The Fanconi anemia family of genes and its correlation with breast cancer susceptibility and breast cancer features

E. Barroso, G. Pita, J. I. Arias, P. Menendez, P. Zamora, M. Blanco, J. Benitez, G. Ribas

To cite this version:

E. Barroso, G. Pita, J. I. Arias, P. Menendez, P. Zamora, et al.. The Fanconi anemia family of genes and its correlation with breast cancer susceptibility and breast cancer features. Breast Cancer Research and Treatment, 2009, 118 (3), pp.655-660. 10.1007/s10549-009-0439-5 . hal-00535374

HAL Id: hal-00535374

https://hal.science/hal-00535374

Submitted on 11 Nov 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

The Fanconi anemia family of genes and its correlation with breast cancer susceptibility and breast cancer features

E. Barroso • G. Pita • J. I. Arias • P. Menendez •
P. Zamora • M. Blanco • J. Benitez • G. Ribas

Received: 31 May 2009 / Accepted: 3 June 2009/Published online: 18 June 2009
© Springer Science+Business Media, LLC. 2009

Abstract

Fanconi anemia (FA) family of proteins participates in the DNA repair pathway by homologous recombination, and it is currently formed by 13 genes. Some of these proteins also confer susceptibility to hereditary breast and ovarian cancer (HBOC), since FANCD1 is the BRCA2 breast cancer susceptibility gene, and FANCN/ PALB2 and FANCJ/BRIP1 explain 2\% of non-BRCA1/2 HBOC families. Thus, there is an important connection between FA and BRCA pathways. In a previous casecontrol association study analysing FANCA, FANCD2 and

Electronic supplementary material The online version of this article (doi:10.1007/s10549-009-0439-5) contains supplementary material, which is available to authorized users.

[^0]$F A N C L$, we reported an association between FANCD2 and sporadic breast cancer (BC) risk $(\mathrm{OR}=1.35)$. In order to know whether variants in other FA genes could also be involved in this association, we have extended our study with the rest of FA genes and some others implicated in the BRCA pathway. We have also analyzed the correlation with survival, nodal metastasis and hormonal receptors (ER- and PR-). A total of 61 SNPs in ten FA genes (FANC-B, -C, $-D 1,-E,-F,-G,-I,-J,-M,-N$) and five FA related genes (ATM, ATR, BRCA1, H2AX and USP1) were studied in a total of 547 consecutive and nonrelated sporadic BC cases and 552 unaffected controls from the Spanish population. Association analyses reported marginal statistically significant results with the minor allele of intronic SNPs in three genes: BRCA1, BRCA2/FANCD1, and ATM. Survival association with SNPs on FANCC and BRCA2/FANCD1 genes were also reported. Sub-group analyses revealed associations between SNPs on FANCI and ATM and nodal metastasis status and between FANCJ/ BRIP1 and FANCN/PALB2 and PR-status.

Keywords Fanconi anemia • SNPs • Susceptibility Breast cancer

Introduction

Several breast cancer (BC) susceptibility genes have been identified, the most important high risk genes being the tumor suppressor genes BRCA1 [1] and FANCD1/BRCA2 $[2,3]$ and other middle-penetrance genes such as $A T M$ [4], FANCJ/BRIP1 [5] and FANCN/PALB2 [6], among others. All of these genes are related directly or indirectly to the Fanconi anemia (FA) family of genes, and their coded
proteins work together in the homologous recombination DNA repair pathway [7-10].

To date, 13 responsible FA genes have been identified [11-24]: eight of them (FANC-A, -B, $-C,-E,-F,-G,-L$ and $-M$) code for proteins that form the multi-subunit nuclear FA core complex, two code for proteins that are activated by ubiquitinilation (FANC-I and -D2) and the last three interact with BRCA1 and predispose to breast cancer (FANC-N, -D1 and -J) [25, 26]. Other proteins are also involved in the DNA repair pathway in relation with the function of the FA family of proteins, such as ATM, ATR [27], BRCA1 [28], H2AX [29] and USP1 [30].

