÞ ¼ DðXÞðZ1; . . . ; ZnÞ.
D17 D 2 INTh1;1ni iff for all X1;X2; Yi; Zi, DðX1ÞðY1; . . . ;YnÞ ¼ DðX2ÞðZ1; . . . ; ZnÞ,
whenever X1 \ Yi ¼ X2 \ Zi, for every 1 � i � n.

The following fact shows that conservativity for type h1; 1ni quantifiers can be

defined in an equivalent way:

Fact 20 A type h1; 1ni quantifier D is conservative iff for any X; Yi � E one has

DðXÞðY1; . . . ; YnÞ ¼ DðXÞðY1 \ X; . . . ; Yn \ XÞ.

When we compare definition D10 of conservativity for type h1n; 1i quantifiers

with the definition D16 of conservativity for type h1; 1ni quantifiers and Fact 13

with Fact 20 we observe that they do not correspond to the same truth conditions.

This means that the cardinality of the set of conservative type h1n; 1i quantifiers is

not the same as the cardinality of the set of conservative type h1; 1ni quantifiers. In

particular (cf. Beghelli 1994) in the universe with n individuals there is 27n

of type

h12; 1i conservative quantifiers and 25n

of type h1; 12i conservative quantifiers.

We want now to define symmetry and contraposition for quantifiers of higher

types. Obviously, in such definitions we cannot just permute nominal and verbal

arguments of the corresponding relation since in this case such a permutation would

change the type of quantifier. Consequently we cannot define symmetric higher type

quantifiers by comparing relations with permuted arguments as in definition D8 for

simple quantifiers. It is possible, however, in this case to use the equivalence

indicated in Proposition 11 and 12 and define symmetric and contrapositional

quantifiers of higher types in the definitional format mostly used here (Zuber 2007):
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D19 A type h1n; 1i quantifier D is symmetric iff there exists a binary commutative

function � on pairs of sets such that 8Xi; Yi; Z1; Z2, DðX1; . . . ;XnÞðZ1Þ ¼
DðY1; . . . ; YnÞðZ2Þ if Xi � Z1 ¼ Yi � Z2, for every 1 � i � n.

D20 A type h1n; 1i quantifier D is contrapositional iff there exists a binary com-

mutative function � such that 8Xi; Yi; Z1; Z2, if Xi � Z 01 ¼ Yi � Z 02 then

DðX1; . . . ;XnÞðZ1Þ ¼ DðY1; . . . ; YnÞðZ2Þ, for every 1 � i � n.

Similarly for type h1; 1ni quantifiers:

D21 A type h1; 1ni quantifier is symmetric iff there exists a binary commutative

function � on pairs of sets such that for all X1;X2; Yi; Zi, if X1 � Yi ¼ X2 � Zi, then

DðX1ÞðY1; . . . ; YnÞ ¼ DðX2ÞðZ1; . . . ; ZnÞ, for every 1 � i � n.

D22 A type h1; 1ni quantifier is contrapositional iff there exists a binary commu-

tative function � on pairs of sets such that for all X1;X2; Yi; Zi, if X1 � Y 0i ¼ X2 \ Z 0i ,
for every 1 � i � n then DðX1ÞðY1; . . . ; YnÞ ¼ DðX2Þ ðZ1; . . . ; ZnÞ.

The following propositions partially justify the above definitions of higher type

symmetric or contrapositional quantifiers (Zuber 2007):

Proposition 21 Let F 2 PDETh1n;1i and G 2 PDETh1;1ni such that FðX1; . . . ;XnÞ
ðYÞ ¼ GðYÞðX1; . . . ;XnÞ: Then F is symmetric iff G is symmetric.

Thus, roughly, Proposition 21 says that if two functions have ‘‘symmetric types’’

and are equal then they are both symmetric.

