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Abstract Blood vessel formation (neovascularization) in

tumors can occur through two mechanisms: angiogenesis

and vasculogenesis. Angiogenesis results from prolifera-

tion and sprouting of existing blood vessels close to the

tumor, while vasculogenesis is believed to arise from

recruitment of circulating cells, largely derived from the

bone marrow, and de novo clonal formation of blood

vessels from these cells. Increasing evidence in animal

models indicate that bone marrow-derived endothelial

precursor cells (EPC) can contribute to tumor angiogenesis.

This review aims to collate existing literature and provide

an overview on the current knowledge of EPC involvement

in breast cancer angiogenesis. We also discuss recent

attempts to use EPC as biomarker and therapeutic target in

clinical trials.
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Neovascularization in breast cancer

Breast cancer-induced angiogenesis is first observed at the

preinvasive stage of high-grade ductal carcinoma in situ by

the formation of microvessels around the ducts that are

filled with proliferating epithelial cells [1]. As the tumor

progresses, so does the degree of neovascularization. The

new vessels not only help to meet the growing metabolic

demands of the tumor but also favor tumor dissemination

and metastasis. Poor breast cancer prognosis has been

shown to correlate with increased microvascular density or

production of proangiogenic factors, some of which have

been used as therapeutic targets [2]. However, tumor

neovasculation can occur not only by angiogenesis (the

sprouting of new vessels from existing vessels), but also by

vasculogenesis, the embryonic process where blood vessels

are formed de novo from bone marrow-derived endothelial

precursor cells (EPC). In the later process, EPC is mobi-

lized from the bone marrow, transported through the blood

stream to the tumor site where they differentiate into

mature endothelial cells to form vascular sprouts and cel-

lular networks, before incorporation into a functional

microvasculature (Fig. 1).

Discovery and characterization of EPC

Endothelial precursor cells were initially identified and

isolated from the blood of healthy donors in 1997 by

Asahara et al. [3]. These cells were found to coexpress both

the vascular endothelial growth factor receptor-2 (VEG-

FR2) and CD34, and to differentiate to mature endothelial

cells in culture. Soon after, by using a fluorescent in situ

hybridization approach in human recipients of gender-

mismatched bone marrow transplants, which allowed to

distinguish EPC from the marrow of donor-derived cells

and circulating endothelial cells from vessel walls of host-

derived cells. Lin et al. [4] found that more than 90% of

endothelial cells in the blood were of host origin. When

cultured in vitro, donor-derived endothelial cells expanded

about 1,000-fold, whereas host-genotype endothelial cells
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expanded only about 20-fold, thus illustrating the high

proliferative potential of EPC. Since then, many studies

have been performed to determine the phenotypical and

functional characteristics of EPC [5–8]. However, as EPC,

endothelial cells and haematopoetic stem cells share many

cell surface markers including CD45, CD34, CD133

(CD117 for mouse), CD146, CD31, CD105, CD144, vas-

cular endothelial growth factor receptor 2 (VEGFR2) and

von Willebrand factor (vWF) [6, 9–15] (Table 1), the term

EPC may therefore encompass ranging from relative

primitive haemangioblasts to more differentiated endothe-

lial cells. As CD133 is expressed in stem cells and/or

progenitors of different tissues [16], it is currently accepted

that early EPC (localized in the bone marrow or

immediately after migration into the circulation) are

CD133?/CD34?/VEGFR2?/CD45- cells, whereas cir-

culating EPC are CD133low/CD34?/VEGFR2?/CD45-

and begin to express cell surface markers typical to mature

endothelial cells, including CD31 and vWF. The majority

of circulating EPC resides in the bone marrow in close

association with hematopoietic stem cells and the bone

marrow stroma that provides an optimal microenviron-

ment. Clearly, putative precursors and the exact differen-

tiation lineage of EPC remain to be determined. Further

and more detailed molecular characterization of EPC could

emerge from transcriptomic and proteomic analysis, as

illustrated by recent publications [17, 18]. It is also to be

noted that proteomics of breast tumors might equally reveal

Fig. 1 Schematic representation of neovascularization in tumors.

