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Abstract Pooling of microarray datasets seems to be a

reasonable approach to increase sample size when a het-

erogeneous disease like breast cancer is concerned. Dif-

ferent methods for the adaption of datasets have been used

in the literature. We have analyzed influences of these

strategies using a pool of 3,030 Affymetrix U133A

microarrays from breast cancer samples. We present data

on the resulting concordance with biochemical assays of

well known parameters and highlight critical pitfalls. We

further propose a method for the inference of cutoff values

directly from the data without prior knowledge of the true

result. The cutoffs derived by this method displayed high

specificity and sensitivity. Markers with a bimodal distri-

bution like ER, PgR, and HER2 discriminate different

biological subtypes of disease with distinct clinical courses.

In contrast, markers displaying a continuous distribution

like proliferation markers as Ki67 rather describe the

composition of the mixture of cells in the tumor.

Keywords Breast cancer � Microarray � Cutoff �
Distribution � Pooling � Meta-analysis � Bimodal markers

Introduction

Breast cancer is a heterogeneous disease of many different

subtypes. This is one of the reasons that large cohorts of

hundreds to thousands of patients are often needed to ana-

lyze treatment effects and the prognosis of specific sub-

groups [1–3]. In contrast, microarray datasets encompass

only tens to hundreds of samples because of the expenditure

and complexity of these analyses compared to standard

parameters like age, tumor size, or hormone receptor status.

Thus pooling of microarray datasets or meta analyses are

required to enlarge samples size [4]. In the majority of cases

an adaption of the raw values is necessary before pooling

different datasets. To this end common methods like scaling

by Z-transformation [5] or magnitude normalization [6]

have been applied. In some studies normalization across

genes has also been performed [7]. Here we analyze influ-

ences of these methods on the resulting concordance with

data from biochemical assays. A previous report already

demonstrated that estrogen receptor (ER) and human epi-

dermal growth factor receptor 2 (HER2) status can be

deduced from Affymetrix microarray data with high confi-

dence [8]. However, in this former study specific cutoff

values were derived and optimized by comparison with

immunohistochemistry as the gold standard. In contrast, in

the present study we aimed to derive the cutoff values

directly from the data without prior knowledge of the bio-

chemical status of the samples. Finally we compared the

results for bimodal and continuous markers with respect to

their biological impact on disease. Our results demonstrate

that reliable cutoffs can be derived from the distribution of
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expression values in a pooled dataset of individually nor-

malized microarrays. These cutoffs led to exceptionally high

concordance with biochemical data for bimodal markers like

the ER. Clinical follow up data demonstrate that they cor-

rectly identify distinct subtypes of the disease.

Materials and methods

We combined a database of n = 3,030 Affymetrix HG-

U133A microarrays from treatment-naı̈ve primary breast

cancer samples (Table 1). We included 238 of our own

samples (datasets Frankfurt, Frankfurt-2, and Frankfurt-3)

which have been described previously (Ahr et al. 2002 [9],

Rody et al. 2007 [10], Rody et al. 2008 [11], Ruckhäberle

et al. 2008 [12], and Rody et al. 2007 [13], respectively) as

well as 2792 samples from 22 different publicly available

datasets (Table 1): Rotterdam [14–16], Mainz [17], Trans-

BIG [18], Oxford-Untreated [19], London [20], London-2

[21], Oxford-Tamoxifen, Veridex-Tam [22], Stockholm

[23], Uppsala [24, 25], San Francisco [26], New York [27],

MDA133 [28], EORTC [29], Edinburgh [30], ExpO [31],

Signapore [32], Genentech [33], Boston [34], Berlin [35],

Paris [36], and Tampa [37]. For comparability, only the

ProbeSets from the Affymetrix HG-U133A microarray were

used from seven datasets where HG-U133? microarrays

were applied. The clinical characteristics of the patients in

the different datasets are given in Table 1.

Affymetrix expression data were analyzed by using

the MAS5.0 [38] algorithm of the affy package [39] of the

Bioconductor software project [40] (http://www.bio

conductor.org/). Subsequently data were log2 transformed

and median centered across arrays. Further scaling was

performed in two different ways: In the first method the

expression values of all the genes on the array were multi-

plied by a scale factor S so that the magnitude (sum of the

squares of the values) equals 1 (we refer to these data as

‘‘magnitude-normalized’’). This method is similar to scaling

by Z score transformation but the latter uses mean-centering

instead of the more robust median-centering. In addition the

applied magnitude-normalization is sensitive to the total

feature size but this does not have an effect as long as the

same number of ProbeSets is used for all samples. In a

second approach, mean-centering and magnitude-nomal-

ization were first applied across arrays and subsequently also

across genes in each individual dataset. To these data we

refer here as ‘‘gene-normalized’’.