Previous work in our group studied the relationship between BC and FANCA, - L and -D2, acting as low penetrance genes (LPG), and results reported an association between the synonymous SNP rs2272125 (L1366L) on $F A N C D 2$ and BC (OR per-allele $=1.35 ; 95 \%$ CI. 1.091.67; $p=0.005$) [31]. This made us to postulate that there could be other members of FA family of genes involved in the sporadic BC risk, because no previous studies had tested this hypothesis. Thus, a comprehensive association study of the rest of FA genes, which includes $F A N C-B,-C$, $-D 1,-E,-F,-G,-I,-J,-M$ and $-N$, together with the five FArelated genes ATM, ATR, BRCA1, H2AX and USP1, and BC risk was performed, comprising a total of 61 SNPs.

Results and discussion

Associations of polymorphisms with BC risk and clinical and tumor characteristics

Differences in minor allele frequency (MAF) between BC cases and controls reported association for the noncoding SNPs rs637064 (intronic) on ATM ($p=0.037$), rs799923 (intronic) on BRCAl ($p=0.048$), and rs206146 (intronic) and rs15869 ($3^{\prime} \mathrm{UTR}$) on BRCA2/FANCD1 ($p=0.039$ and $p=0.033$, respectively) (data not shown).

Results from univariate genotype analysis are shown in Table 1. Both intronic SNPs rs206146 and rs15869 in BRCA2/FANCD1 were statistically significant in a perallele analysis $(\mathrm{OR}=1.23, p=0.040$ and $\mathrm{OR}=1.24$, $p=0.034$, respectively), but after a multivariate adjustment, trend but not statistical significance were observed ($p=0.333$ and $p=0.344$, respectively) (data not shown). No other previous studies described this association since only one study described the association of FANCD1/ $B R C A 2$ with sporadic BC risk [32], and most of the studies performed analyses of FANCD1/BRCA2 on familial BC type. The BRCAI SNP rs799923 showed an estimated OR per minor allele of $0.81 \quad(p=0.041)$ and $\mathrm{OR}=0.77$ ($p=0.056$) under the multivariate analysis, whereas rs16941, a non-synonymous coding change (G1038E),
showed a marginal association with $\mathrm{BC}(\mathrm{OR}=1.17$, $p=0.082$), statistically significant after multivariate correction ($\mathrm{OR}=1.27, p=0.037$). The estimated OR per minor allele in the ATM SNP rs637064 was 1.19 ($p=0.041$). This OR was not statistically significant in the multivariate analysis adjusting for the potential confounding factors: age, number of live births, age at menarche and menopause status ($\mathrm{OR}=1.11, p=0.302$), although risk effect was maintained. These two genes have been commonly studied in hereditary BC [33], but there are few reports in sporadic BC type with contradictory results [34]. No genotype associations were detected in the other FA and FA-related genes tested. Our results in a homogeneous Spanish population group suggest a small implication of some of these FA genes as LPG in breast cancer. However, other evidences have established an important role of $F A N C F, F A N C C$ and FANCG genes in diverse type of cancers other than BC [17, 35, 36], and these results could be in agreement with some indirect studies that analyze the cancer risk in carriers of mutation in FA genes [37, 38].

Despite the small association detection of the other FA gene members with sporadic BC, we tested for SNP association with the four clinical and tumor characteristics: survival, nodal metastasis, ER + and PR+. Several studies have described the BC tumor heterogeneity [33, 39]; therefore, this issue has been taken into account in sporadic BC association studies by stratification of BC samples [40]. Results are summarized in Table 1. Two SNPs, one located 3^{\prime} downstream of $F A N C C$, rs 1045276 ($\mathrm{OR}=1.95$, $p=0.020$), and a synonymous SNP on BRCA2/FANCD1, rs1801406 (K1132K) (OR $=0.49, p=0.046)$, showed association with a poorer and better survival, respectively. However, these survival analyses should be taken with caution since death rate in this sample collection is low, and statistical power is limited. The analysis of the tumor characteristics reported association of nodal metastasis with the intronic SNPs rs7168941 (FANCI) $(p=0.030)$, but not with BC $(p=0.089)$. The SNP rs8032440 (FANCI) was associated with absence of nodal metastasis ($p=0.045$) and disease ($p=0.048$), whereas rs637064 (ATM) showed association with nodal metastasis ($p=0.029$) and BC ($p=0.008$). These findings are not supported for any other previous study. No statistically significant association with estrogen receptor was detected, whereas positive progesterone receptor was observed among the noncoding SNPs rs7220740 (located at 3^{\prime} downstream of FANCJ/BRIP1) $(p=0.007)$ and rs447529 (intronic SNP of $F A N C N / P A L B 2)(p=0.030)$ minor allele carriers. These SNPs were associated with the disease according to the stratified sub-group of PR positive BC samples ($p=0.039$ for both of them). Mavaddat and colleagues evaluated progesterone status and did not find any evidence of association with both genes [41]. No other
Table 1 Genotype and phenotype frequencies comparison between cases and controls in the 15 genes selected

