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Abstract A stochastic triggering (epidemic) mo-
del incorporating short-term clustering was fitted
to the instrumental earthquake catalog of Italy
for event with local magnitudes 2.6 and greater
to optimize its ability to retrospectively forecast
33 target events of magnitude 5.0 and greater that
occurred in the period 1990–2006. To obtain an
unbiased evaluation of the information value of
the model, forecasts of each event use parameter
values obtained from data up to the end of the
year preceding the target event. The results of the
test are given in terms of the probability gain of
the epidemic-type aftershock sequence (ETAS)
model relative to a time-invariant Poisson model
for each of the 33 target events. These probability
gains range from 0.93 to 32000, with ten of the tar-
get events yielding a probability gain of at least 10.
As the forecasting capability of the ETAS model
is based on seismic activity recorded prior to the
target earthquakes, the highest probability gains
are associated with the occurrence of secondary
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mainshocks during seismic sequences. However,
in nine of these cases, the largest mainshock of
the sequence was marked by a probability gain
larger than 50, having been preceded by previous
smaller magnitude earthquakes. The overall eval-
uation of the performance of the epidemic model
has been carried out by means of four popular
statistical criteria: the relative operating charac-
teristic diagram, the R score, the probability gain,
and the log-likelihood ratio. These tests confirm
the superior performance of the method with re-
spect to a spatially varying, time-invariant Poisson
model. Nevertheless, this method is characterized
by a high false alarm rate, which would make its
application in real circumstances problematic.

Keywords Epidemic-type aftershock sequence
(ETAS) · Short-range forecasting model in Italy

1 Introduction

When earthquakes strike a populated area, au-
thorities, mass media, and, more generally, peo-
ple ask seismologists to forecast possible strong
seismic activity for the near future. Up to the
recent past, seismologists were accustomed to re-
ply to these questions basing their judgments just
on their personal experience and a bit of good
sense rather than on quantitative assessment.
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Basically, in their replies, they were accustomed
to declare that subsequent felt earthquakes are
possible, but very unlikely to be stronger than
the previous ones. Events occurring in the recent
past in Italy have demonstrated that judgments
based only on simple common seismological sense
may lead one to underestimate the likelihood of
strong aftershocks or even larger mainshocks fol-
lowing the first onset of a seismic series. Earth-
quake sequences starting with foreshocks, as well
as sequences containing doublets or multiplets of
mainshocks, are not rare features of the Italian
seismicity.

Recent seismological developments provide
both physical and statistical models for the phe-
nomenon of earthquake clustering, The interac-
tion among earthquake sources can be physically
justified by the modification in the stress field
caused by a dislocation on a fault (see King et al.
1994; Harris and Simpson 1998; King and Cocco
2001 and references therein). This physical model
has been extensively applied and tested in nu-
merous papers published in the literature (Stein
et al. 1997; Gomberg et al. 2000; Kilb et al. 2002;
Nostro et al. 2005; Steacy et al. 2005, among many
others). In order to model both the spatial pattern
of seismicity and the temporal variation of the rate
of earthquake production, the fault constitutive
properties have to be taken into account. This has
been the innovative idea of the Dieterich (1994)
model, which couples the stress perturbations with
the rate- and-state-dependent friction law char-
acterizing the mechanical properties of a fault
population. The rate-and-state model has been
proposed as the key ingredient of approaches
aimed at evaluating the change in earthquake
probability after seismic rate changes caused by
previous earthquakes (Toda and Stein 2003; Toda
et al. 2005; Catalli et al. 2008). It has been also
used in building a probabilistic forecast of large
events caused by the earthquakes occurring
nearby (Stein et al. 1997; Parsons and Dreger
2000; Parsons 2004).

Unlike any kind of physical modeling, the
method adopted in the present study is based only
on empirical relationships and statistical tools. It
has, however, the advantage of needing only the

information contained in seismic catalogs and the
capability of being tuned on the characteristic fea-
tures of specific seismic regions. For these reasons,
it can be tested and validated on a large number of
available data, allowing seismologists to provide
information based on quantitative assessments of
an ongoing seismic sequence. This quantitative as-
sessment, which is distinct from traditional earth-
quake prediction, belongs to the class of synoptic
forecasts (a very popular concept in weather fore-
casting). Synoptic forecasts are based on a simple
application of statistics in which the seismicity is
modeled as a stochastic point process. Statistical
procedures allow one to estimate the chance of
occurrence of a given outcome of this process.

Console and Murru (2001) and Console et al.
(2003, 2006a) showed that a simple stochastic clus-
tering epidemic-type aftershock sequence (ETAS)
model exhibits a much higher likelihood than
the time-invariant Poisson hypothesis. They test-
ed this clustering model on real seismicity of Italy,
California, Greece, and Japan through likelihood-
based methods. With the purpose of a prospec-
tive test of short-term forecasting of moderate
and large earthquakes in Italy, we have applied
this epidemic model to the instrumental data-
base of shallow seismicity (July 1987–December
2006). The most important contribution to the
information score achieved by short-term epi-
demic models derives commonly from their ability
to forecast a large number of small aftershocks
(Console and Murru 2001; Console et al. 2003).
In this study, we examine their ability to forecast
(in statistical sense) the impending occurrence
of a medium-to-large (M ≥ 5) earthquake in a
forward-retrospective way on a catalog of instru-
mental seismicity.