ER status as determined by immunohistochemistry

(IHC) or biochemical assay was available for 2,198 sam-

ples from 18 of the 25 datasets (see Supplementary Table

S1). We further refer to this parameter as ‘‘biochemical ER

status’’ in this manuscript. Data on PgR status were

available for 1,474 patients from 13 of the 25 datasets and

HER2 status was available for only 618 patients from 8 of

the 25 datasets (Supplementary Table S1). Supplementary

Table S1 also gives further information on the specific

methods and cutoffs used in the different studies for the

definition of the ER, PgR and HER2 status. Nine different

ProbeSets of the ER (ESR1) gene are present on the Af-

fymetrix U133A array. ProbeSet 205225_at was selected

for most analyses because of its highest concordance with

the biochemical ER status (see Results). The progesterone

receptor (PgR) is represented by only one ProbeSet

(208305_at). From the two ProbeSets for HER2 which are

present on the U133A array ProbeSet 216836_s_at

was used (see Results). Regarding Ki67, four different

ProbeSets exist on the U133A array (212020_s_at to

212023_s_at). However, there is no established cutoff for

Ki67 IHC [41, 42] and a gold standard is missing. In

addition all four ProbeSets display similar strong correla-

tions to each other. Thus, we used the mean of the mag-

nitude-normalized data of all four ProbeSets in subsequent

analyses. Cutoffs for ER, PgR and HER2 expression from

microarray were derived from fitting two normal distribu-

tions to the observed distribution of Affymetrix expression

values by maximum likelihood optimization using the op-

tim function in R as described by Venables and Ripley [43].

Follow up data were available for 2,058 of the samples

(11 datasets without follow up, see Table 1). Survival

intervals were measured from the time of surgery. For

nine datasets relapse free survival (RFS) was used as an

endpoint (n = 1,180) while for five dataset only distant

metastasis free survival (DMFS) was available (n = 879).

Thus any local recurrence events are missing from these

five datasets. However, the effect of using these different

endpoints was rather small in the overall dataset. Sup-

plementary Figure S1 shows that no significant difference

in relative survival was found when comparing the 879

samples where only the DMFS endpoint was available to

the 1,180 samples using the RFS endpoint. Thus we used

in the context of this study either the RFS endpoint as

disease free survival (DFS) or the DMFS endpoint if RFS

was not available. Data for women in whom the envisaged

end point was not reached were censored as of the last

follow-up date or at 120 months. We constructed Kaplan–

Meier curves and used the log rank test to determine the

univariate significance of the variables. A Cox propor-

tional-hazards regression model was used to examine

simultaneously the effects of multiple covariates on sur-

vival. The effect of each variable was assessed with the

use of the Wald test and described by the hazard ratio,

with a 95% confidence interval. Subjects with missing

values were excluded from the analyses and all reported P

values are two sided. P values of less than 0.05 were

considered to indicate a significant result. All analyses

were performed using the R software environment
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(http://www.r-project.org/) and SPSS version 17.0 (SPSS

Inc., Chicago, IL).

Results

Concordance of different Affymetrix ProbeSets

with biochemical data of ER, PgR, and HER2 status

In a first approach, arrays from different datasets were

adapted using magnitude normalization (see methods) and

the concordance with biochemical data for ER, PgR, and

HER2 status was assessed. For 2,198 of 3,030 total samples

(72.5%), data on the estrogen receptor (ER) status from

immunohistochemistry (IHC) or biochemical assay were

available. Of these, 1,635 (74.4%) were characterized as

ER positive and 563 (25.6%) as ER negative. We used

receiver operating characteristics (ROC) analysis to dem-

onstrate the correlation of magnitude normalized data of

different ProbeSets from the Affymetrix HG-U133A

microarray with the biochemical ER status (Supplementary

Figure S2). The area under curve (AUC) of the ROC

analysis provides a quantitative value of the concordance

with the biochemical data. The Affymetrix ProbeSet

205225_at displayed the highest concordance with an AUC

of 0.949 (95% CI 0.938-0.960). This confirms the results of

Gong et al. [8], who obtained the strongest correlation of

this ProbeSet with ER status by IHC in their training set of

193 samples.

For 1,474 of 3,030 samples (48.6%), data on the pro-

gesterone receptor (PgR) status from immunohistochem-

istry (IHC) or biochemical assays were available. Among

these, about 858 (58.2%) of them were characterized as

PgR positive and 616 (41.8%) as PR negative. ROC

analysis of the single ProbeSet (208305_at) for PgR on the

HG-U133A array resulted in an AUC of 0.786 (95% CI

0.763–0.809; Supplementary Figure S3A).

The HER2 status of the tumor was available for 618 of

the 3,030 samples (20.4%). 139 (22.5%) of them were

characterized as HER2 positive (3? IHC or FISH positive)

and 479 (77.5%) as HER2 negative. Affymetrix ProbeSet

216836_s_at revealed a slightly better result in ROC

analysis with an AUC of 0.856 (95% CI 0.814–0.897;

Supplementary Figure S3B) than ProbeSet 210930_s_at

(AUC 0.799; 95% CI 0.752–0.846). The superiority of this

ProbeSet for HER2 status was also demonstrated previ-

ously by Gong and coworkers [8].

Derivation of a cutoff value for the ER status

from the distribution of ER microarray data

We selected the ER Affymetrix ProbeSet 205225_at which

worked best in ROC analysis for further study. Figure 1a

presents the distribution of the expression values for this

ProbeSet separately in ER positive and ER negative sam-

ples as defined by IHC/biochemical assay. In Fig. 1b we

analyzed the combined distribution of the expression val-

ues among all 3,030 samples from the combined datasets.

