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Abstract We have previously shown that the anti-pro-

liferative effect of retinoic acid in human breast cancer cell

line MCF-7 is dependent on HES-1 expression. Here we

show that retinoic acid induces HES-1 expression via

upregulation of transcription factor SOX9. By expressing a

dominant negative form of SOX9, disrupting endogenous

SOX9 activity, the retinoic acid-induced HES-1 mRNA

expression was inhibited. We found an enhancer regulating

HES-1 expression: two SOX9 binding sites upstream of the

HES-1 gene that were capable of binding SOX9 in vitro.

By performing chromatin immunoprecipitation, we showed

that SOX9 binding to the HES-1 enhancer was induced by

retinoic acid in vivo. In reporter assays, transfection of a

SOX9 expression plasmid increased the activity of the

HES-1 enhancer. The enhancer responded to retinoic acid;

furthermore, the expression of a dominant negative SOX9

abolished this response. Taken together, we present here a

novel transcriptional mechanism in regulating hormone-

dependent cancer cell proliferation.

Keywords atRA � HES-1 � SOX9 � Proliferation

Introduction

Retinoic acid belongs to a class of compounds of both

synthetic and naturally occurring molecules, the retinoids.

Retinoids are non-steroid hormones, metabolites of vitamin

A with intracrine activity. During embryonic development,

the retinoids play a crucial role in regulating a variety of

important cellular functions [1]. In both normal and

malignant cells, the retinoids regulate cell growth and

differentiation. These properties make retinoids promising

as anti-tumorigenic and anti-carcinogenic agents, although

certain side effects have hampered their clinical use [2–4].

Despite these potential drawbacks, all-trans retinoic acid

(atRA), a naturally occurring form of retinoids, is used as a

standard treatment for acute promyelocytic leukemia.

All-trans retinoic acid exerts its biological effect, like

other retinoids, through binding and subsequent activation

of the retinoic acid receptors (RARs). Three RAR subtypes,

a, b, and c, have been shown to mediate cellular responses

to retinoids. In the absence of a ligand, the RARs bind to

specific DNA elements, retinoic acid response elements

(RAREs), in the cis-regulatory region of target genes as

heterodimers together with retinoid X receptors (RXRs)

[5]. The heterodimers associate with the corepressors

SMRT and N-CoR followed by a recruitment of histone

deacetylases resulting in transcriptional repression [6].

When bound to ligand, RAR–RXR heterodimers recruit

coactivators, followed by transcriptional activation of gene

expression [7].

Many cancer cell lines respond to retinoic acid with

growth arrest, induction of apoptosis, or differentiation [8].

Growth arrest is mainly accomplished by blocking cell

cycle progression in the G1 phase [9]. It is well established

that retinoic acid inhibits the proliferation of breast cancer

cells [10]; however, the sensitivity to retinoic acid of
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estrogen receptor a (ERa)-positive cells contrasts to that of

ERa negative cells, where the majority of the cell lines are

resistant [11, 12]. ERa-positive cells are sensitive to reti-

noic acid since ERa expression correlates with RARa
expression [12], as shown by the fact that exogenous

expression of ERa in ERa-negative cells induces RARa
expression and thus restores sensitivity to retinoic acid

[13]. The retinoic acid-induced block of G1 to S phase

transition has been associated with regulation of cell cycle

modulators: increased expression of p21, hypophosphory-

lation of RB, decreased activity of cdk2 and cdk4, decreased

expression of cyclin B1, D1, D3, and E2F-1 [14, 15].

We have previously shown that ectopic expression of

the basic helix–loop–helix transcriptional repressor Hairy

and Enhancer of Split homologue-1 (HES-1) inhibits

estrogen-stimulated proliferation [16] and estrogen-induced

expression of the cell cycle regulator E2F-1 [17]. Moreover,

the anti-proliferative effect of retinoic acid is dependent

on HES-1 in the breast cancer cell line MCF-7 [18]. In

PC12 cells, HES-1 arrests cell growth as well as nerve

growth factor-induced differentiation [19]. Increasing levels

of HES-1 protein expression, accomplished by using doxy-

cyclin-inducible HES-1 expression system, resulted in

increased growth inhibition of human pulmonary carcinoid

cancer cells [20]. As a primary Notch effector protein, HES-

1 is well characterized as an inhibitor of neuronal differen-

tiation [21] and HES-1 has also been shown to be essential

in myogenesis [22, 23], eye morphogenesis [24], and T-cell

lineage [25], in addition to its role as a regulator of

proliferation.