This study has been developed in the context
of the S2 project (2005–2007) with the aim of
testing the use of our technique to forecast the
evolution of seismic sequences in Italy. In this
respect, this study must be considered of method-
ological nature only. In fact, due to the high false
alarm rate characterizing the forecasts based on
the ETAS model in general, the application of
such methods to real cases would turn out a very
difficult decision-making problem.
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2 Brief description of the earthquake occurrence
probability model adopted

In this study, we consider the short-term clustering
properties of earthquakes and give a brief outline
of an increasingly popular statistical method for
modeling the interrelation of any earthquake with
any other. The details can be found in Ogata
(1998), Console and Murru (2001), and Console
et al. (2003, 2006a, b, 2007). The method is based
on algorithms pertaining to the ETAS model pub-
lished by the team on international reviews. This
model has been used in many studies to describe
or forecast the spatio temporal distribution of
seismicity and reproduce many properties of real
seismicity (Ma and Zhuang 2001; Ogata 2001,
2004a, b, 2005, 2006a, b, 2007; Ogata et al. 2003;
Ogata and Katsura 2006; Ogata and Zhuang 2006;
Felzer et al. 2002; Helmstetter and Sornette 2002,
2003; Saichev and Sornette 2006; Zhuang et al.
2004, 2005). The expected occurrence rate density
of earthquakes with magnitude m, λ(x,y,t,m), at
any instant of time and geographical point, is
modeled as the sum of the independent, or time-
invariant “spontaneous”, activity and the contri-
bution of every previous event:

λ(x, y, t, m) = frμ0(x, y)βe−β(m−m0)

+
N∑

i=1

H(t − ti) × λi(x, y, t, m), (1)

where μ0(x, y) is the rate density of the long-
term average seismicity (herein after called the
reference seismicity), fr is the failure rate (fraction
of spontaneous events over the total number of
events) of the process, H(t) is the Heaviside step
function, and λι(x, y, t, m) is a kernel function that
depends on the magnitude of the triggering earth-
quake, the spatial distance from the triggering
event, and the time interval between the triggering
event and the time of interest. We factorize this
function in three terms depending, respectively,
on time, space, and magnitude, as:

λi(x, y, t, m) = K × h(t − ti) × βe−β(mi−m0)

× f (x − xi, y − yi), (2)

where K is a constant parameter, while h(t)
and f (x, y) are the time and space distributions,
respectively.

For the time dependence, we adopt the modi-
fied Omori law (Ogata 1983):

h (t) = (t + c)−p (p > 1) , (3)

where c and p are characteristic parameters of the
process.

The spatial distribution of the triggered seis-
micity is modeled by a function, with circular
symmetry around the point of coordinates (xi, yi).
This function in polar coordinates (r, θ) can be
written as:

f (r, θ) =
[

d2
i(

r2 + d2
i

)
]q

(4)

where r is the distance from the point (xi, yi), q is a
free parameter modeling the decay with distance,
and di is the characteristic triggering distance. We
assume that di is related to the magnitude mi of
the triggering earthquake and is proportional to
the square root of its rupture area, as observed in
real data (Kagan 2002):

di = d0100.5(mi−m0), (5)

where d0 is the characteristic triggering distance of
an earthquake of magnitude m0.

The magnitude distribution of all earthquakes
in a sample follows the Gutenberg–Richter law
with a constant β value, which is related to the
most widely known b value by the relationship
β = b ln10.

Although the temporal aftershock decay may
yield effects up to some years, or even tens of
years in exceptional cases, this model is generally
considered to be a short-term forecasting model
because the effect of an earthquake on the subse-
quent seismicity rate is greatest immediately after
the earthquake occurs.

Assuming an isotropic function for the spatial
distribution of triggering effect might seem too
simplistic because the theory of elasticity predicts
that the Coulomb stress changes caused by slip
on an earthquake source are azimuth-dependent,
producing negative lobes of stress and seismicity
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shadows. In spite of these theoretical considera-
tions, seismicity shadows are difficult to observe
in practice. This can be explained, for instance,
by small-scale stress heterogeneities on the fault
plane (Marsan 2006; Helmestetter and Shaw
2006). Another circumstance that may apparently
suppress azimuth dependence, especially in con-
nection with triggering events of small magnitude,
is the smoothing effect of the location errors,
which, for the catalog of the Italian seismicity
used in this study, are of the order of up a few
kilometers. Last, but not less important is also the
consideration that a full application of the physi-
cal model is practically impossible in the present
context, because the focal mechanism is unknown
for most of the earthquakes in our catalog.

To conclude this short description, we summa-
rize that our model has a number of free parame-
ters appearing in Eqs. 1, 2, 3, 4, and 5, the values of
which can be estimated from an earthquake cata-
log using maximum likelihood techniques (Kagan
1991). The set of free parameters for the ETAS
model actually estimated in this study are the fol-
lowing: K (productivity coefficient), c (time con-
stant of the Omori–Utsu formula), p (exponent of
the Omori–Utsu formula), and d0 (characteristic
distance of the spatial kernel of triggered events).
The value of q (exponent of the spatial kernel
of triggered events) has been fixed equal to 1.5
in this study in order to limit the number of free
parameters in the learning phase and to make the
inversion procedure more robust. This choice is
in agreement with the asymptotic behavior of the
theoretical stress change decay with the distance
from the source. The failure rate, fr, is not in-
cluded in the number of free parameters because
its value is conditioned by the set of the other free
parameters (the expected number of independent
events divided by fr must yield the long-term
total number of earthquakes in the catalog). The
β (or b) value of the Gutenberg–Richter mag-
nitude distribution is another parameter of the
model, assumed constant over the geographical
area spanned by the catalog, and obtained inde-
pendently of the other free parameters. Finally,
the grid of values defining the rate density space
distribution μ0(x, y) (Eq. 1) might be considered
a set of free parameters, which are preliminarily
determined from the analysis of the earthquake