From now on, we will talk about higher type quantifiers which are denotations of

binary determiners, that is we will suppose that n ¼ 2. Most of the discussed

properties will be explicitly given for type h12; 1i quantifiers though it will be

obvious that they also hold for the ‘‘symmetric’’ type h1; 12i.
Definitions D19 and D20 are ‘‘ineffective’’ in the sense that they involve

quantification over binary commutative functions. They can be simplified due to the

following observation (for which I am indebted to Makoto Kanazawa, pc.). Con-

sider binary operation 	 on ordered pairs of sets defined as follows:

X 	 Y ¼ fX; Yg. This commutative operation is minimal in the following sense: for

any commutative binary operation � the equality X1 	 Y1 ¼ X2 	 Y2 entails the

equality X1 � Y1 ¼ X2 � Y2. It follows from this that in the definition of symmetry

or contraposition we can use just the minimal operation defined above. Conse-

quently we have the following ‘‘simplified’’ but equivalent definition of symmetric

type h12; 1i quantifiers:

D23 A type h12; 1i quantifier F is symmetric iff for all X1;X2; Y1; Y2; Z1; Z2, if

fX1; Z1g ¼ fY1; Z2g and fX2; Z1g ¼ fY2; Z2g then FðX1;X2ÞðZ1Þ ¼ FðY1; Y2ÞðZ2Þ.

This simplified definition allows us to prove easily various properties of sym-

metric quantifiers. First, symmetry is preserved under the permutation of nominal

arguments. Call PerðFÞ a permutation of a type h12; 1i quantifier F the quantifier

defined as: PermðFÞðX1;X2ÞðYÞ ¼ FðX2;X1ÞðYÞ. Then:
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Fact 22 A type h12; 1i quantifier F is symmetric iff PermðFÞ is symmetric.

We can also now easily prove the following proposition which allows us to

understand what symmetry for type h12; 1i quantifiers means:

Proposition 23 A type h12; 1i quantifier F is symmetric iff for any set X; Y one has
FðX;XÞðYÞ ¼ FðY ; YÞðXÞ:

Proof
if-part: Suppose F is symmetric. Since for any X; Y � E one has fX; Yg ¼ fY ;Xg,
we have FðX;XÞðYÞ ¼ FðY; YÞðXÞ.
only-if-part: Suppose FðX;XÞðYÞ ¼ FðY; YÞðXÞ. Let (i) hold: (i) fX1; Z1g ¼
fY1; Z2g and fX2; Z1g ¼ fY2; Z2g. We consider four cases in which equalities in (i)

hold:

(1) X1 ¼ Y1, Z1 ¼ Z2, and X2 ¼ Y2. In this case trivially FðX1;X2Þ ðZ1Þ ¼
FðY1; Y2ÞðZ2Þ.

(2) X1 ¼ Y1, Z1 ¼ Z2, X2 ¼ Z2 and Z1 ¼ Y2. Thus X2 ¼ Y2 ¼ Z1 ¼ Z2 and X1 ¼ Y1

and consequently FðX1;X2ÞðZ1Þ ¼ FðY1; Y2ÞðZ2Þ.
(3) X1 ¼ Z2, Z1 ¼ Y1, X2 ¼ Y2 and Z1 ¼ Z2. Thus X1 ¼ Y1 ¼ Z1 ¼ Z2 and X2 ¼ Y2

and consequently FðX1;X2ÞðZ1Þ ¼ FðY1; Y2ÞðZ2Þ.
(4) X1 ¼ Z2, Z1 ¼ Y1, X2 ¼ Z2 and Z1 ¼ Y2. Thus X1 ¼ X2 ¼ Z2 and Y1 ¼ Y2 ¼ Z1.

From this and from the supposition it follows that FðX1;X2ÞðZ1Þ ¼
FðY1; Y2ÞðZ2Þ. �

Using Proposition 23 one shows that symmetric quantifiers form a Boolean

algebra with Boolean operations defined pointwise.

The property indicated in Proposition 24 concerns symmetric quantifiers in

general, not necessarily conservative ones. Since the operation of the meet on sets is

a commutative we have obviously the following fact:

Fact 24 If F 2 INTh12;1i or F 2 INTh1;12i then F is symmetric.