A mixture of two normal distributions was fitted to these

data as demonstrated by the blue and red lines in Fig. 1b.

Subsequently, the interception of the two fitted distribu-

tions was selected as a cutoff value (0.0075) for the defi-

nition of ER positive samples based on microarray. This

cutoff resulted in a specificity of 86.7% and a sensitivity of

93.3% when compared with the biochemical ER status

available for 2,198 of the samples (Table 2). The positive

predictive value (PPV) was 95.3%, the negative predictive

value (NPV) 81.7% and the overall accuracy 91.6%.

Among the individual datasets the specificities ranged from

66.7 to 100%, sensitivities from 80.0 to 100%, the PPVs

from 76.7 to 100%, and the NPVs from 55.6 to 100% (see

Table 2).

We also performed the fitting on the distribution of ER

expression values separately in each individual dataset.
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Fig. 1 Distribution of ER

expression values in the

combined dataset. a Distribution

of ER expression values

(ProbeSet 205225_at) stratified

by biochemical ER status in

those 2198 sample with data

from immunohistochemistry/

biochemical assay.

b Distribution of ER expression

values (ProbeSet 205225_at)

among all 3,030 samples
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This procedure yielded only slightly different cutoff values

(range 0.0018–0.0101, Table 2 and Supplementary Figure S4).

When these dataset specific cutoffs were used, a somewhat

lower overall specificity of 84.0% and identical sensitivity

of 93.4% was obtained (Table 2). Thus the differences

between the individual datasets are small and the simul-

taneous use of all samples seems to improve the fitting to

the distribution.

Derivation of cutoff values for PgR

and HER2 microarray data

The same method of fitting two normal distributions to the

expression data of the combined sample cohort was applied

to identify cutoff values for the expression of the proges-

terone receptor gene (PgR, ProbeSet 208305_at) and HER2

(ProbeSet 216836_s_at). The corresponding graphs are

given in Fig. 2a, b, respectively. The resulting cutoff

(-0.0078) from Fig. 2a for PgR expression corresponded

to an overall accuracy of 71.8%, a specificity of 67.4% and

a sensitivity of 74.9%. The positive predictive value (PPV)

was 76.2% and the negative predictive value (NPV) 65.9%.

Again, as shown in Table 3 fitting separately each dataset

Supplementary Figure S5) resulted in similar cutoffs (range

-0.0099 to -0.0047) and an identical overall accuracy.

The HER2 cutoff (0.0135) from Fig. 2b led to an accuracy

of 89.2%, a specificity of 97.9% but a rather low sensitivity

of 59.0% when compared to HER2 status based on ‘‘3?’’

staining in immunohistochemistry or FISH ratio [2.0

(Table 4). The PPV was 89.1% and the NPV 89.2%.

Similar cutoffs (range 0.0119–0.0146) were obtained when

datasets were fitted separately (Supplementary Figure S6).

In contrast, using either cutoff values the sensitivity for

HER2 detection differed markedly between datasets (range

32–100%, Table 4).

Influence of gene normalization on different cohorts

Some analyses of microarray datasets have used ‘‘gene

normalization’’ to bring the data to a uniform scale. By this

method the expression values of each gene are adjusted

across all samples of the respective cohort. We analyzed

the effect of this transformation on the distribution of ER

expression values in the individual datasets. After ‘‘gene

Table 2 Concordance of ER status based on microarray and biochemical data

Dataset ER detection

methoda
General cutoff (0.0075) Dataset specific cutoff (%)

Sensitiv.

(%)

Specific.

(%)

PPV

(%)

NPV

(%)

Accuracy

(%)

Sensitiv.

(%)

Specific.

(%)

PPV

(%)

NPV

(%)

Accuracy

(%)