catalog for each learning phase. We use the seis-
mic catalog collected by the Istituto Nazionale di
Geofisica e Vulcanologia (INGV; Chiarabba et al.
2005) to estimate model parameter values. The
model has been tested in a forward-retrospective
way for earthquakes with Ml ≥ 5.0 in Italy dur-
ing 1990–2006. We test by computing the fore-
casted occurrence rate just before each target
earthquake. For each target event, we use model
parameter estimates based on data in the previous
learning period and consider contributions from
all earthquakes up to the year preceding the time
of the target earthquake to compute forecasted
rates.

3 The Italian catalog and its completeness

The database used (Chiarabba et al. 2005) cov-
ers the time period July 1987–2002. We have ex-
tended it to the most recent years by means of the
bulletins of the instrumental seismicity published
by the INGV (2007), obtaining a data set of 52,182
earthquakes of magnitude equal to or larger than
1.5. The largest recorded magnitude is Mmax =
5.9. Before estimating the occurrence probabil-
ity of the significant events, we have evaluated
the spatial and temporal completeness of the in-
strumental database. Different techniques have
been suggested to compute Mc (e.g., Ogata and
Katsura 1993; Rydelek and Sacks 1989; Wiemer
and Benoit 1996; Wiemer and Wyss 2000). As-
suming self-similarity of the earthquake process,
consequently implying a power-law distribution of
earthquakes in the magnitude and in the seismic
moment domain, a simple and frequently used
technique for estimating Mc is based on the small-
est magnitude for which this power law applies.
This methodology, which delivers a good initial
estimate, has been applied through the ZMAP
software package (Wiemer 2001). Our analysis
shows that this catalog can be considered com-
plete for magnitudes equal to 2.1 and larger, which
yields a total of 17,472 events (Fig. 1a). The
maximum likelihood value for the b parameter
of the Gutenberg–Richter frequency–magnitude
relation (FMD) is 0.878 ± 0.006, with the error
computed using the formula suggested by Shi and
Bolt (1982). To examine the average temporal Mc
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Fig. 1 a Frequency magnitude distribution for the Italian
seismicity in the period 1987–2002. Triangles indicate the
density distribution of the frequency–magnitude. The b
value is estimated by the maximum likelihood method. The
Mc selected (Mc = 2.1) is the magnitude at which 95%
of the observed data can be modeled by a straight-line
fit. b Temporal variation of Mc (minimum completeness
magnitude) in the period July 1987 to December 2006.
Mc was computed from Ml1.5 for temporal windows, each
containing 150 events and moving forward by steps of 50
events

trend by means of a one-dimensional approach,
we apply a standard moving-window technique.
Every temporal window contains 150 events, and
it is moved forward by 50 events at each step. The
Mc value in the plot vs. time spans from 1.5 to
2.6 (Fig. 1b). Mc appears equal to or smaller than
2.6 in all the samples of 150 events, except for the
last one. This slightly higher magnitude threshold
refers only to 150 events out of 9,000. We have
ignored this single case, probably due to the fact
that the catalog was not yet ready in its reviewed
final version at its very end.

In Fig. 2, we have mapped the minimum com-
pleteness magnitude using a sample size of N =
100 and a node spacing of 10 km. Mc varies from

Fig. 2 Map of the spatial distribution of Mc computed by
measuring the deviation from an assumed power law. Mc
is the best combination among the 90–95% of confidence
levels and the FMD maximum curvature. This map was
obtained by fixing 100 earthquakes to nodes of a grid
spaced 10 km apart. The sampling radii range between 5
and 40 km

values near 1.5 in Central and Northern Italy to
values of Mc = 2.6 to the south in Calabria and
Sicily regions.

For the subsequent analysis, to use a uniform
completeness magnitude for the Italian territory,
we choose the conservative value of Mc = 2.6
within the geographical areas suggested by the
spatial analysis (Fig. 2). There are 9,307 events
from July 1987 to December 2006 that are above
this completeness magnitude.

4 Analysis and results

Our main activity was focused on the computa-
tion of the occurrence probability for 33 shallow
shocks (Ml ≥ 5.0) which occurred in the Italian
region (adequately covered by the seismological
network with a completeness magnitude Mc =
2.6) from 1990 to 2006, just some hours before
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they had occurred (Fig. 3 and Table 2). In order
to quantify the expected occurrence rate density
(Ml ≥ 5.0 events per day per square kilometer)
before these target events, we fit our ETAS model
to 17 different learning periods (Table 1) and
their relative spatial distributions of the reference
seismicity. In this way, the ETAS model has been
tested retrospectively for these 33 events (Ml ≥
5.0) that occurred during the period under analy-
sis, using only parameters value estimates ob-
tained from data in the preceding learning phases,
whose periods extend until the year before the
considered shocks. The last column in Table 1
shows the number of target events in each year
following its learning period.

We estimate the spatial distribution of the long-
term reference seismicity by smoothing all the
events above Mc by the method described by
Console and Murru (2001), following Frankel

(1995), with a correlation distance of 20 km.
Figure 4 shows the smoothed seismicity in the
Italian region for the July 1987–2001 period. The
parameter estimates for each period are shown in
Table 1. The minimum magnitude considered in
each learning phase for the triggering and target
events is 2.6 and 3.0, respectively.