Under low oxygen tension or hypoxia condition, tumor cells secrete a

number of proangiogenic factors which activate endothelial cells of

existing vessels in neighboring areas to proliferate, migrate, leading to

the formation of new vessels from existing vessels. Proangiogenic

factors can also initiate the mobilization of bone marrow-derived

endothelial precursor cells to the tumor site, where they differentiate

into mature endothelial cells to form vascular sprouts and cellular

networks before incorporation into a functional microvasculature

Table 1 Marker profile of endothelial cell lineage, platelet, and lymphocyte

Markers Hematopoietic

stem cell

Endothelial

precursor cell

Circulating

endothelial cell

Mature

endothelial cell

Endothelial cell

microparticule

Platelet Lymphocyte

DNA ? ? ? ? - - ?

CD45 ? - - - - - ?

CD34 ? ? ?/- ?/- ?/- ?/- -

CD133 ? ? - - - - -

CD117 ? ? - - - - -

CD146 - ?/- ? ? ? - ?/-

CD31 ?/- ?/- ? ? ? ?/- -

CD105 ?/- ?/- ? ? - - -

CD144 ?/- ?/- ? ? ? - -

VEGFR2 ?/- ? ? ? ? - -

vWF - ?/- ? ? ? - -

Adapted from Bertolini et al. [6]
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important molecular trends related to angiogenesis and

EPC intervention [19].

Contribution of EPC to mammary tumor

vascularization in animal models

The contribution of EPC to tumor vascularization has been

mainly evaluated by using tumors grown in chimeric mice

which were previously lethally irradiated and reconstituted

with LacZ? or GFP? tagged bone marrow-derived cells.

The first proof-of-principle of bone marrow-derived EPC

contribution to cancer-associated blood vessels was

reported in 2001 by Lyden et al. [20], by using an angio-

genesis-defective Id-mutant mice model. The Id proteins

interact with other helix–loop–helix transcription factors,

thereby modulating cellular differentiation in early fetal

development [21]. Adult mice with reduced Id gene dos-

ages cannot support neo-angiogenesis when challenged

with tumor [22]. Bone marrow transplantation from wild-

type mice, not from Id-mutant mice, restored the tumor

growth and neovascularization in Id-mutant mice [20].

These findings were later confirmed by a clinical study of

cancer patients, who developed cancers after bone marrow

transplantation with donor cells derived from individuals of

the opposite sex [23]. By using fluorescence in situ

hybridization with sex chromosome-specific probes, the

authors found that the percentage of bone marrow-derived

endothelial cells in the tumor vasculatures ranged from 1%

to 12% according to tumor types.

An excellent demonstration of EPC as a major deter-

minant of nascent mammary tumor neovascularization was

recently reported by Nolan et al. [24]. The authors used

MMTV-PyMT transgenic mice, in which the PyMT

oncogene was expressed under the transcriptional control

of the mouse mammary tumor virus promoter/enhancer

specifically in the mammary epithelium [25]. The PyMT

transgene activates pathways similar to that induced by

ErbB2 [26], and importantly, this murine tumor model

recapitulates human breast cancer progression from early

nonmalignant hyperplasia (6 weeks of age) and adenoma

(8–9 weeks of age), to early and late malignant adenocar-

cinoma (8–12 weeks of age) [27]. They examined the

contribution of bone marrow-derived EPC and luminally

incorporated endothelial cells at various stages of these

mammary tumors developing in animals previously trans-

planted with GFP? bone marrow. They found that early

adenomas contained foci of bone marrow-derived GFP?

cells including EPC and exhibited increased vessel density,

with 5–10% of host vessels having incorporated bone

marrow-derived GFP? endothelial cells. These findings

indicate that bone marrow-derived EPC contribute to

neovascularization in early stages of breast tumor

progression. In the same study, the authors obtained similar

results using other transplanted tumors including lung

carcinoma, lymphoma, and melanoma, thus highlighting

the general relevance of these cells in tumor neovascular-

ization. The contribution of EPC in mammary tumor neo-

vascularization has also been studied using other animal

models [28–31] (Table 2). In general, the percentage of

EPC incorporation in neovessels is relatively low (0.5–

3.5%). However, Duda et al. [29] reported that as high as

58% of tumor vessels were bone marrow-derived endo-

thelial cells-positive when TG-1 mammary carcinoma cells

were injected superficially under the pial surface of mouse

brain, while only 1.5% of tumor vessels were from bone

marrow-derived endothelial cells when MCa8 breast can-

cer cells were injected subcutaneously or at mammary fat

pad, suggesting that the extent of vasculogenesis may also

depend on the specific tumor-stroma/microenvironment

interaction.