Gene	SNP	Additive model ${ }^{\text {a }}$		Survival		Nodal Metastasis ${ }^{\text {b }}$		ER positive ${ }^{\text {b }}$		PR positive ${ }^{\text {b }}$	
		OR (95\% CI)*	p-value								
Genes of FA family											
FANCB	rs5935816	0.98 (0.82-1.17)	0.841	1.16 (0.68-1.99)	0.581	1.03 (0.77-1.37)	0.864	0.90 (0.61-1.31)	0.566	0.85 (0.62-1.18)	0.334
	rs2905223	0.98 (0.82-1.17)	0.818	1.17 (0.68-1.99)	0.570	1.05 (0.79-1.41)	0.731	0.91 (0.63-1.33)	0.626	0.87 (0.63-1.20)	0.396
FANCC	rs554879	0.99 (0.84-1.18)	0.947	1.17 (0.68-2.02)	0.578	0.78 (0.59-1.05)	0.096	0.85 (0.58-1.23)	0.386	0.88 (0.64-1.21)	0.422
	rs4647554	1.01 (0.85-1.21)	0.886	0.77 (0.44-1.33)	0.339	1.24 (0.92-1.65)	0.156	1.02 (0.69-1.49)	0.933	1.24 (0.89-1.74)	0.203
	rs1045276	0.94 (0.75-1.17)	0.574	1.95 (1.11-3.43)	0.020	1.02 (0.71-1.48)	0.909	1.22 (0.75-1.97)	0.429	0.79 (0.53-1.18)	0.252
	rs206116	1.19 (1.00-1.42)	0.056	0.87 (0.52-1.48)	0.613	0.99 (0.74-1.32)	0.933	1.16 (0.80-1.70)	0.434	1.07 (0.78-1.48)	0.666
	rs3092989	0.91 (0.72-1.15)	0.422	1.37 (0.70-2.68)	0.365	0.81 (0.54-1.24)	0.333	0.89 (0.54-1.48)	0.655	1.29 (0.82-2.01)	0.271
	rs1801439	1.02 (0.65-1.60)	0.940	0.71 (0.10-5.26)	0.739	1.86 (0.83-4.19)	0.134	1.27 (0.41-3.94)	0.682	2.01 (0.76-5.32)	0.159
FANCD1/BRCA2	rs1801406	0.97 (0.81-1.17)	0.776	0.49 (0.24-0.99)	0.046	1.09 (0.79-1.51)	0.593	1.08 (0.71-1.64)	0.722	0.90 (0.63-1.29)	0.571
	rs206079	1.02 (0.87-1.21)	0.798	1.59 (0.93-2.72)	0.092	1.08 (0.81-1.44)	0.600	0.91 (0.62-1.33)	0.631	0.97 (0.70-1.34)	0.847
	rs9534262	0.92 (0.78-1.09)	0.323	0.74 (0.44-1.26)	0.271	0.86 (0.64-1.15)	0.294	1.04 (0.71-1.51)	0.841	1.04 (0.75-1.43)	0.823
	rs206146	1.23 (1.01-1.50)	0.040	1.00 (0.56-1.78)	0.999	1.02 (0.74-1.41)	0.895	1.02 (0.67-1.57)	0.915	0.95 (0.66-1.37)	0.794
	rs15869	1.24 (1.02-1.52)	0.034	1.11 (0.63-1.97)	0.722	1.07 (0.77-1.48)	0.692	0.92 (0.60-1.41)	0.695	0.93 (0.65-1.34)	0.693
FANCE	rs2395626	1.00 (0.85-1.19)	0.963	0.98 (0.56-1.72)	0.954	0.74 (0.55-1.00)	0.048	0.98 (0.68-1.42)	0.927	1.06 (0.77-1.45)	0.727
	rs760782	0.96 (0.79-1.15)	0.640	1.04 (0.59-1.85)	0.896	0.83 (0.61-1.14)	0.253	1.02 (0.68-1.52)	0.943	1.07 (0.75-1.50)	0.721