The best fit algorithm, based on a step-by-step
method, is quite robust, and it always converges
on the same set of parameters within the approx-
imations allowed by the computer, independently
of the initial values adopted for the four free
parameters. With respect to the stability of the
results obtained from the best fit in relation to the
different data sets given in input, the parameters
obtained from the algorithm appear quite stable,
starting from the shortest time interval (3 years
with only 803 events) up to the longest (18 years
with 8,015 events). This is particularly true for

Fig. 3 Epicentral map of
earthquakes (M ≥ 5.0)
which occurred in Italy
from January 1990 to
December 2006. The
small gray dots show the
epicenters of the
earthquakes of smaller
magnitude in the whole
period July
1987–December 2006
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Table 1 Maximum log-likelihood parameters of the purely stochastic model (ETAS; learning phases)

Time span Number of events K d0 c p fr dlog Target
(M ≥ 2.6) (daysp−1) (km) (days) events

01/07/1987–31/12/1989 830 2.36E–03 0.84 1.75E–02 1.16 5.91E–01 396.09 2
01/07/1987–31/12/1990 1,179 2.20E–03 0.83 1.34E–02 1.15 5.70E–01 555.66 1
01/07/1987–31/12/1991 1,523 2.02E–03 0.87 1.05E–02 1.12 5.59E–01 574.25 0
01/07/1987–31/12/1992 2,074 1.49E–03 0.83 6.27E–03 1.13 6.15E–01 938.35 0
01/07/1987–31/12/1993 2,136 1.56E–03 0.82 6.09E–03 1.12 6.01E–01 1,037.84 0
01/07/1987–31/12/1994 2,465 1.56E–03 0.79 6.38E–03 1.11 5.96E–01 1,233.25 1
01/07/1987–31/12/1995 2,802 1.60E–03 0.80 6.78E–03 1.10 5.91E–01 1,393.48 1
01/07/1987–31/12/1996 3,164 1.47E–03 0.82 7.17E–03 1.08 5.84E–01 1,597.84 6
01/07/1987–31/12/1997 4,156 2.20E–03 0.74 5.67E–03 1.06 5.51E–01 1,956.87 4
01/07/1987–31/12/1998 4,737 4.43E–03 0.49 6.76E–03 1.08 4.67E–01 3,719.56 0
01/07/1987–31/12/1999 5,116 1.41E–03 0.83 6.10E–03 1.00 7.03E–01 3,086.16 0
01/07/1987–31/12/2000 5,578 3.84E–03 0.51 7.16E–03 1.09 4.73E–01 4,256.07 2
01/07/1987–31/12/2001 5,955 3.48E–03 0.53 7.30E–03 1.09 4.86E–01 4,392.75 3
01/07/1987–31/12/2002 6,558 3.48E–03 0.55 7.35E–03 1.09 4.80E–01 4,612.22 5
01/07/1987–31/12/2003 7,147 5.84E–03 0.42 1.03E–02 1.10 4.34E–01 6,289.64 4
01/07/1987–31/12/2004 7,486 1.22E–03 0.89 1.41E–02 1.10 4.85E–01 6,258.86 2
01/07/1987–31/12/2005 8,015 4.82E–03 0.45 9.43E–03 1.10 4.40E–01 6,830.34 2

The lower magnitude threshold of triggering and target events is 2.6 and 3.0, respectively. The exponent of the spatial
distribution (q) is 1.5 (fixed)

the p (exponent of the Omori law) parameter.
Noteworthy is a remarkable negative correlation
between the K and d0 parameters. This is not
surprising because both of them are related to

the number of events triggered by an earthquake
of given magnitude, with the difference that d0,
unlike K, also affects the spatial range of the
triggered events. The c parameter (constant of

Fig. 4 Smoothed
seismicity of the Italian
region for the July
1987–2001 period using
20 km as the value of the
correlation distance. This
distribution is obtained by
a Gaussian smoothing of
the catalog, following the
method presented by
Frankel (1995). The color
scale represents the
average number of
earthquakes (M ≥ 2.6
and h ≤ 70 km) in an area
of 1 km2 over the time
period above reported
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the Omori law) is stably larger than 0.0057 days
(8 min) and smaller than 0.010 days (14 min), ex-
cept for the first three learning periods for which it
exhibits fairly larger values. Lastly, the fr (failure
rate) parameter ranges from 0.44 to 0.70. That
means that depending on the learning period of
time, a fraction between 44% and 70% of the
events appears to belong to the spontaneous seis-
micity, and conversely, a fraction between 30%
and 56% must be regarded as triggered according
to the model.

For the 33 forward-retrospective tests, we have
considered as minimum magnitude for the trigger-
ing and target events Ml = 2.6 and Ml = 5.0, re-
spectively. The expected occurrence rate density λ

for Ml ≥ 5.0 target events has been translated into
occurrence probability P through the standard
relationship

P (E|�X, �Y, �T, �M)

=1−exp

⎛

⎝−
∫

�X,�Y,�T,�M

λ(x, y, t, m)dxdydtdm

⎞

⎠.