Moreover for conservative symmetric quantifiers the following is true:

Proposition 25 If a type h12; 1i quantifier F is conservative then F is symmetric iff
FðX;XÞðYÞ ¼ FðX \ Y ;X \ YÞðX \ YÞ:

Notice that in the above proposition symmetry cannot be replaced by intersectivity

which means that under conservativity symmetry and intersectivity do not coincide,

as is the case for simple quantifiers. Thus there are conservative quantifiers which

are symmetric but not intersective. Here are two examples of such quantifiers.

First consider the quantifier F defined as follows: FðX1;X2ÞðYÞ ¼ 1 iff

X1 \ X2 6¼ ; and jX1 \ Yj ¼ jX2 \ Y j 6¼ 0. One can check that this quantifier is

conservative and symmetric but not intersective.

As a second example consider atoms of conservative type h12; 1i quantifiers.

Recall that according to Proposition 16 atoms of conservative type h12; 1i quanti-

fiers are functions FA1;A2;B such that B � A1 [ A2 and FA1;A2;BðX1;X2ÞðYÞ ¼ 1 iff

Ai ¼ Xi and B ¼ Y \ ðA1 [ A2Þ. One can show now, using the simplified definition
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of symmetry, that such atomic functions are symmetric if A1 [ A2 ¼ E and A1 6¼ A2

and among them the intersective ones are only those for which B ¼ E.

In fact the quantifiers indicated in the second example above constitute atoms of

the algebra of conservative symmetric quantifiers. More specifically:

Proposition 26 Conservative symmetric type h12; 1i quantifiers form an atomic
Boolean algebra. For any set A1;A2;B such that A1 [ A2 ¼ E functions FA1;A2;B such
that FA1;A2;BðX1;X2ÞðYÞ ¼ 1 iff (if A1 6¼ A2 then Ai ¼ Xi and Y ¼ B) and (if A1 ¼ A2

then Ai ¼ Xi and Y ¼ E) are atoms of this algebra.

Proposition 26 allows us to calculate the number of symmetric type h12; 1i quantifiers.

One calculates that in the universe with n individuals there are 6n � 2n þ 1 atomic

symmetric and conservative type h12; 1i quantifiers. So in particular in the universe

with 2 elements we have 233 symmetric type h12; 1i quantifiers among which 216 are

intersective. The number of all type h12; 1i conservative quantifiers equals in this case

249 and the number of all ‘‘unrestricted’’ type h12; 1i quantifiers equals 264.

In the next section we will see some binary determiners denoting conservative

symmetric but not intersective quantifiers.

There remain some important issues to be mentioned concerning contrapositional

quantifiers and their relationship to symmetric ones. Recall that in the case of simple

conservative quantifiers we have different classes of contrapositional and symmetric

quantifiers. They are, respectively, intesective and co-intersective and only constant

simple conservative quantifiers are at the same time intersective and co-intersective.

The situation is quite different in the case of higher type quantifiers since it appears

that in this case the distinction between symmetric and contrapositional quantifiers

is not very interesting. Let us see this in the case of type h12; 1i quantifiers.

Observe first that, given that the equality fX; Yg ¼ fX; Y 0g never holds, we have

the following property:

Proposition 27 If F is symmetric or contrapositional type h12; 1i quantifier then for
any X; Y 2 E the following holds: FðX;XÞðYÞ ¼ FðX;XÞðY 0Þ:

Proposition 27 allows us to prove the following important fact:

Proposition 28 F is symmetric type h12; 1i quantifier iff F is contrapositional.

Thus the distinction between symmetric and contrapositional quantifiers has no

theoretic basis in the case of higher type quantifiers.