In addition to the physical contribution of EPC to newly

formed capillaries, the angiogenic cytokine release of EPC

may improve neovascularization in a paracrine manner

[32]. This idea is supported by a recent report by Gao et al.

[33] who found that although only 12% of the new blood

vessels showed incorporation of EPC, blocking EPC

mobilization caused severe angiogenesis inhibition and

significantly impaired lung tumor progression. Moreover,

in the same study, gene expression analysis of EPC

revealed up-regulation of a variety of key proangiogenic

genes including vascular endothelial growth factor, plate-

let-derived growth factor, fibroblast growth factor receptor

1, chemokine ligands and receptors. Similarly, Suriano

et al. [31] reported that 17b-estradiol mobilizes bone

marrow-derived EPC to orthotropically implanted mam-

mary tumors. The homing of EPC in tumor tissues was

associated with enhanced expression of several proangio-

genic factors which might contribute to stimulate vessel

formation and support tumor growth.

Endothelial precursor cells are not only involved in

primary tumor development, but also in metastase forma-

tion. This has been recently evidenced by Gao et al. [33].

The authors transplanted syngeneic GFP? bone marrow

into MMTV-PyMT transgenic mice, which develop spon-

taneous mammary carcinoma and lung metastase. They

found that lung metastases initially formed micrometasta-

ses which were poorly vascularized, but as the metastatic

tumors grew over time (16 weeks), vessels became

increasingly abundant and up to 12% of the tumor vascular

endothelium contained BM-GFP?CD31? EPC. Similar

results were obtained after implantation of Lewis lung

carcinoma cells into syngeneic mice reconstituted with

bone marrow-derived cells expressing green fluorescent

protein (BM-GFP?). Importantly, the blockade of EPC

mobilization by short hairpin RNA, directed against the Id1

Breast Cancer Res Treat (2010) 120:17–24 19
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gene, caused severe angiogenesis inhibition at the micro-

metastatic stage and significantly impaired the formation of

lethal macrometastases.

Molecular mechanism of EPC mobilization

Although the molecular pathways involved in EPC mobi-

lization remain to be determined, several stimuli including

VEGF, stroma cell derived factor-1a (SDF-1a), placental

growth factor (PlGF), granulocyte colony stimulating fac-

tor (G-CSF) and estrogens were described to be involved in

the mobilization of EPC from the bone marrow to tumor

sites [31, 34–39]. VEGF can activate matrix metallopro-

teinase-9 which that cleaves the membrane-bound stem cell

cytokine mKit Ligand in bone marrow stromal cells, to

liberate soluble sKit Ligand, which then stimulates cKit-

positive EPC to migrate from a quiescent bone marrow

niche to a permissive microenvironment, activating EPC

from a quiescent to a proliferative state [40]. Furthermore,

VEGF has been found to upregulate SDF-1 (also known as

CXCL12) and CXCR4 (the SDF-1 receptor) [41, 42]. SDF-

1a plays a key role in both the release and the homing

process of EPC. SDF-1a is present at high concentrations

in the bone marrow, where it holds the stem cells within

their niche. In response to different proangiogenic factors,

such as VEGF, the level of SDF-1a in bone morrow is

decreased, leading to the egress of stem cells in the cir-

culation. In contrast, the concentration of SDF-1a within

the tumor is increased in response to VEGF, and the pro-

genitor cells are subsequently trapped in the tumor [36].

Other chemokines, including CCL2 and CCL5, were also

reported to be produced by tumor cells to attract the pro-

genitor cells from the circulation [43]. Suriano et al. [31]

have reported that bone marrow-derived EPC initiate the

neovascularization of TG1-1 mammary cells implanted in

the inguinal mammary gland of Tie-2 GFP transgenic mice.