(6)

The 24-h probability is computed for circular ar-
eas within 30 km from the target event epicenters
listed in Table 2. The probabilities are issued at
8.00 UTC or 20.00 UTC preceding the impend-
ing earthquake. These probabilities, reported in
the last column of Table 2, range from less than
0.0001% to more than 6% according to the back-
ground seismicity and the activity preceding each
target event in its proximity. For comparison,
Table 2 reports also the occurrence probabilities
under a time-invariant Poisson model based only
on the smoothed seismicity rate. For 12 of these
target events, the epidemic time-dependent model
yields probabilities that are at least five times
higher than the Poisson probabilities. In particu-
lar, eight of these events exhibit a probability gain
of at least a factor of 100.

5 Statistical evaluation of the performance
of the ETAS model

In the previous section, we have shown that
the forecast method based on the ETAS model

achieves a high probability gain for a number of
earthquakes with magnitude equal to or larger
than 5.0 occurring in the Italian territory and sur-
rounding regions from 1990 up to 2006. This is not
enough to demonstrate that this method provides
forecasts that are significantly more reliable than
simple random forecasts.

In previous papers, we have applied the log-
likelihood ratio criterion, comparing the perfor-
mance of the time-dependent ETAS model with
that of a time-independent, spatially variable Pois-
son model (Console et al. 2003, 2006a, b, 2007).
The likelihood computation is possible for our
ETAS model because forecasts are expressed by
an occurrence rate density function defined at
any point of space and time. Even if we have
formerly stated that our epidemic model provides
synoptic forecasts, and not predictions, in this pa-
per, for measuring the effectiveness of our earth-
quake forecasting algorithm, we apply statistical
techniques that are commonly used for testing
earthquake prediction methods (Console 2001).
These techniques are based on the observation
of a sufficient number of past cases aiming at
determining the rate at which the precursor has
been followed (success rate) or not followed (false
alarm rate) by the target seismic event, or the
rate at which a target event has been preceded
(alarm rate) or not preceded (failure rate) by the
precursor. Four different statistical criteria have
been adopted in this study: the first three of them
are the relative operating characteristic (ROC)
diagrams, the R score and the overall probability
gain. These methods evaluate the performance of
the forecast model relative to a random chance
using the approach of a binary forecast by consid-
ering the events (earthquakes) as being forecast
either to occur or not to occur in every given
time–space cell. The fourth method consists in the
computation of the log-likelihood ratio. It does
not refer to the issue of forecasts in binary form,
but requires the computation of the occurrence
probability for events in a discrete set of spatial
cells and time bins. Details of the four methods
are given in Appendix.

There is no general agreement on the su-
periority of a testing method with respect to
another. For instance, Holliday et al. (2005)
consider the ROC diagram method less subject to



18 J Seismol (2010) 14:9–26

bias than the maximum likelihood test to evaluate
the performance of a forecast model relative to
random chance. Moreover, from theoretical and
simulation results, Kagan (2007) deduced that the
error diagram, related to the relative operating
characteristic, is more informative than the likeli-
hood ratio and uniquely specifies the information
score.

Conversely, according to comments received
from the reviewers of this and other papers,
this statement is applicable only to specific sit-
uations and not to space–time–magnitude fore-
casting models in general. It is easy to see that
in general, there may be an infinite number of
different likelihood models, with different infor-
mation scores, that would all have the same ROC
diagram. Furthermore, neither the ROC nor the
R score methods can accommodate a spatially
varying reference model, and therefore, they are
not particularly informative.

The first step in the generation of the ROC
diagrams for the verification of the probabilistic
forecasting ETAS model is the construction of
the 2 × 2 contingency tables with variable alarm
thresholds.

The verification period of our model starts
from the same date of the previous forward-
retrospective test, 1 January 1990, and goes up
to 31 December 2006. The Italian seismogenic
region to be studied has been divided into a grid
of (12,221) square boxes of 10 × 10-km size, while
the entire verification period is divided in 12,418
bins of 12 h each. In this way, the total num-
ber of space time cells amounts to 151,760,378.
The minimum magnitude of the target events for
which forecasts are considered was chosen equal
to that of the previous test (5.0), for a total of
33 earthquakes. Note that the number of cells
containing target events is only 32 because one cell
contains two earthquakes (the two mainshocks of
the Umbria–Marche 1997 sequences). For all the
time bins included in each year, we have used the
maximum likelihood parameters obtained from
the time period up to the end of the previous year.

In order to fill the contingency tables, in this
study, we define forecasts in time–space cells
where the expected occurrence rate of earthquake
with magnitudes greater than the lower cutoff
magnitude (equal to 5.0) exceeds a given thresh-

Table 3 Contingency tables for the ETAS model from
January 1, 1990 to December 31, 2006 for two values of the
threshold occurrence rate value (r) of, respectively, 1.00E–
07 and 1.00E–04 events per day per 100 km2

Observed

Forecast Yes No Total

r = 1.00E–07
Yes (a) 27 (b) 30,016,051 30,016,078
No (d) 5 (c) 121,744,295 121,744,300
Total 32 151,760,346 151,760,378

r = 1.00E–04
Yes (a) 7 (b) 7,992 7,999
No (d) 25 (c) 151,752,354 151,752,379
Total 32 151,760,346 151,760,378

old value r. Table 3 shows the results for two
contingency tables obtained for the occurrence
rate thresholds of 1.00E–07 and 1.00E–04 (events
per day per 100 km2), respectively.

Note the extraordinarily large number of cells
without target events with respect to those with
them. Note also that a threshold r = 1.00E–07 has
been exceeded in about 20% of the target space–
time volume, including 27 out of 32 events. Con-
versely, a threshold 1,000 times higher has been
exceeded in about 0.0053% of the total number of
cells, including only seven out of the 32 events, but
with a much higher probability gain.