The last class of type h12; 1i quantifiers that we will mention is the class of

proportional quantifiers. They are defined as follows (Zuber 2005):

D24 D 2 PROPORTh12;1i iff for all X1;X2; Y1; Y2; Z1; Z2, DðX1;X2ÞðZ1Þ ¼ DðY1; Y2Þ
ðZ2Þ whenever jY1j � jY2j � jX1 \ Z1j ¼ jX1j � jX2j � jY1 \ Z2j and jY1j � jY2j�
jX2 \ Z1j ¼ jX1j � jX2j � jY2 \ Z2j.

One checks by calculation that according to D 24 determiners like proportionally
as many . . . as . . . denote proportional type h12; 1i quantifiers.

For proportional quantifiers the following is true (Zuber 2005):
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Proposition 29 PROPORTh12;1i is a sub-algebra of GCARDh12;1i.

To conclude this section let me mention some differences between simple and

higher type quantifiers. One important difference concerns simple and binary pro-

portional quantifiers; only the former are closed with respect to post-complement.

Other differences, more important for our analysis, concern intersective and sym-

metric quantifiers. We have seen that under conservativity these two notions are

co-extensive. Furthermore, we have also seen that the intersectivity of simple

quantifiers can be defined in four equivalent ways (cf. Fact 4). This is not the case

for intersectivity of type h12; 1i or type h1; 12i quantifiers. In particular there are

symmetric conservative type h12; 1i quantifieres which are not intersective. Finally,

we observe that in the case of higher type quantifiers the class of symmetric

quantifiers coincides with the class of contrapositional quantifiers.

4 Denotations of binary determiners

As already indicated in the introduction, binary determiners are discontinuous

functional expressions which take two arguments. Syntactically, they are not nec-

essarily ‘‘nominal’’ because their arguments can be of two categories. First, they can

take two common nouns and form a noun phrase. Though such NPs can occur on

various positions we will consider only the case when they occur in subject position.

Thus determiners of the first category form a sentence with two common nouns and

a verb phrase. Consequently, semantically, they denote type h12; 1i quantifiers.

Second, binary determiners can take two verb phrases and form with one common

noun a sentence. In this case they denote h1; 12i quantifiers. Our proposal here

concerns basically binary determiners of the first category.

From the formal point of view it is useful to distinguish two types of quantifiers

denoted by binary (or n-ary) determiners (cf. Keenan and Moss 1985): Booleanly

reducible quantifiers and irreducible quantifiers. Reducible quantifiers are defined as

follows (Beghelli 1994):

D25 A type h12; 1i quantifier F is (Booleanly) reducible iff there exist simple (type

h1; 1i) quantifiers Q1 and Q2 and a binary Boolean function h such that FðX1;X2Þ
ðYÞ ¼ hðQ1ðX1ÞðYÞ;Q2ðX2ÞðYÞÞ

Determiners which denote reducible (irreducible) quantifiers will also be called

reducible (irreducible).

We will say that Q1 and Q2 are Boolean components of the reducible quantifier

F. In the simplest case Q1 ¼ Q2 and in practice F has often the same lexical form as

its component Q (but not the same category). For instance numerals, which basically

denote simple quantifiers, can also be considered as denoting reducible type h12; 1i
quantifiers when their first argument is a conjunction or a disjunction of two

common nouns. For instance since (3) has a natural reading corresponding to the
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conjunction in (4), the numeral five can be considered as a binary determiner

denoting a reducible quantifier:

(3) Five students and teachers are dancing.

(4) Five students and five teachers are dancing.

Various examples of reducible quantifiers are studied in Keenan and Moss 1985.

It is clear that many properties of reducible quantifiers are induced by their

components. In particular we have the following:

Proposition 30 A reducible type h12; 1i quantifier F is intersective (in its type) iff its
components Q1 and Q2 are both intersective.

Given that simple conservative quantifiers are symmetric iff they are intersective

we obtain the following important consequence from Proposition 30:

Fact 31 Any symmetric reducible type h12; 1i quantifier is intersective.

Thus if a type h12; 1i quantifier is symmetric but not intersective then it is not

reducible. Furthermore, if a reducible quantifier has non intersective components then

it can be non symmetric. So we will consider basically non-reducible quantifiers.