Cutoff

Rotterdam LBA, EIA, IHC 89.0 83.7 89.4 83.1 86.9 90.0 83.0 89.1 84.2 87.2 0.0072

TransBIG IHC 90.3 82.8 91.7 80.3 87.9 92.5 78.1 89.9 83.3 87.9 0.0051

Oxford-

untreated

Not given 100.0 66.7 76.7 100.0 84.1 100.0 40.0 64.7 100.0 71.4 0.0034

London Not given 97.7 n.a. 100.0 n.a. 97.7 97.7 n.a. 100.0 n.a. 97.7 0.0082

London-2 Not given 94.8 n.a. 100.0 n.a. 94.8 89.6 n.a. 100.0 n.a. 89.6 0.0101

Oxford-

Tamoxifen

Not given 97.2 n.a. 100.0 n.a. 97.2 100.0 n.a. 100.0 n.a. 100.0 0.0018

Veridex-Tam IHC, LBA 99.3 n.a. 100.0 n.a. 99.3 99.3 n.a. 100.0 n.a. 99.3 0.0031

Frankfurt-3 IHC 91.8 n.a. 97.8 n.a. 90.0 98.0 n.a. 98.0 n.a. 96.0 0.0040

Uppsala EIA 88.8 88.2 97.9 55.6 88.8 84.7 88.2 97.8 47.6 85.1 0.0092

San Francisco Not given 94.7 81.4 89.9 89.7 89.8 96.0 79.1 88.9 91.9 89.8 0.0064

New York Not given 94.7 95.2 96.4 93.0 94.9 94.7 92.9 94.7 92.9 93.9 0.0066

Frankfurt IHC 94.4 90.5 94.4 90.5 93.0 97.2 88.1 93.3 94.9 93.9 0.0056

Frankfurt-2 IHC 89.7 88.5 92.1 85.2 89.2 89.7 88.5 92.1 85.2 89.2 0.0064

MDA133 IHC 93.9 92.2 95.1 90.4 93.2 96.3 92.2 95.2 94.0 94.7 0.0072

EORTC IHC 96.4 100.0 100.0 95.2 97.9 96.4 95.0 96.4 95.0 95.8 0.0067

Edinburgh IHC 99.1 n.a. 100.0 n.a. 99.1 100.0 n.a. 100.0 n.a. 100.0 0.0061

expO Not given 90.2 88.2 93.9 81.8 89.5 88.2 90.2 94.7 79.3 88.9 0.0080

Boston Not given 80.0 100.0 100.0 88.9 92.3 73.3 100.0 100.0 85.7 89.7 0.0093

All combined 93.3 86.7 95.3 81.7 91.6 93.4 84.0 94.4 81.4 91.0 0.0075

a LBA ligand binding assay (C10 fmol/mg), EIA enzyme immunoassay ([0.05 fmol/lg DNA), IHC immunohistochemistry (C10% positive

tumor cells)

n.a. not applicable (if all samples were ER positive by the biochemical method)
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normalization’’ has been performed it was still possible to

derive cutoff values from the mixed distribution as

described above. However, the specific cutoffs are different

for each individual dataset after ‘‘gene normalization’’

since they depend on the proportions of ER positive and

ER negative samples in the specific dataset. We analyzed

the impact of this effect by deliberately subdividing the

dataset Frankfurt in two subgroups containing either only

the ER positive or the ER negative samples. Supplementary

Figure S7 demonstrates the influence of gene normalization

on the full cohort (Supplementary Figure S7A) and the two

subcohorts (Supplementary Figure S7B, C). ‘‘Gene nor-

malization’’ leads to a broadening of the distribution of

expression values in the ER positive and the ER negative

subsets as compared to the full cohort (Supplementary

Figure S7). Importantly, the derivation of a cutoff from

such gene normalized data by fitting two distributions was

only possible when at least some ER negative samples

were enclosed in the ER positive cohort and vice versa.

Plausibility of the derived cutoffs through analysis

of patients’ prognosis

ER positive and ER negative breast cancers are generally

assumed as separate types of disease with a different clinical

course [44–46]. We reasoned that a correct classification

according to ER status should result in patient subgroups

with a distinct prognosis while further subdivision
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Table 3 Concordance of PgR status based on microarray and biochemical data

Dataset PgR detection

method

General cutoff (-0.0078) Dataset specific cutoff

Sensitiv.

(%)

Specific.

(%)

PPV

(%)

NPV

(%)

Accuracy

(%)

Sensitiv.

(%)

Specific.

(%)

PPV

(%)

NPV

(%)

Accuracy

(%)

Cutoff

Rotterdam LBA, EIA 68.3 80.4 86.2 58.7 72.7 68.3 80.4 86.2 58.7 72.7 -0.0075

London Not given 82.8 42.9 81.5 45.0 72.9 82.8 42.9 81.5 45.0 72.9 -0.0088

London-2 Not given 94.9 66.7 90.3 80.0 88.3 89.8 77.8 93.0 70.0 87.0 -0.0064

Frankfurt-3 IHC 80.8 50.0 67.7 66.7 67.4 80.8 45.0 65.6 64.3 65.2 -0.0095

Uppsala EIA 68.4 73.8 89.0 42.9 69.7 68.9 73.8 89.1 43.3 70.1 -0.0084

San Francisco Not given 75.8 72.5 78.1 69.8 74.4 78.8 66.7 75.4 70.8 73.5 -0.0099

New York Not given 67.4 90.9 85.3 78.1 80.6 67.4 90.9 85.3 78.1 80.6 -0.0069

Frankfurt IHC 77.4 64.4 66.1 76.0 70.5 77.4 69.5 69.5 77.4 73.2 -0.0064

Frankfurt-2 IHC 72.4 77.8 72.4 77.8 75.4 72.4 77.8 72.4 77.8 75.4 -0.0081

MDA133 IHC 72.7 68.0 62.5 77.3 70.0 72.7 66.7 61.5 76.9 69.2 -0.0079

EORTC IHC 66.7 93.1 85.7 81.8 83.0 61.1 93.1 84.6 79.4 80.9 -0.0054

expO Not given 91.0 19.2 54.6 66.7 56.3 91.0 19.2 54.6 66.7 56.3 -0.0076

Boston Not given 53.8 76.9 53.8 76.9 69.2 30.8 92.3 66.7 72.7 71.8 -0.0047

Combined 74.9 67.4 76.2 65.9 71.8 74.5 68.0 76.4 65.7 71.8 -0.0078

LBA ligand binding assay (C10 fmol/mg), EIA enzyme immunoassay ([0.05 fmol/lg DNA), IHC immunohistochemistry (C10% positive tumor