Varying the threshold value for the verification
of ETAS forecast, we have obtained the values
of the hit rate H and false alarm rate F to be
used for the preparation of the ROC diagram for
the given magnitude threshold of the target events
(see Appendix for their definitions). The results
are summarized in Fig. 5.

This figure show that the curve of the ROC
diagram for the ETAS model is well above the di-
agonal linking the points (0,0) and (1,1), denoting
a non-random positive correlation between the
forecasts and the earthquake occurrence.

Figure 6 show the plots for the R score versus
the false alarm rate (F) according to the defin-
ition adopted by Shi et al. (2001). The R score
ranges from 0.03 to 0.65 when the false alarm
rate increases from 1.0E–06 to 0.2, decreasing the
alarm threshold from 1.0E–03 to 1.0E–07 events
per day per 100 km2. These results confirm the
non-random behavior of the forecasts based on
the ETAS model.



J Seismol (2010) 14:9–26 19

Fig. 5 Values of the hit rate H (fraction of “hotspot” cells
that have an earthquake forecast over the total number
of cells with actual earthquakes) versus the false alarm
rate F (the fraction of the forecast cells that do not have
earthquakes over the total number of cells with no actual
earthquakes in them). Each value of F corresponds to a
different threshold rate for issuing alarms

The same contingency tables have also allowed
the computation of the respective values of the
probability gain G, defined by Aki (1981) as the
ratio between the conditional and the uncondi-
tional rate. The results for G are plotted versus
the false alarm rate F in Fig. 7. The probability
gain ranges from values of some units to several
tens of thousands when the false alarm rate de-
creases from 0.2 to 1.0E–06, increasing the alarm

Fig. 6 As in Fig. 5, for the R score (number of cells in
which earthquakes are successfully predicted/total num-
ber of cells in which earthquakes occur) − (number of
cells with false alarms/total number of cells without any
earthquakes)

Fig. 7 As in Fig. 5, for the probability gain G, computed
on the whole space–time volume analyzed in this study

threshold from 1.0E–07 to 1.0E–03 events per day
per 100 km2.

Finally, for the assessment of the ETAS model
performance, we have also considered the log-
likelihood ratio criterion whose theory is briefly
described in Appendix. As the log-likelihood ra-
tio (logR) depends only on the probabilities in
every cell of the space–time target volume, and
not on the selected alarm thresholds, there is only
one value obtained for this parameter, that is,
logR = 47.3 (using natural logarithms). Therefore,
the logR test confirms the superior performance
of the epidemic model with respect to the time-
independent Poisson model.

6 Discussion and conclusions

After having demonstrated the reliability of the
earthquake clustering hypothesis based on the
ETAS model by forward-retrospective statistical
tests, let us consider how such model yields a clear
increase in the probability for an event of magni-
tude 5.0 or larger before the largest earthquake of
a sequence in real cases.

The first case refers to the seismic sequence
started on September 26th, 1997 at 00:33 UTC
in Umbria–Marche region. The first mainshock of
this seismic sequence (an earthquake of magni-
tude 5.6) exhibits a probability ratio of 4.6 times
relative to the Poisson model. This is due to the
influence of a few earthquakes of moderate mag-
nitude that occurred in the same area 3 weeks



20 J Seismol (2010) 14:9–26

Fig. 8 Modeled expected
occurrence rate density,
Ml ≥ 5.0 (events per day
per square kilometer) for
the whole Italian
territory. a On October
31, 2002 at 08:00 UTC,
just (2 h) before the
strongest Molise event
(5.4 M1, 10:32 UTC). A
black star shows the
epicenter (lat. 41◦.72 N,
long. 14◦.89 E) of the
Molise shock. b On
November 1, 2002 at
08:00 UTC, before 5.3 M1
shock (15:09 UTC). A
black star shows the
epicenter (lat. 41◦.74 N,
long. 14◦.84 E) of the
Molise shock. The
occurrence probability of
an Ml ≥ 5.0 shock on
October 31, 2002 and on
November 1, 2002, inside
a radius of 30 km
centered on the Molise
event, in the next 24 h
starting from 08:00 UTC
is 0.025% and 0.87%,
respectively

before. The strongest mainshock of magnitude
5.8, which occurred about 9 h later, was marked
by a probability gain of 625. This shock caused
the death of four people that were surveying the
damage caused by the previous mainshock to the
San Francesco church in Assisi.

For the first mainshock of the Molise sequence
that occurred on 31 October at 10:31 UTC (M =
5.4), the probability ratio was equal to 50 due
to the effect of a few moderate foreshocks that
occurred during the previous night. The following
mainshock of the 1st of November at 15:09 UTC
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(M = 5.3) was characterized by a probability gain
of 1,450.

This second mainshock did not cause casualties,
while the first mainshock had killed 26 children,
their teacher, and other two people in the elemen-
tary school of S. Giuliano di Puglia town.

Finally, in the sequence of earthquakes started
on March 27th, 2003 at 16:10 UTC, the mainshock
of M = 5.9 occurring about 2 days later was char-
acterized by a probability gain of 4,900.