Often discussed in the literature ‘‘natural’’ higher type quantifiers are so-called

comparative binary quantifiers. These are quantifiers denoted in the simplest case by

discontinuous (binary) determiners like more. . . than or as many. . . as. As we have

already seen, when these determiners form subject NPs (in sentences with ‘‘simple’’

VPs) then they denote quantifiers of type h12; 1i. These quantifiers can be said to be

genuine higher type since they cannot be reduced (in the sense of definition D25) to

a Boolean combination of simple quantifiers (Keenan and Moss 1985; Beghelli

1994). Furthermore, they are ‘‘natural’’ in the sense that the determiners by which

they are denoted have a categorial status of syntactically justified binary determiners

(Keenan 1987).

Beghelli (1994) distinguishes various sub-groups of comparative determiners.

Usually they exhibit a complex syntax which can be ignored for our purposes. The

simplest and in some sense basic group of determiners may be called simple
comparatives. They include determiners like more . . . than . . ., exactly as many . . .
as . . ., the same number of . . . as . . . ; etc. It is easy to see that these determiners

denote cardinal quantifiers and thus, given Fact 18 and Fact 24, they are symmetric

and, at the same time, generalised cardinals. Let us show this for illustration on one

example. Consider for instance the quantifier FEWER . . . THAN . . . denoted by the

determiner occurring in the noun phrase fewer students than teachers. Its semantics

is given in (5):

(5) FEWERðX1ÞTHANðX2ÞðYÞ ¼ 1 iff jX1 \ Yj < jX2 \ Yj

To show that it is cardinal, suppose that (6) and (7) hold. We have to show that (8)

holds as well:
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(6) jX1 \ Z1j ¼ jY1 \ Z2j and jX2 \ Z1j ¼ jX2 \ Z2j
(7) FEWERðX1ÞTHANðX2ÞðZ1Þ ¼ 1

(8) FEWERðY1ÞTHANðY2ÞðZ2Þ ¼ 1

The result is obvious given the semantics in (5): the equalities in (6) allow us to

make replacements making (8) true.

Since cardinal quantifiers (of any type) form a Boolean algebra, they are

closed with respect to Boolean operations. This means for instance that AT-LEAST-

AS-MANY . . . AS . . . is also cardinal because it is the complement of FEWER . . .
THAN . . .. Similarly the complex determiner at least 10 more but not more than 20
more . . . than . . . (as in at least 10 more but not more then 20 students more then
teachers) denotes the meet of two quantifiers denoted respectively by at least 10
more . . . than . . . and not more than 20 . . . than . . .. Since both these quantifiers are

cardinal the whole quantifier is also a cardinal and consequently symmetric and

generalised cardinal. The symmetry of many other quantifiers can be established in

the same way (see Beghelli 1994).

One observes in addition that for many simple comparative determiners men-

tioned above there exist logically equivalent syntactically more complex ones. For

instance a lesser number of . . . than. . . is semantically equivalent to fewer . . .
than . . . and exactly as many . . . as . . . is equivalent to exactly the same number
of . . . as . . .. Their semantic status is however the same.

There is a class of binary determiners which denote intersective but not cardinal

quantifiers. These are determiners which may be called modified comparatives.

They can be modified by adjectives (as in more male . . . than female . . . or by

possessives (as in more Leo’s . . . than Bill’s . . .). What is interesting is the fact that

though such modified comparatives are in some sense derived from cardinal ones

they are not cardinal. In other words the modification does not preserve the property

of being cardinal. However, modification preserves intersectivity. Let us see this in

more details.

Observe first that the modifiers we are talking about denote absolute functions

(absolute modifiers). A function M from sets to sets is absolute (Keenan and Faltz

1985) iff for any set X, MðXÞ ¼ X \MðEÞ. Absolute adjectives (male, female) and

(some) possessives denote absolute modifiers. Thus, roughly female students are

students and female objects and Bill’s bicycles are bicycles and Bill’s objects.