FANCF	rs3740615	1.09 (0.87-1.36)	0.476	0.68 (0.32-1.49)	0.340	0.88 (0.61-1.29)	0.518	1.02 (0.64-1.61)	0.941	0.94 (0.64-1.38)	0.745
	rs4447177	1.11 (0.90-1.36)	0.335	0.93 (0.50-1.73)	0.815	0.98 (0.70-1.37)	0.907	1.16 (0.74-1.83)	0.513	1.36 (0.92-2.00)	0.122
FANCG	rs568300	1.03 (0.83-1.27)	0.823	1.08 (0.59-1.96)	0.813	1.02 (0.72-1.44)	0.930	1.28 (0.78-2.12)	0.332	1.15 (0.76-1.73)	0.504
	rs2258240	0.83 (0.67-1.03)	0.084	1.12 (0.61-2.07)	0.720	1.11 (0.77-1.59)	0.579	0.72 (0.46-1.14)	0.159	0.94 (0.64-1.40)	0.766
	rs1053318	0.90 (0.76-1.08)	0.250	1.27 (0.73-2.21)	0.405	1.11 (0.83-1.49)	0.472	0.94 (0.64-1.37)	0.732	1.06 (0.77-1.46)	0.745
FANCI	rs7168941	0.86 (0.65-1.15)	0.319	1.20 (0.53-2.74)	0.663	1.74 (1.06-2.87)	0.030	1.81 (0.83-3.96)	0.137	1.24 (0.68-2.26)	0.481
	rs8032440	0.84 (0.53-1.33)	0.443	0.06 (0.00-22.82)	0.346	0.37 (0.14-0.98)	0.045	2.32 (0.52-10.46)	0.272	1.52 (0.56-4.11)	0.407
	rs8080599	1.12 (0.89-1.42)	0.331	0.45 (0.16-1.26)	0.128	0.72 (0.48-1.07)	0.101	1.28 (0.76-2.14)	0.354	1.09 (0.72-1.63)	0.687
FANCJ/BRIPI	rs2048718	1.13 (0.97-1.32)	0.121	1.70 (0.93-3.11)	0.088	0.903 (0.68-1.20)	0.481	0.84 (0.58-1.20)	0.334	0.89 (0.66-1.20)	0.442
	rs4988351	1.05 (0.87-1.26)	0.635	1.23 (0.69-2.19)	0.490	0.97 (0.70-1.35)	0.855	1.09 (0.71-1.67)	0.702	0.99 (0.70-1.41)	0.970
	rs9897928	1.13 (0.92-1.40)	0.243	1.28 (0.70-2.33)	0.419	1.05 (0.75-1.46)	0.776	1.07 (0.70-1.65)	0.754	0.89 (0.62-1.27)	0.509
	rs7220740	0.88 (0.74-1.06)	0.186	0.99 (0.51-1.94)	0.987	1.17 (0.86-1.59)	0.317	1.44 (0.97-2.16)	0.074	1.60 (1.14-2.27)	0.007
FANCM	rs8020533	1.08 (0.83-1.41)	0.576	0.62 (0.23-1.66)	0.340	1.24 (0.82-1.88)	0.308	1.02 (0.59-1.79)	0.935	0.93 (0.58-1.50)	0.770
	rs226981	0.98 (0.83-1.16)	0.788	1.66 (0.96-2.85)	0.068	1.09 (0.82-1.45)	0.541	1.15 (0.80-1.66)	0.441	1.27 (0.93-1.72)	0.128
	rs3736772	1.31 (0.98-1.75)	0.066	0.37 (0.09-1.47)	0.159	1.39 (0.89-2.15)	0.146	1.04 (0.57-1.89)	0.912	1.01 (0.60-1.71)	0.962
	rs8058061	0.86 (0.59-1.27)	0.457	0.79 (0.19-3.35)	0.748	0.87 (0.41-1.84)	0.718	1.36 (0.57-3.23)	0.493	2.16 (0.98-4.77)	0.056