Figure 8a, b shows two examples of how the
ETAS model could have been applied in real
cases to display the spatial changes of the expected
occurrence rate density before the two largest
shocks of the October–November 2002 Molise
sequence in southern Italy. The parameter values
used in this case are reported in line 13 of Table 1
for the learning period July 1987–December 2001.
Figure 8a shows the situation on October 31, 2002
at 08:00 UTC just (2 h) before the largest main-
shock of October 31 (5.4 Ml, 10:32 UTC), the
epicenter of which is indicated by a red star. The
occurrence rate density before this event, ranging
from 1E–005 to 2E–005 events per square kilome-
ter per day, is higher than the reference seismicity
rate because of precursory activity recorded dur-
ing the previous night, with the largest foreshock
(3.2 Ml) occurring at 02:27 UTC on October 31,
2002. Figure 8b is a snapshot taken at 08:00 on
November 1, 2002. This figure shows the changes
in the expected occurrence rate density after the
mainshock of October 31, 2002 (5.4 Ml, 10:32
UTC) but before the November 1, 2002 Molise
second mainshock (5.3 Ml, 15:08 UTC). At this
time, the occurence rate density is remarkably
higher, ranging between 0.001 and 0.003 (km−2

day−1).
The occurrence probability of an Ml ≥ 5.0

shock, inside a radius of 30 km centered on the
Molise (5.4 Ml) event of October 31, 2002, in
the 24 h following 08:00 UTC is 0.025% (line 20
in Table 2). The probability of a future shock
(Ml ≥ 5.0) in 24 h, caused by the stress changes
associated with the previous events at 08:00 on
November 1, 2002 estimated before the 5.3 Ml

earthquake (15:08 UTC), increases to 0.87%
(Fig. 8b and Table 2). Extending the alarm period
to 1 week, these two probabilities would increase
to 0.05% and 2.33%, respectively.

It could be questionable if a probability of the
order of 0.1% for the occurrence of an Ml ≥ 5.0
earthquake in 1 week (even if it represents an
increase of about 50 times with respect to the
probability associated to the reference seismicity
rate for the same area) would be a reasonable
threshold for issuing a warning to the popula-
tion of a fairly large area. It would surely not
be enough for taking mitigation measures such
as evacuating the area. In fact, as shown in the
previous section, such a threshold would imply
issuing a large number of false alarms. Even if
similar questions have social and economic impli-
cations that are beyond the purposes of this study,
we may consider that a probability of the order
of 0.1%, that some circumstances had negative
consequences for our own safeness would suggest
to everybody to avoid such circumstances.

Results of this kind cannot be defined as “pre-
dictions,” which are usually specified as determi-
nistic or quasi-deterministic statements, implying
considerably higher probability and more cer-
tainty than our synoptic forecasts. However, it
has been widely recognized that earthquake fore-
casts based on statistical methodologies can be
implemented and used to provide useful results
(Gerstenberger et al. 2005). In the recent years,
several seismological centers have implemented
testing centers for evaluating probabilistic real-
time forecast methods. In a similar way, start-
ing on January 2006, our algorithm based on the
ETAS model has been implemented for testing
and evaluation purposes for generating automatic
real-time forecasts in the INGV seismological ob-
servation center (Murru et al. 2008). In this re-
spect, our study can be considered a contribution
in the frame of the concept defined by Jordan
(2006) with the term of “brick-to-brick” approach,
which is nowadays broadly supported in the com-
munity of statistical seismologists (Hauksson et al.
2007).

It is easy to conclude that it will require still
long time and a lot of efforts before statistical
forecasts can be applied in real circumstances.
These methods are characterized by a trade-off
between the rate of missed alarms and the rate
of false alarms, an issue that would constitute
serious problems to decision makers that would
try to make use of the information that they
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provide. A possible direction for further investi-
gations could be in the synergy between short-
term statistical forecasting, such as that based on
the ETAS model, and other kinds of statistical
or physical intermediate-term forecasts methods,
which would focus on more narrow geographi-
cal areas where a suspected earthquake might be
preparing. In fact, many studies (e.g., Aki 1981;
Rhoades and Evison 1989; Imoto 2007, among
others) have concluded that the combination of
different forecasting methods, each of which is
characterized by a different probability gain and
based on independent phenomena, might achieve
a significantly higher joint probability gain.
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Appendix

In this appendix, we give a short outline of four
statistical algorithms used for assessing the valid-
ity of forecast hypotheses.

ROC diagrams

The relative operating characteristic (ROC) ap-
proach has been widely used for forecast veri-
fication in the atmospheric sciences, where the
success rate of an event prediction is compared
against the false alarm rate. ROC diagrams have
already been used to evaluate earthquake predic-
tion algorithms. Recently, Holliday et al. (2005),
McGuire et al. (2005), Kossobokov (2006), Baiesi
(2006), Chen et al. (2006), Zechar and Jordan
(2007) among others have applied this method for
this purpose.

This approach requires that a prediction of “oc-
currence” or “non occurrence” for the considered

class of events is issued in any of the possible
cells in which the whole space–time volume is
divided. It is an intrinsically binary approach, by
which each prediction has two possible (“true” or
“false”) outcomes allowing the preparation of a
2 × 2 contingency table summarizing the result of
the specific test.