cells)
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according to the level of ER expression should have no

significant effect on survival. Thus we stratified both the

microarray-derived ER positive and ER negative subgroups

in four quartiles each according to ER expression (Probe-

Set 205225_at). Follow up data were available for 2,058 of

the samples. Figure 3 presents the results from Kaplan

Meier analyses of disease free survival of the patients in the

eight resulting subgroups. Patients in the ER negative

subgroup as defined by the distribution-derived cutoff had a

high risk for a relapse especially in the first three to five

years. Survival in the ER positive subgroup is significantly

better but steadily declining even after five to ten years

(P = 0.001). These differences between ER negative and

ER positive cancer types has been repeatedly described

previously [44, 45]. In contrast we observed no significant

differences in survival among each subtype when the

patients were further substratified according to ER

expression.

Next we analyzed the impact of the combined stratifi-

cation according to both ER and PgR determined by either

biochemical methods (Fig. 4a) or microarray (Fig. 4b) on

the prognosis of the 1,085 patients for which the bio-

chemical data as well as follow up information were

available. The obtained results were similar and detailed

results for single markers are also presented in Supple-

mentary Figure S8. Microarray data resulted in a higher

portion (4%) of ER negative PgR positive tumors than

biochemical methods (1%) which might represent false

positive PgR results (see Supplementary Figure S10 and

the section Discussion). Figure 4c–e present the results of

Kaplan–Meier analyses in which all 2,058 patients with

available follow up data were included using the distribu-

tion derived cutoffs described above. Results for ER and

PgR (Fig. 4c) were comparable to those of the smaller

subset in Fig. 4b. HER2 positive patients had a worse

prognosis in the complete cohort (Fig. 4d). As shown in

Fig. 4e, the largest impact of HER2 expression was

observed in the ER positive subgroup. To analyze the

relative impact of the three variables (ER, PgR, and HER2)

on the prognosis of patients simultaneously we performed

univariate and multivariate Cox regression analysis as

presented in Supplementary Table 2. While all three

markers were highly significant in univariate analysis, only

Table 4 Concordance of HER2 status based on microarray and biochemical data

Dataset IHC/FISH

HER2

available

HER2

positivea

(%)

General cutoff (0.0135) Dataset specific cutoff

Sensitiv.

(%)

Specific.

(%)

PPV

(%)

NPV

(%)

Accuracy

(%)

Sensitiv.

(%)

Specific.

(%)

PPV

(%)

NPV

(%)

Accuracy

(%)

Cutoff

Frankfurt-3 19 2 (11%) 0.0 94.1 0.0 88.9 84.2 0.0 94.1 0.0 88.9 84.2 0.0163

San

Francisco

79 8 (10%) 100.0 98.6 88.9 100.0 98.7 100.0 98.6 88.9 100.0 98.7 0.0119

New York 88 9 (10%) 77.8 94.9 63.6 97.4 93.2 77.8 94.9 63.6 97.4 93.2 0.0151

Frankfurt 65 22 (34%) 59.1 95.3 86.7 82.0 83.1 50.0 97.7 91.7 79.2 81.5 0.0146

Frankfurt-2 57 20 (35%) 35.0 97.3 87.5 73.5 75.4 35.0 97.3 87.5 73.5 75.4 0.0145

MDA133 132 33 (25%) 81.8 99.0 96.4 94.2 94.7 75.8 99.0 96.2 92.5 93.2 0.0144

expO 141 37 (26%) 35.1 100.0 100.0 81.3 83.0 32.4 100.0 100.0 80.6 82.3 0.0141

Boston 37 8 (22%) 87.5 100.0 100.0 96.7 97.3 87.5 100.0 100.0 96.7 97.3 0.0155

Combined 618 139 (22%) 59.0 97.9 89.1 89.2 89.2 55.4 98.1 89.5 88.3 88.5 0.0135

a IHC 3? OR FISH [ 2.0 if method given, see Supplementary Table S1
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Fig. 3 Different prognosis of patients supports plausibility of the

derived cutoff for ER expression. Samples were defined as ER

positive and ER negative based on microarray. The two subgroups of

patients were further stratified into quartiles based on the expression

values of ER. Kaplan Meier analysis of disease free survival of 2,058

samples with follow up data is presented for the resulting eight

subgroups. While ER positive and negative subtypes clearly differ in

survival (P = 0.001) no correlation of the prognosis with the relative

expression of ER within the subgroups of ER positive and ER

negative tumors is detectable
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PgR remained significant with a hazard ratio of 1.48 (95%

CI 1.23–1.78, P \ 0.001, Supplementary Table 2). For a

subset of 1,589 of the patients in the analyzed cohorts

information on endocrine treatment was available. As

shown in Fig. 5, the worse prognosis of PgR negative

tumors was observed among both 661 endocrine treated

and 928 untreated samples (results were similar for the

subset of 722 patients with biochemical status data; Sup-

plementary Figure S9).