Table 1 continued

Gene	SNP	Additive model ${ }^{\text {a }}$		Survival		Nodal Metastasis ${ }^{\text {b }}$		ER positive ${ }^{\text {b }}$		PR positive ${ }^{\text {b }}$	
		OR (95\% CI)*	p-value								
FANCN/PALB1	rs249941	1.07 (0.86-1.33)	0.543	1.04 (0.54-2.00)	0.919	1.18 (0.83-1.66)	0.363	1.14 (0.71-1.84)	0.591	0.96 (0.66-1.41)	0.844
	rs16940342	1.01 (0.81-1.26)	0.940	0.62 (0.29-1.38)	0.239	0.76 (0.52-1.12)	0.169	1.26 (0.76-2.10)	0.371	1.15 (0.77-1.73)	0.498
	rs447529	0.90 (0.68-1.17)	0.418	0.85 (0.35-2.08)	0.724	0.68 (0.42-1.12)	0.129	1.60 (0.82-3.13)	0.165	1.86 (1.06-3.25)	0.030
Genes related to FA family of genes											
ATM	rs228589	1.08 (0.91-1.28)	0.378	0.80 (0.47-1.36)	0.402	0.78 (0.59-1.04)	0.087	1.11 (0.78-1.57)	0.571	1.21 (0.90-1.63)	0.207
	rs189037	1.07 (0.91-1.27)	0.399	0.82 (0.49-1.37)	0.446	0.76 (0.58-1.01)	0.059	1.23 (0.88-1.74)	0.232	1.24 (0.93-1.66)	0.146
	rs625120	1.01 (0.87-1.18)	0.908	1.08 (0.63-1.84)	0.783	0.80 (0.60-1.07)	0.139	1.17 (0.82-1.67)	0.385	1.34 (0.99-1.82)	0.061
	rs228590	1.08 (0.91-1.28)	0.406	1.03 (0.61-1.72)	0.922	0.78 (0.59-1.04)	0.093	1.13 (0.80-1.60)	0.499	1.30 (0.96-1.75)	0.087
	rs228599	1.06 (0.89-1.25)	0.538	1.07 (0.64-1.79)	0.793	0.80 (0.60-1.07)	0.135	1.13 (0.79-1.61)	0.502	1.31 (0.97-1.77)	0.083
	rs599164	1.09 (0.92-1.29)	0.324	1.04 (0.62-1.75)	0.873	0.83 (0.62-1.10)	0.198	1.15 (0.80-1.63)	0.456	1.35 (1.00-1.84)	0.051
	rs637064	1.19 (1.01-1.40)	0.041	1.07 (0.63-1.81)	0.797	0.63 (1.03-1.82)	0.029	1.03 (0.68-1.35)	0.793	1.14 (0.64-1.15)	0.300
	rs647681	1.09 (0.92-1.28)	0.321	1.04 (0.63-1.73)	0.895	0.82 (0.62-1.09)	0.180	1.05 (0.75-1.49)	0.769	1.31 (0.98-1.77)	0.072
	rs1801516	0.95 (0.75-1.20)	0.677	1.19 (0.56-2.52)	0.655	1.08 (0.74-1.59)	0.679	0.75 (0.47-1.21)	0.238	0.87 (0.57-1.33)	0.524
	rs660429	1.08 (0.91-1.28)	0.401	0.97 (0.58-1.62)	0.893	0.77 (0.58-1.02)	0.067	1.14 (0.80-1.61)	0.479	1.31 (0.97-1.76)	0.082
	rs227060	0.96 (0.81-1.14)	0.625	1.02 (0.60-1.74)	0.931	1.07 (0.80-1.42)	0.658	0.90 (0.63-1.30)	0.583	0.82 (0.60-1.12)	0.202
	rs227064	1.05 (0.88-1.24)	0.620	1.00 (0.60-1.68)	0.990	0.78 (0.58-1.05)	0.096	1.12 (0.79-1.60)	0.524	1.31 (0.97-1.78)	0.082
	rs664143	1.07 (0.90-1.27)	0.475	1.07 (0.64-1.78)	0.804	0.79 (0.59-1.06)	0.112	1.14 (0.80-1.63)	0.469	1.33 (0.98-1.81)	0.065
	rs170548	0.94 (0.79-1.11)	0.467	0.92 (0.53-1.61)	0.779	1.06 (0.80-1.42)	0.686	0.92 (0.64-1.32)	0.650	0.84 (0.62-1.15)	0.276
	rs4585	1.05 (0.88-1.25)	0.598	1.08 (0.64-1.84)	0.768	0.75 (0.56-1.01)	0.056	1.12 (0.78-1.60)	0.534	1.34 (0.99-1.82)	0.060
ATR	rs6782400	0.98 (0.82-1.16)	0.783	0.59 (0.32-1.07)	0.080	0.96 (0.72-1.29)	0.793	1.10 (0.74-1.63)	0.633	1.05 (0.76-1.47)	0.761
	rs7636909	1.09 (0.92-1.31)	0.321	1.37 (0.79-2.38)	0.263	0.81 (0.60-1.09)	0.161	0.89 (0.60-1.32)	0.568	0.92 (0.66-1.30)	0.640
	rs12635931	1.00 (0.78-1.29)	0.978	0.40 (0.15-1.23)	0.083	1.10 (0.72-1.66)	0.667	0.81 (0.47-1.38)	0.434	0.90 (0.56-1.44)	0.652
BRCAI	rs799923	0.81 (0.66-0.99)	$\mathbf{0 . 0 4 1}$	0.72 (0.34-1.54)	0.397	1.13 (0.78-1.63)	0.529	1.05 (0.65-1.69)	0.856	1.13 (0.76-1.70)	0.550
	rs16941	1.17 (0.98-1.39)	0.082	1.34 (0.75-2.36)	0.322	1.01 (0.75-1.37)	0.947	0.85 (0.58-1.24)	0.394	0.78 (0.57-1.08)	0.132
	rs8176265	1.12 (0.94-1.32)	0.211	1.45 (0.86-2.46)	0.162	1.02 (0.76-1.37)	0.908	0.81 (0.56-1.17)	0.268	0.74 (0.54-1.02)	0.064
	rs8176318	1.13 (0.96-1.34)	0.153	1.48 (0.87-2.51)	0.146	1.03 (0.77-1.39)	0.838	0.82 (0.57-1.18)	0.280	0.74 (0.54-1.02)	0.063
$H 2 A X$	rs8551	1.05 (0.89-1.24)	0.575	0.73 (0.43-1.23)	0.232	0.93 (0.71-1.23)	0.626	1.17 (0.82-1.68)	0.379	1.24 (0.92-1.69)	0.158
	rs7759	1.02 (0.86-1.21)	0.829	0.92 (0.54-1.58)	0.764	1.09 (0.82-1.44)	0.549	0.99 (0.69-1.42)	0.946	1.11 (0.81-1.52)	0.52
	rs7350	1.00 (0.84-1.18)	0.977	0.95 (0.55-1.63)	0.844	1.06 (0.80-1.40)	0.702	0.87 (0.61-1.24)	0.424	1.01 (0.74-1.37)	0.977
USP1	rs9436223	0.97 (0.81-1.17)	0.771	1.28 (0.71-2.33)	0.411	0.92 (0.68-1.25)	0.596	1.08 (0.72-1.60)	0.716	0.96 (0.69-1.34)	0.820
	rs583609	0.99 (0.82-1.19)	0.876	1.21 (0.67-2.19)	0.519	0.94 (0.69-1.27)	0.675	1.10 (0.74-1.64)	0.645	0.96 (0.69-1.35)	0.825