Contingency table

Observed
Forecast Yes No
Yes a b
No d c

The entries for classifying the results in a 2 × 2
table, reading clockwise from the top left corner
are the following:

a number of successful forecasts of occurrence
b number of false alarms
c number of successful forecasts of non-

occurrence
d number of failures to predict

These entries comply with the following
constraints:

a + b total number of cells contain-
ing alarms

a + d total number of cells contain-
ing events really occurred

b + c total number of cells without
any occurred events

c + d total number of cells without
any alarms

e = a + b + c + d total number of geographic
cells multiplied by the num-
ber of time bins

Following the terminology introduced by
Holliday et al. (2005), we make use of the
parameters Hit rate (H) and False alarm rate (F),
defined as:

H = a /(a + d) (fraction of events that occur on
an alarm cell)

F = b /(b + c) (fraction of false alarms issued
where an event has not oc-
curred)
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The meaning of H corresponds to that of
the Reliability (Matthews and Reasenberg 1988;
Rhoades and Evison 1989) that is the probability
that an event is preceded by a warning.

In case the prediction algorithm is expressed
in terms of probabilities (or expected rates) as
for our ETAS model, it is necessary to transform
the probability forecasts into binary predictions
defined by some probability threshold. The result
of the test produces a single point on the ROC di-
agram. For different thresholds the corresponding
hit rates and false alarm rates can be computed.
Applied to earthquake forecasting, a ROC dia-
gram is a plot of the hit rate H (the fraction of
“hotspot” cells that have an earthquake forecast
over the total number of cells with actual earth-
quakes) versus the false alarm rate F (the fraction
of the forecast cells that don’t have earthquakes
over the total number of cells with no actual earth-
quakes in them). In the case of purely random
forecasts, H = 1 − F, and the diagram consists of
the diagonal joining the points (0,0) and (0,1).

R-score

A test statistic, commonly called the R−score, can
be derived from a 2 × 2 contingency table. The
R−score is defined as (Shi et al. 2001):

R = a/(a + d) − b/(b + c) (number of cells
in which earthquakes are successfully pre-
dicted/total number of cells in which earth-
quakes occur) − (number of cells with false
alarms/total number of cells without any
earthquakes).

R varies between −1 and 1 with the following
meanings:

R = −1 all prediction are wrong.
R ≈ 0 random prediction scores.
R = 1 all positive and negative prediction are

correct, no false alarm and no missed
alarm.

A meaningful prediction must have R >0. A
significant prediction needs R larger than a mar-
ginal level.

Probability gain

We also consider the probability gain G as a func-
tion of false alarm rate F to measure the effective-
ness of the prediction technique. This parameter
was defined by Aki (1981) as the ratio between the
conditional and the unconditional rate, namely:

G = a/(a + d) · e/(a + b) = H · e/(a + b)

= Success rate/ average rate of occurrence

(or in other words the ratio between the condi-
tional probability, success rate, and the uncondi-
tional probability, average rate or frequency of
occurrence). G varies between 0 and ∞.

Of course a relationship exists between G and
R: when G tends to ∞, R goes to 1, when G= 1 R
is equal to 0 and when G = 0 R = −1.

Log-likelihood ratio

Let’s imagine the forecasting target volume sub-
divided in non-overlapping sub-volumes, or cells,
that fill it completely. We may imagine that the
subdivision is made on the geographical exten-
sion only, as in the method for evaluating fore-
casts introduced by Kagan and Jackson (1995),
or on the time dimension only, or that it extends
also to time or magnitude intervals, in the more
general way applied in our study. This method
requires that for each sub-volume i = 1,. . . ,P the
probability pi of occurrence of at least one target
event be estimated. After a suitable period of
observation, a number N of target events will
have really occurred in some of the sub-volumes
denoted by j = 1,. . . ,N. Let ci = 0 denote the cells
in which no events have been observed, and ci =
1 those in which at least one event has occurred.
It can be demonstrated by means of the theory
of probabilities that the log-likelihood of observ-
ing that particular realisation of the earthquake
process under the hypothesis defining the proba-
bilities pi is:

log L=
P∑

i=1

[
ci log (pi)+(1−ci) log (1 − pi)

]
. (7)
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The first term in the square brackets derives
from the probability of occurrence of a target
event in the cell i, the second derives from the
probability of non-occurrence of such event in the
same cell. With a slight modification, equation (7)
can be also written as:

log L =
P∑

i=1

[
ci log

(
pi

1 − pi

)
+ log (1 − pi)

]
. (8)

It should be noted that only the first term of the
latter expression under the sum depends on the
actual realisation of successes, while the second
one is a constant that depends on the probabilities
provided by the considered model. The first term,
that depends on the result of each test, is positive
when the success is obtained for a test to which we
assigned a probability pi larger than 0.5, and neg-
ative in the contrary case. The circumstance of an
event occurred in a cell to which zero probability
had been assigned, leads to a value of L equal to
0 and that of log L to −∞: it must be avoided in
practice by imposing a minimum threshold to the
occurrence rate density in the time-independent
distribution.

The comparison between two L functions is
generally carried out taking one of them as refer-
ence (null hypothesis), defined in an appropriate
way. The problem of setting up a reference hy-
pothesis in the context of earthquake forecasting
is not trivial. As an example adopted in this study,
a null hypothesis could be that of a rate den-
sity distribution that depends only on space and
magnitude, but not on time, for which a uniform
Poisson distribution is assumed.

Naming by pi and p0i the probabilities of occur-
rence of at least one event in the ith cell under the
“new” and null hypothesis respectively, and with
L and L0 their likelihoods, we infer, from (8):

log R = log

(
L
L0

)
= log (L) − log (L0)

=
P∑

i=1

[
ci log

pi (1 − p0i)

p0i (1 − pi)
+log

1 − pi

1 − p0i

]
. (9)
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