Analysis of continuous markers

The markers analyzed so far demonstrated bimodal distri-

butions. Both for ER and PgR as well as HER2, we

observed two clearly different subgroups of samples in the

cohorts. These results are in line with the widely accepted

concept that these subgroups characterize biologically

distinct subtypes of breast cancer [47, 48]. In contrast Ki67

as well as other proliferation markers represent a different
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Fig. 4 Disease free survival of

patients according to

stratifications using the derived

cutoff values. a, b Samples with

available biochemical status of

ER and PgR (n = 1,085) were

stratified according to either the

biochemical status (a) or the

microarray derived status (b).

Disease free survival of the

respective subgroups according

to Kaplan–Meier analysis is

presented. Detailed individual

comparisons are given in

Supplementary Figure S8. c–e
All samples with available

follow up information

(n = 2,058) were stratified

according to microarray derived

status for ER and PgR (c),

HER2 status (d), as well as

HER2 and ER status (e)
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type of parameter. The observed distribution of Ki67

expression among the samples is not bimodal but rather

continuous as shown in Fig. 6a. Thus the approach used

above for bimodal distributions does not seem to be

appropriate for Ki67. The continuous distribution of Ki67

expression might suggest that in contrast to the ER status

those tumors with high and low Ki67 expression values,

respectively, does not represent distinct types of disease.

The level of Ki67 expression could rather be a surrogate

marker for the proportion of Ki67 expressing cells in the

tumor sample and display a quantitative correlation with

prognosis. Consequently a multiple substratification

according to Ki67 expression should result in multiple

groups with a different clinical prognosis contrary to the

results obtained for the ER above in Fig. 3. As shown in

Fig. 6b, ER negative breast cancers are generally charac-

terized by high expression of Ki67 while the influence of

the HER2 status on the distribution of Ki67 expression

values was not so profound as demonstrated in Fig. 6c.

Thus to avoid a confounding effect ER positive tumors

need to be analyzed separately from ER negative tumors.

We therefore performed a quartile split according to Ki67

expression in the ER positive cohort. As shown in Fig. 7,

Kaplan Meier analysis of the four groups of ER positive

tumors suggests that the higher the level of Ki67 the worse

the prognosis of the patients.

Discussion

In this study we used a data driven model for the definition

of cutoffs without a priori information on the true result

(e.g., the biochemical ER status). We derived the cutoff by

fitting a mixture of two normal distributions to the data as

the simplest approach. Obviously this simple model does

not need to be correct or even a good model at all.
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However, we used this straight approach to avoid overfit-

ting of the data. In contrast to previous studies [8] no

external gold standard is necessary to derive a cutoff by

this method. Nevertheless, the derived cutoffs for ER, PgR

and HER2 showed high concordance with results from

biochemical methods despite, e.g., widespread concerns of

the inaccuracy of immunohistochemistry [49, 50]. The

comparability of array normalized data from 25 different

datasets was good leading to similar cutoffs. When indi-

vidual datasets were used as ‘‘training’’ set similar accu-

racies were obtained in the resulting validation sets

(Supplementary Figure 11). Our observed accuracy of ER

(91.6%, Table 2) was higher than that between local and

central IHC in a recent study from the ECOG 2,197 trial

(90%) [51]. In the same study the PgR sensitivity and

specificity between local and central IHC were 80.7 and

88.6%, respectively. Concordance of PgR IHC between

core biopsy and surgical samples has been reported to be

83% [52]. Thus the observed concordance of 71% for PgR

status in our study can not be considered satisfying (75%

sensitivity and 67% specificity, Table 3). However, similar

results for gene expression have been obtained by others

[53] and might be related to substantially lower mRNA

expression levels for PgR than ER ([20 fold lower mean

MAS5 values, see Supplementary Figure S10). This prob-

lem might be overcome by using signatures combining

several genes. Creighton et al. [16] have developed two

gene signatures consisting of 182 and 1,005 genes for

ER ?/PR ? and ER-/PR-tumors, respectively, using the

Rotterdam and Uppsala datasets. When they applied these

signatures to classify the tumors from the same datasets

they reached concordances of 89 and 84%, respectively.

The derived cutoff for HER2 expression led to a spec-

ificity of 97.9% but a rather low sensitivity of 59.0%

among the 618 samples with biochemical HER2 status.

However, the sensitivity differed markedly between data-

sets (range 32–100%, Table 4) and the possibility of some

false positive biochemical data might be considered. Gong

et al. [8] used a training approach to optimize the HER2

cutoff among 195 samples leading to 91% sensitivity and

95% specificity. This cutoff resulted in sensitivity and

specificity of 79 and 94% as well as 100 and 88% in two

different validation datasets. Microarray data of 133 of the

195 samples from this training set were available for our

analysis (dataset MDA133). Importantly, among these 133

samples our distribution derived cutoff resulted in an 82%

sensitivity, 99% specificity, and 95% overall accuracy. In

other words our method resulted in a slightly higher cutoff

value than the training approach of Gong et al. [8]. How-

ever, with respect to an analytical approach rather than a

clinical test, this high cutoff value might be more prefer-

able. It results in a specificity of 97.9% and a positive

predictive value (PPV) of 89.1% among all 618 samples

with biochemical HER2 status. Thus only 10.1% false

positive HER2 tumors would be included in subsequent

analyses when using this cutoff value. On the other hand

because of the NPV of 89.2% those samples erroneously

categorized as HER2 negative by this cutoff represent only

11.8% of the total number of samples in the larger group of

HER2 negative tumors.