[^1]*OR odds ratio estimated under additive model, $C I$ confidence interval. Statistically significant results $(p<0.05)$ indicated in bold
association among genotypes and tumor characteristics was detected.

In summary, we have completed the study of the whole FA pathway and some associated genes as LPG. In addition to our FANCD2 BC susceptibility gene description, we have found a trend of association with BC for noncoding SNPs in the already well-described BC high risk genes BRCAI, BRCA2/FANCD1 and ATM. On the other hand, although we recognize that there is potential for misclassification of phenotypic characteristics due to the subjective nature of the phenotypic attributes considered and the limited sample size, we have found an encrypted association with disease in genes $F A N C-C,-I,-J,-N, A T M$ and BRCA2/FANCD1. Replication in new independent series for both association studies and phenotypic characteristics are necessary before to confirm or rule out these preliminary results.

Acknowledgments This study was supported by grants FANCOGEN (Genoma España); BFI2003-03852 and SAF2007-65542-C0201 from the Ministerio de Educación y Ciencia (MEC) and Fundación Mútua Madrileña, Spain (GR). EB is funded by the Comunidad Autónoma de Madrid. We would like to thank Santiago Palacios (Instituto Palacios, Madrid) for the access to samples of cases and controls. We would also like to thank Fátima Mercadillo, Alicia Barroso, Victoria Fernández and Rocío Letón for their expert technical skills.