Let us define now an intersective type h12; 1i quantifier restricted (modified) by

two sets:

D26 Let A and B be sets and D a type h12; 1i quantifier. Then DA;B is a type h12; 1i
quantifier defined as follows: DA;BðX1;X2ÞðYÞ ¼ DðA \ X1;B \ X2ÞðYÞ:

For such modified quantifiers it is easy to establish the following fact:

Fact 32 If D 2 INTh12;1i then DA;B 2 INTh12;1i, for any set A;B:

It follows from Fact 32 that modified comparative binary determiners denote

intersective quantifiers (because they are obtained by the modification of cardinal,
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and thus of intersective quantifiers). Consequently modified comparative binary

determiners also denote symmetric (but not generalised cardinal) quantifiers.

Beghelli (1994) also mentions existence of the class of binary determiners he

calls identity comparative. These determiners do not involve comparison of cardi-

nalities or quantities but rather a comparison of identities of individuals. Syntacti-

cally, they combine one common noun with two VPs to form a sentence and thus

they denote type h1; 12i quantifiers. Here are some (Beghelli’s) examples of sen-

tences with such determiners:

(9) The same students came early as left late.

(10) Whatever students came early left late.

(11) The same five students came early as left late.

The determiners in the above sentences denote the following quantifiers, respec-

tively:

(12) THE-SAMEðXÞðY1;Y2Þ ¼ 1 iff X \ Y1 ¼ X \ Y2

(13) WHATEVERðXÞðY1;Y2Þ ¼ 1 iff X \ Y1 � X \ Y2

(14) THE-SAME-5ðXÞðY1;Y2Þ ¼ 1 iff X \ Y1 ¼ X \ Y2 ^ jX \ Y1j ¼ 5

Thus sentence (10) is true iff the set of students who came early is included in the

set of students who left late. It is easy to show that quantifiers in (12), (13) and (14)

are all intersective and thus symmetric.

Recall that type h1; 12i quantifiers can also be denoted by ‘‘ordinary’’ compar-

ative determiners as in the following examples:

(15) More vegetarians are students than teachers.

(16) More students came early than left early.

The binary determiners in these examples denote intersective, and thus symmetric

quantifiers.

There remains a last type of determiners we need to examine. It is represented by

the proportional binary determiners as the one found in (17). It denotes a type h12; 1i
quantifier which has the semantics given in (18):

(17) Proportionally as many students as teachers danced.

(18) PROP-AS-MANYðX1;X2ÞðYÞ ¼ 1 iff jX1 \ Yj=jX1j ¼ jX2 \ Yj=jX2j

The quantifier in (18) is proportional in the sense of D24. It is not intersective. We

show, not quite explicitly, that it is symmetric. According to D19 we have to show

that there exists a binary operation on sets � which is commutative and such that if

(19) holds then (20) holds:

(19) X1 � Z1 ¼ Y1 � Z2 and X2 � Z1 ¼ Y2 � Z2

(20) PROP-AS-MANYðX1;X2ÞðZ1Þ ¼ PROP-AS-MANYðY1;Y2ÞðZ2Þ
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Chose � as: X � Y ¼ jX \ Y j=ðjXj � jYjÞ. This operation is obviously commutative.

A somewhat tedious simple arithmetic operation on fractions in conjunction with

necessary substitutions of equals by equals leads to the required equivalence in (20).

One shows in the same way that determiners like proportionally more . . . than . . .
denote symmetric quantifiers.

In addition, the symmetry of some quantifiers can be established using Fact 22,

that is the fact that the permutation of nominal arguments preserves symmetry. For

instance since the quantifier denoted by the determiner proportionally more
. . . than . . . is related by the relation of permutation to the quantifier denoted by

proportionally less . . . than . . ., the symmetry of one follows from the symmetry of

the other. Thus proportional comparative determiners also denote (conservative)

symmetric quantifiers.