Some microarray studies performed normalization

across genes [54]. However, the expression of many genes

is highly correlated. For example it has been shown

repeatedly that a large set of genes is strongly associated

with the ER status in breast cancer [55, 56]. As we have

demonstrated, ‘‘gene normalization’’ in cohorts with

varying proportions of tumors differing in the ER status

leads to a distortion of the distribution of expression values

of such genes. If subsequent analysis steps involve a rela-

tive split of the cohort to stratify samples, this can lead to

strange results [57]. Thus gene normalization is a very

critical point when combining or comparing datasets.

Other studies have also characterized bimodal markers

from microarray datasets [58–60]. Some suggested that

bimodal ‘‘switch-like’’ genes differ from non-bimodal

genes in transcriptional regulation [61]. Assuming a precise

quantitation by microarrays, the different mRNA levels can

either result from the level in individual cells or from the

proportion of cells in the sample (or both). Breast cancer is

a heterogeneous disease containing subtypes with different

clinical behavior. It has been suggested that such distinct

cancer subtypes may be derived from distinct progenitor

cells which are arrested in their maturation [62–66]. When
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we analyzed the prognosis of subgroups we have observed

an essential difference between bimodal parameters like

ER, PgR, HER2 on the one hand and the continuous

marker Ki67 on the other. The bimodal markers seem to

stratify distinct subtypes of tumors as revealed by their

distinct clinical follow up. In contrast Ki67 did not define

two distinct subtypes. Instead we observed a continuous

relationship the higher the expression the worse the prog-

nosis. From immunohistochemical studies it is known that

the proportion of Ki67 expressing cells is relatively low

with a median of 16–17% [41, 42]. It is not clear whether

this represents a snapshot of transiently cycling cells or if

Ki67 expression defines a distinct type of carcinoma cells

which differ in their differentiation state. Regardless of this

question it seems reasonable that the level of Ki67 mRNA

measured by microarray predominantly results from the

proportion of cells expressing the gene rather than the level

of expression in the individual cells.

In summary our data demonstrate that pooling of

microarray datasets seems to be recommended to enlarge

sample size and to refine cutoffs derived from the data.

Critical pitfalls which have to be considered include the

introduction of bias from gene normalization which has

been often applied to adjust different platforms.

Acknowledgments We thank Samira Adel and Katherina Kourtis

for expert technical assistance and anonymous reviewers for their

insightful suggestions. This work was supported by grants from the

Deutsche Krebshilfe, the Margarete Bonifer-Stiftung, Bad Soden, the

BANSS-Stiftung, Biedenkopf, and the Dr. Robert Pfleger-Stiftung,

Bamberg. The efforts of the IGC and expO [31] are gratefully

acknowledged.

References

1. Coates A, Goldhirsch A, Gelber R, International Breast Cancer

Study Group (2002) Overhauling the breast cancer overview: are

subsets subversive? Lancet Oncol 3(9):525–526. doi:10.1016/

S1470-2045(02)00842-2

2. Cole BF, Gelber RD, Gelber S, Coates AS, Goldhirsch A (2001)

Polychemotherapy for early breast cancer: an overview of the

randomised clinical trials with quality-adjusted survival analysis.

Lancet 358(9278):277–286. doi:10.1016/S0140-6736(01)05483-6

3. Sylvester R, Collette L, Duchateau L (2000) The role of meta-

analyses in assessing cancer treatments. Eur J Cancer

36(11):1351–1358. doi:10.1016/S0959-8049(00)00125-8

4. Ein-Dor L, Zuk O, Domany E (2006) Thousands of samples are

needed to generate a robust gene list for predicting outcome in

cancer. Proc Natl Acad Sci USA 103(15):5923–5928. doi:10.

1073/pnas.0601231103

5. Cheadle C, Vawter MP, Freed WJ, Becker KG (2003) Analysis of

microarray data using Z score transformation. J Mol Diagn

5(2):73–81

6. Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster

analysis and display of genome-wide expression patterns. Proc

Natl Acad Sci USA 95(25):14863–14868. doi:10.1073/pnas.95.

25.14863

7. Getz G, Levine E, Domany E (2000) Coupled two-way clustering

analysis of gene microarray data. Proc Natl Acad Sci USA

97(22):12079–12084. doi:10.1073/pnas.210134797

8. Gong Y, Yan K, Lin F, Anderson K, Sotiriou C, Andre F, Holmes

FA, Valero V, Booser D, Pippen JE Jr, Vukelja S, Gomez H,

Mejia J, Barajas LJ, Hess KR, Sneige N, Hortobagyi GN, Pusztai

L, Symmans WF (2007) Determination of oestrogen-receptor

status and ERBB2 status of breast carcinoma: a gene-expression

profiling study. Lancet Oncol 8(3):203–211. doi:10.1016/S1470-

2045(07)70042-6

9. Ahr A, Karn T, Solbach C, Seiter T, Strebhardt K, Holtrich U,

Kaufmann M (2002) Identification of high risk breast-cancer

patients by gene expression profiling. Lancet 359(9301):131–132.