Conflict of interest statement None declared.

References

1. Miki Y, Swensen J, Shattuck-Eidens D et al (1994) A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266:66-71
2. Wooster R, Bignell G, Lancaster J et al (1995) Identification of the breast cancer susceptibility gene BRCA2. Nature 378:789792
3. Stewart G, Elledge SJ (2002) The two faces of BRCA2, a FANCtastic discovery. Mol Cell 10:2-4
4. Thorstenson YR, Roxas A, Kroiss R et al (2003) Contributions of ATM mutations to familial breast and ovarian cancer. Cancer Res 63:3325-3333
5. Seal S, Thompson D, Renwick A et al (2006) Truncating mutations in the Fanconi anemia J gene BRIP1 are low-penetrance breast cancer susceptibility alleles. Nat Genet 38:1239-1241
6. Rahman N, Seal S, Thompson D et al (2007) PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene. Nat Genet 39:165-167
7. Liang F, Han M, Romanienko PJ, Jasin M (1998) Homologydirected repair is a major double-strand break repair pathway in mammalian cells. Proc Natl Acad Sci USA 95:5172-5177
8. Moynahan ME, Chiu JW, Koller BH, Jasin M (1999) Brca1 controls homology-directed DNA repair. Mol Cell 4:511-518
9. Moynahan ME, Pierce AJ, Jasin M (2001) BRCA2 is required for homology-directed repair of chromosomal breaks. Mol Cell 7:263-272
10. Wang X, D'Andrea AD (2004) The interplay of Fanconi anemia proteins in the DNA damage response. DNA Repair (Amst) 3:1063-1069
11. Thompson E, Dragovic RL, Stephenson SA et al (2005) A novel duplication polymorphism in the FANCA promoter and its association with breast and ovarian cancer. BMC Cancer 5:43
12. Fei P, Yin J, Wang W (2005) New advances in the DNA damage response network of Fanconi anemia and BRCA proteins. FAAP95 replaces BRCA2 as the true FANCB protein. Cell Cycle 4(8):80-86
13. Kitao H, Yamamoto K, Matsushita N et al (2006) Functional interplay between BRCA2/FancD1 and FancC in DNA repair. J Biol Chem 281:21312-21320
14. Howlett NG, Taniguchi T, Olson S et al (2002) Biallelic inactivation of BRCA2 in Fanconi anemia. Science 297:606-609
15. Hussain S, Wilson JB, Medhurst AL et al (2004) Direct interaction of FANCD2 with BRCA2 in DNA damage response pathways. Hum Mol Genet 13:1241-1248
16. Gordon SM, Alon N, Buchwald M (2005) FANCC, FANCE, and FANCD2 form a ternary complex essential to the integrity of the Fanconi anemia DNA damage response pathway. J Biol Chem 280:36118-36125
17. Wang Z, Li M, Lu S, Zhang Y, Wang H (2006) Promoter hypermethylation of FANCF plays an important role in the occurrence of ovarian cancer through disrupting Fanconi anemiaBRCA pathway. Cancer Biol Ther 5:256-260
18. Hussain S, Witt E, Huber PA et al (2003) Direct interaction of the Fanconi anaemia protein FANCG with BRCA2/FANCD1. Hum Mol Genet 12:2503-2510
19. Sims AE, Spiteri E, Sims RJ et al (2007) FANCI is a second monoubiquitinated member of the Fanconi anemia pathway. Nat Struct Mol Biol 14:564-567
20. Litman R, Peng M, Jin Z et al (2005) BACH1 is critical for homologous recombination and appears to be the Fanconi anemia gene product FANCJ. Cancer Cell 8:255-265
21. Meetei AR, Yan Z, Wang W (2004) FANCL replaces BRCA1 as the likely ubiquitin ligase responsible for FANCD2 monoubiquitination. Cell Cycle 3:179-181
22. Meetei AR, Medhurst AL, Ling C et al (2005) A human ortholog of archaeal DNA repair protein Hef is defective in Fanconi anemia complementation group M. Nat Genet 37:958-963
23. Tischkowitz M, Xia B, Sabbaghian N et al (2007) Analysis of PALB2/FANCN-associated breast cancer families. Proc Natl Acad Sci USA 104:6788-6793