5 Conclusion

In this paper I have been concerned with the constraint of symmetry on quantifiers

which are denotations of binary determiners. Symmetric type h12; 1i quantifiers F
are those and only those quantifiers which have the property indicated in (21a); they

entail the property indicated in (21b):

(21a) FðX;XÞðYÞ ¼ FðY;YÞðXÞ
(21b) FðX;XÞðYÞ ¼ FðX;XÞðY0Þ

So the claim defended here entails that all irreducible binary determiners denote

quantifiers which satisfy (21a) and (21b). And this indeed seems to be the case.

Obviously not all type h12; 1i quantifiers have such properties and the constraint

of symmetry severely constrains the number of possible denotations for binary

determiners. This constraint makes unary determiners different from binary ones.

More specifically in this paper, using the generalised notion of symmetry, I insisted

on the following difference: under conservativity not all symmetric type h12; 1i
quantifiers are intersective. It was shown in this context that all proper (that is

Booleanly irreducible) binary determiners discussed in literature denote conserva-

tive symmetric quantifiers. Roughly speaking binary comparative determiners

denote cardinal quantifiers. They are symmetric precisely because being cardinal

they are intersective. Some comparative binary determiners, those where their

arguments are modified by absolute adjectives, are not cardinal but they are still

intersective (cf. Fact 32). Finally proportional comparative determiners denote

symmetric (and conservative) type h12; 1i quantifiers which are not intersective.

We also considered from the point of view of symmetry, so-called identity

comparative determiners. They are syntactically different from other comparative

determiners since they form a sentence with one common noun and two verb

phrases. They denote intersective type h1; 12i quantifiers and thus are also sym-

metric. We also indicated that some ‘‘ordinary’’ comparative binary determiners can

denote irreducible type h1; 12i quantifiers which are symmetric.
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It is important to keep in mind that the claim defended here concerns binary

determiners denoting irreducible quantifiers. One observes for instance that the

determiner most when applied to a conjunction of two common nouns can have a

reading under which it denotes a type h12; 1i quantifier. Thus (22a) has a natural

reading under which it is equivalent to (22b):

(22a) Most students and teachers danced.

(22b) Most students danced and most teachers danced.

It is easy to show that under this reading most denotes a conservative type h12; 1i
quantifier which is not symmetric. But this quantifier is Booleanly reducible and

thus is not a counter-example to the claim.

Notice in this context that the claim defended here is obviously meant to be language

independent. We know that there are cross-linguistic variations concerning the pos-

sibility for unary determiners to have their type shifted to the type of binary determiners

in some conjunctive expressions. So the restriction of the claim to irreducible binary

determiners, which seem less language dependent, should not be surprising.

When speaking about counter-examples let me mention another claim which

could be made about the semantic constraint on the denotations of binary deter-

miners. Given the various properties discussed above, one might be tempted to

claim that binary determiners always denote generalised cardinals. Indeed cardinal

quantifiers denoted by comparative determiners are generalised cardinals. Similarly

with proportional comparative determiners: they also denote generalised cardinals.

There are, however, two classes of counter-examples. First, identity comparatives

denote intersective quantifiers and intersective quantifiers are not generalised car-

dinals. Maybe the fact that such determiners are syntactically different from others

might be used to save the clam by reducing its domain to binary determiners

denoting only type type h12; 1i quantifiers. There is, however another class of

counter-examples: these are modified comparative determiners like more male
. . . than female . . .. They denote intersective type h12; 1i quantifiers which are not

generalised cardinals.

Let me conclude with the following negatively oriented remark: what I have done

up to now can be considered as just an empirical generalisation based on various

examples of determiners, most of which are known from the relevant literature. Two

important things remain to be done. First, the claim has to be explained and some

reasons why binary determiners denote symmetric quantifiers given. Second, how

the claim is related to various aspects of expressibility in natural languages. Any

attempt to answer such questions necessitates additional technical notions such as

universe independence, relativization of type h1i quantifiers, etc. Peters and

Westerståhl 2006 discuss symmetry and related notions of simple quantifiers in the

context of these additional notions. Their extensions and various generalisations are

needed to get some answers to such general questions.
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