doi:10.1016/S0140-6736(02)07337-3

10. Rody A, Holtrich U, Gaetje R, Gehrmann M, Engels K, von

Minckwitz G, Loibl S, Diallo-Danebrock R, Ruckhäberle E,
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A, Fernö M, Peterson C, Meltzer PS (2001) Estrogen receptor

status in breast cancer is associated with remarkably distinct gene

expression patterns. Cancer Res 61(16):5979–5984

56. van‘t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao

M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT,

Schreiber GJ, Kerkhoven RM, Roberts C, Linsley PS, Bernards

R, Friend SH (2002) Gene expression profiling predicts clinical

outcome of breast cancer. Nature 415(6871):530–536. doi:

10.1038/415530a

57. Lusa L, McShane LM, Reid JF, De Cecco L, Ambrogi F, Bi-

ganzoli E, Gariboldi M, Pierotti MA (2007) Challenges in pro-

jecting clustering results across gene expression-profiling

datasets. J Natl Cancer Inst 99(22):1715–1723. doi:10.1093/jnci/

djm216

58. Teschendorff AE, Naderi A, Barbosa-Morais NL, Caldas C

(2006) PACK: profile analysis using clustering and kurtosis to

find molecular classifiers in cancer. Bioinformatics 22(18):2269–

2275. doi:10.1093/bioinformatics/btl174

59. Ertel A, Tozeren A (2008) Switch-like genes populate cell

communication pathways and are enriched for extracellular pro-

teins. BMC Genomics 9:3. doi:10.1186/1471-2164-9-3

60. Gormley M, Tozeren A (2008) Expression profiles of switch-like

genes accurately classify tissue and infectious disease phenotypes

in model-based classification. BMC Bioinformatics 9:486.

doi:10.1186/1471-2105-9-486

61. Ertel A, Tozeren A (2008) Human and mouse switch-like genes

share common transcriptional regulatory mechanisms for bimo-

dality. BMC Genomics 9(1):628. doi:10.1186/1471-2164-9-628

62. Sell S, Pierce GB (1994) Maturation arrest of stem cell differ-

entiation is a common pathway for the cellular origin of terato-

carcinomas and epithelial cancers. Lab Invest 70(1):6–22

63. Pardal R, Clarke MF, Morrison SJ (2003) Applying the principles

of stem-cell biology to cancer. Nat Rev Cancer 3(12):895–902.

doi:10.1038/nrc1232

64. Sanai N, Alvarez-Buylla A, Berger MS (2005) Neural stem cells

and the origin of gliomas. N Engl J Med 353(8):811–822.

doi:10.1056/NEJMra043666

65. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem

cells, cancer, and cancer stem cells. Nature 414(6859):105–111.

doi:10.1038/35102167

66. Jordan CT, Guzman ML, Noble M (2006) Cancer stem cells. N

Engl J Med 355(12):1253–1261. doi:10.1056/NEJMra061808

Breast Cancer Res Treat (2010) 120:567–579 579

123

http://dx.doi.org/10.1007/s10549-006-9231-y
http://dx.doi.org/10.1200/JCO.2006.09.2106
http://dx.doi.org/10.1172/JCI33295
http://dx.doi.org/10.1309/HCF035N9WK40ETJ0
http://dx.doi.org/10.1309/4WV79N2GHJ3X1841
http://dx.doi.org/10.1016/S0959-8049(98)00149-X
http://dx.doi.org/10.1016/S0959-8049(98)00149-X
http://dx.doi.org/10.1158/1078-0432.CCR-06-2522
http://dx.doi.org/10.1200/JCO.2007.13.6424
http://dx.doi.org/10.1200/JCO.2005.02.076
http://dx.doi.org/10.1200/JCO.2006.06.6944
http://dx.doi.org/10.1200/JCO.2006.06.6944
http://dx.doi.org/10.1073/pnas.191367098
http://dx.doi.org/10.1038/415530a
http://dx.doi.org/10.1093/jnci/djm216
http://dx.doi.org/10.1093/jnci/djm216
http://dx.doi.org/10.1093/bioinformatics/btl174
http://dx.doi.org/10.1186/1471-2164-9-3
http://dx.doi.org/10.1186/1471-2105-9-486
http://dx.doi.org/10.1186/1471-2164-9-628
http://dx.doi.org/10.1038/nrc1232
http://dx.doi.org/10.1056/NEJMra043666
http://dx.doi.org/10.1038/35102167
http://dx.doi.org/10.1056/NEJMra061808

	Data driven derivation of cutoffs from a pool of 3,030 Affymetrix arrays to stratify distinct clinical types of breast cancer
	Abstract
	Introduction
	Materials and methods
	Results
	Concordance of different Affymetrix ProbeSets  with biochemical data of ER, PgR, and HER2 status
	Derivation of a cutoff value for the ER status  from the distribution of ER microarray data
	Derivation of cutoff values for PgR  and HER2 microarray data
	Influence of gene normalization on different cohorts
	Plausibility of the derived cutoffs through analysis  of patients’ prognosis
	Analysis of continuous markers

	Discussion
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