24. Wang W (2007) Emergence of a DNA-damage response network consisting of Fanconi anaemia and BRCA proteins. Nat Rev Genet 8:735-748
25. Garcia MJ, Benitez J (2008) The Fanconi anaemia/BRCA pathway and cancer susceptibility. Searching for new therapeutic targets. Clin Transl Oncol 10:78-84
26. Jacquemont C, Taniguchi T (2007) The Fanconi anemia pathway and ubiquitin. BMC Biochem 8(Suppl 1):S10
27. Gatei M, Zhou BB, Hobson K et al (2001) Ataxia telangiectasia mutated (ATM) kinase and ATM and Rad3 related kinase mediate phosphorylation of Brcal at distinct and overlapping sites. In vivo assessment using phospho-specific antibodies. J Biol Chem 276:17276-17280
28. Yu YM, Pace SM, Allen SR, Deng CX, Hsu LC (2008) A PP1binding motif present in BRCA1 plays a role in its DNA repair function. Int J Biol Sci 4:352-361
29. Lyakhovich A, Surralles J (2007) New roads to FA/BRCA pathway: H2AX. Cell Cycle 6:1019-1023
30. Nijman SM, Huang TT, Dirac AM et al (2005) The deubiquitinating enzyme USP1 regulates the Fanconi anemia pathway. Mol Cell 17:331-339
31. Barroso E, Milne RL, Fernandez LP et al (2006) FANCD2 associated with sporadic breast cancer risk. Carcinogenesis 27:1930-1937
32. Freedman ML, Penney KL, Stram DO et al (2004) Common variation in BRCA2 and breast cancer risk: a haplotype-based analysis in the Multiethnic Cohort. Hum Mol Genet 13:24312441
33. Palacios J, Robles-Frias MJ, Castilla MA, Lopez-Garcia MA, Benitez J (2008) The molecular pathology of hereditary breast cancer. Pathobiology 75:85-94
34. Baynes C, Healey CS, Pooley KA et al (2007) Common variants in the ATM, BRCA1, BRCA2, CHEK2 and TP53 cancer susceptibility genes are unlikely to increase breast cancer risk. Breast Cancer Res 9:R27
35. Narayan G, Arias-Pulido H, Nandula SV et al (2004) Promoter hypermethylation of FANCF: disruption of Fanconi AnemiaBRCA pathway in cervical cancer. Cancer Res 64:2994-2997
36. van der Heijden MS, Yeo CJ, Hruban RH, Kern SE (2003) Fanconi anemia gene mutations in young-onset pancreatic cancer. Cancer Res 63:2585-2588
37. Berwick M, Satagopan JM, Ben-Porat L et al (2007) Genetic heterogeneity among Fanconi anemia heterozygotes and risk of cancer. Cancer Res 67:9591-9596
38. Tischkowitz M, Easton DF, Ball J, Hodgson SV, Mathew CG (2008) Cancer incidence in relatives of British Fanconi Anaemia patients. BMC Cancer 8:257
39. Sorlie T, Tibshirani R, Parker J et al (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 100:8418-8423
40. Garcia-Closas M, Hall P, Nevanlinna H et al (2008) Heterogeneity of breast cancer associations with five susceptibility loci by clinical and pathological characteristics. PLoS Genet 4:e1000054
41. Mavaddat N, Dunning AM, Ponder BA, Easton DF, Pharoah PD (2009) Common genetic variation in candidate genes and susceptibility to subtypes of breast cancer. Cancer Epidemiol Biomarkers Prev 18:255-259

[^0]: E. Barroso • J. Benitez • G. Ribas

 Human Genetics Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
 G. Ribas (\triangle)

 Human Genetics Group, Human Cancer Genetics Department, Centro Nacional de Investigaciones Oncológicas (CNIO), C/Melchor Fernandez Almagro, 3, 28029 Madrid, Spain e-mail: gribas@cnio.es
 G. Pita • J. Benitez

 National Genotyping Centre (CeGen), Human Cancer Genetics Programme, CNIO, Madrid, Spain
 J. I. Arias

 Service of Surgery, Monte Naranco Hospital, Oviedo, Spain
 P. Menendez

 Department of Pathology, Monte Naranco Hospital, Oviedo, Spain
 P. Zamora • M. Blanco

 Department of Oncology, La Paz Hospital, Madrid, Spain

[^1]: ${ }^{\text {a }}$ Nonadjusted additive model of genotype analysis
 ${ }^{\mathrm{b}}$ Cases only considered