In this study, 17-b estradiol supplementation of ovariec-

tomized mice significantly enhanced EPC-induced neo-

vascularization, which was accompanied by enhanced

expression of proangiogenic paracrine factors, such as

VEGF, bFGF, angiopoetin-1, angiopoetin-2, thrombo-

spondin-1, and matrix metalloproteases-2 and -9. Similarly,

adiponectin, an adipocyte-specific secretory protein, was

reported to stimulate migration and differentiation of EPC

[44, 45]. Adiponectin exerts also a biphasic effect on

mammary tumor angiogenesis in MMTV-PyMT mouse

model, with an increase of EPC mobilization in mice

developing more aggressive tumors [46]. Thus, other

growth factors and cytokines produced by tumor cells and/

or surrounding normal cells could be also involved in EPC

mobilization. For example, brain-derived neurotrophic

factor (BNDF) was described to promote revascularization

of ischemic and nonischemic mouse tissues by both local

recruitment of endothelial cells and systemic mobilization

of hematopoietic progenitors [47]. These findings, together

with the recent demonstration of the involvement of nerve

growth factor (NGF) and its tyrosine kinase receptor TrkA

in breast tumor growth and angiogenesis [48, 49], suggest

that neurotrophins-promoted angiogenesis could also

involve the mobilization of hematopoietic progenitors such

as EPC. Finally, systemic hormones and/or factors which

are known to regulate angiogenesis in both physiol-path-

ological situations [50] could also contribute to EPC

mobilization.

Clinical applications: EPC as biomarker

and therapeutic target?

In light of the aforementioned results, showing the role of

EPC in mammary tumor angiogenesis in animal models,

Table 2 Contribution of EPC in neovessels of mammary primary tumors and metastases

Tumor model Mice Time point analysis

after BMT

% of EPC incorporation

in vessels

EC markers References

MMTV-PyMT

Spontaneous mammary carcinoma

MMTV-PyMT mice 10–12 weeks 1.3 LacZ, CD31 [28]

MCa8 breast cancer cells C57BL6 mice 3 months \1 GFP, CD31 [29]

MMTV-PyMT

Spontaneous mammary carcinoma

MMTV-PyMT mice 10 weeks 5–10 CD31, GFP,

CD144

[24]

MT1A2 and TG1-1 mouse

mammary carcinoma cells

FVB mice [4 weeks 2.5–3.5 LacZ, CD31 [30]

TG1-1 mouse mammary carcinoma

cells

Tg(TIE2GFP)

287SATO/J mice

- 0.5–3 GFP, CD133 [31]

MMTV-PyMT

Spontaneous mammary carcinoma

MMTV-PyMT mice 12 weeks (lung

metastases)

12 GFP, CD31 [33]

BMT Bone marrow transplantation, EC endothelial cells

20 Breast Cancer Res Treat (2010) 120:17–24
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attempts have been made to determine their potential use in

clinical oncology. Particularly, several investigations have

been undertaken to establish whether variations exist in

EPC according to breast cancer type, stage or response to

therapy. Higher levels of circulating EPC were found in

both preclinical breast cancer xenograft model in mice [51,

52] and in breast cancer patients [53, 54]. As shown in

Table 3, 3 of 6 studies failed to show significant difference

in EPC among varying stages of breast cancer [53, 55, 56].

In contrast, Richter-Ehrenstein et al. [57] found increased

number of EPC in tumors of large size (over 2 cm). Naik

et al. [58] showed increased number of EPC in stage 3 and

4 breast cancer patients, compared to stage 1 and 2 breast

cancer patients. These conflicting results may be explained

by the very limited number of patients analyzed, as well as

different markers, used for enumerating EPC (Table 3).

Accordingly, a recent report by Mancuso et al. [54], who

used a more standardized method, with limited intrareader

and interreader variability, showed more EPC in metastatic

breast cancers than locally advanced ones. Interestingly, in

patients with pediatric solid malignancies, including

medulloblastoma, neuroblastoma, sarcoma, and lympho-

mas [59], the levels of circulating bone marrow-EPC were

found to be significantly higher, compared to no metastatic

diseases. Furthermore, higher circulating levels of EPC

were also seen in patients with advanced unresectable

hepatocellular carcinoma when compared to patients with

resectable hepatocellular carcinoma [60]. Thus, the sig-

nificantly higher levels of EPC paralleling clinical severity

suggest the possible relevance of these cells in metastatic

progression of tumors, and point out their potential use as

biomarker and/or target in cancer therapy.

Surprisingly, Shaked et al. [38] found that treatment of

tumor-bearing mice with vascular disrupting agents, which

target the established but abnormal tumor vasculature,

leads to an acute mobilization of EPC. These cells subse-

quently colonize the viable tumor rim that usually remains

after such therapy, and drives ‘‘rebound revascularization’’

and tumor regrowth/recovery. Another study [61] showed

that chemotherapy drugs, such as taxanes administered at

maximum tolerated doses, can also induce a rapid EPC

mobilization. Prevention of the EPC spike by concurrent

treatment with targeted antiangiogenic drugs enhanced the

antitumor activity of chemotherapeutic drugs. These find-

ings raise the possibility that therapeutic strategies aiming

to reduce EPC mobilization might enhance the efficacy of

certain cytotoxic anticancer therapies. Accordingly, addi-

tion of an antibody against CXCR4 to block EPC mobili-

zation enhanced the antitumor effect of docetaxel in a

murine breast cancer model [62]. In line with this, the

efficacy of metronomic chemotherapy was thought to be

mainly antiangiogenic [63, 64]. Metronomic chemotherapy

is defined as regular administration of a chemotherapeutic

drug at relatively low (nontoxic) doses, over prolonged

periods, with no extended drug-free break periods [63].

Using different preclinical breast cancer models, several

studies showed a strong relationship between decreased

number of circulating EPC and efficiency of various met-

ronomic chemotherapy regimens [65–68]. These studies

demonstrated that EPC can be used successfully as a sur-

rogate marker in mice for determining the optimal bio-

logical dose for various metronomic chemotherapies, thus

avoiding empiricism (at least in mice), with respect to

determining the optimal biological dose in metronomic

chemotherapy regimens. However, clinical studies have

yielded promising but still contradictory results, likely due

to the choice of patients, therapeutic regime and enumer-

ation technique of EPC. It has been reported that circu-

lating EPC are increased in breast cancer patients receiving

neoadjuvant chemotherapy [69]. In contrast, Dellapasqua

et al. [70] have not observed any correlation between the

number of EPC and clinical outcome in patients with

advanced breast cancer receiving metronomic chemother-

apy with or without Bevacizumab. Several clinical studies

are currently under investigation to determine whether EPC

can be used as biomarker for patient selection and for

defining the optimal biological dose in metronomic

chemotherapies.

Table 3 Circulating EPC and breast cancer

Number of

patients

Cancer stages EPC definition Result References

46 – CD45-/CD133? Low EPC in healthy donors and

breast cancer patients

[55]

19 1/2 vs. 3/4 CD34?/VEGFR2?/CD144? No difference [53]

47 1 to 4 CD34?/Flk1? Increased EPC in tumors C2 cm [57]

25 1/2 vs. 3/4 CD133?/VEGFR2? Increased EPC in stage 3/4 vs. stage 1/2 [58]

160 1 to 3/4 CD45-/CD133?/CD34? No correlation with disease stage [56]

56 Locally advanced and

metastatic breast cancer

DNA?/syto16?/CD31?/CD133? Increased EPC in metastatic breast cancer [54]
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Conclusion and perspectives

Most recent findings point out the relevance of EPC in

tumor progression. Therefore, these cells might serve both

as surrogate marker for cancer progression or response to

therapy and as target for therapy. Further studies and

consensus are required concerning the phenotype and

enumeration of these cells, to better define their exact role

in clinical oncology. Furthermore, many questions related

to EPC biology and functional impact remain to be

answered. For instance, what is the exact lineage of EPC in

the context of the hematopoietic system in the adult? Can

reliable culture and expansion methods be developed to

address the origin and functional definition of EPC? To

what extent do EPC contribute to neovessel formation and/

or vessel maintenance? These issues will be the important

subjects of future investigation to dissect out the critical

players promoting tumor angiogenesis.
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