The transcription factor SOX9, [SRY (sex determining

region Y), box9], is essential in sex determination and

during chondrogenesis. Mutations in the SOX9 gene

causing disrupted expression result in autosomal XY sex

reversal and in campomelic dysplasia, a syndrome with

severely malformed skeleton [26]. SOX9 can substitute for

SRY expression during sex determination, as shown by the

ectopic expression of SOX9 in XX gonads of mice, which

induced testis formation [27]. Effects on cell cycle pro-

gression by SOX9 have been reported in the prostate tumor

cell line M12 [28] and in the chondrocytic cell line CFK2.

The ectopic expression of SOX9 arrests cells in the G1

phase of the cell cycle and is associated with an upregu-

lation of p21 gene expression [29]. Retinoic acid induces

SOX9 expression in retinoid-sensitive breast cancer cell

lines, and SOX9 has been shown to play a role in retinoid-

induced growth inhibition in the human breast cancer cell

line T47D. By inhibiting endogenous SOX9 with an

ectopically expressed dominant negative SOX9, the anti-

proliferative effect of retinoids was abolished. Overex-

pression of SOX9 in the same cell line, T47D, caused

similar cell cycle changes as retinoid treatment [30].

To further characterize the molecular mechanisms of the

anti-proliferative effects of retinoic acid, we examined the

role of SOX9 in the regulation of HES-1 gene expression in

human breast cancer cells. We found SOX9 to be a

mediator of the atRA-induced HES-1 gene expression in

MCF-7 cells. Furthermore, we found that SOX9 regulates

HES-1 expression via a cis-regulatory element upstream of

the HES-1 gene.

Materials and methods

Cell lines, transient transfections, and luciferase assays

MCF-7 and HEK 293 cells were maintained in Dulbecco’s

modified Eagle medium (GIBCO) supplemented with 10%

fetal bovine serum (Saveen Warner AB) and 0.1% Genta-

micin (GIBCO). Transient transfections were performed

using Lipofectamine 2000 (Invitrogen) with 49105 seeded

cells per 35 mm well and 100 ng of each plasmid DNA, in

Opti-MEM (GIBCO). Total cell lysates were harvested 48 h

later, and luciferase activity was measured by using Lucif-

erase assay kit (Biothema) in a Berthold FB12 luminometer

(Labsystem). The RSV-bgal plasmid was included in each

reaction as an internal control for transfection efficiency,

and luciferase activity was normalized to b-galactosidase

activity, which was measured by Power-Wave X micro plate

reader (Bio-Tek Instruments Inc.). Each transfection

experiment was done in triplicates and presented as mean

values (±SD).

Transfection of siRNA to SOX9

About 50,000 cells/well were seeded onto a 24-well plate,

and on the subsequent day, the cells were transfected with

100 nM of siRNA targeting SOX9 (SOX9 smart pool) or

GAPDH (50-TGGTTTACATGTTCCAATA-30) by using

DharmaFECT 2 transfection reagents according to the

manufacturer’s (Dharmacon) instruction. The next day,

medium was changed, and after another 30 h, 1 lM atRA

was added for 6 h to the cells, as indicated in the figure.

Expression of SOX9, HES-1, and GAPDH was quantified

using real time PCR.

Plasmids and chemicals

The 49 SOX9RE and the 69 SOX9RE contain four or six

copies, respectively, of putative SOX9 response element

(50-AGGTCAACAAAGGAGGCATTGTTCATCA-30) inser-

ted into pGL3 promoter vector (Promega). FLAG-tagged

SOX9 and truncated SOX9 (tr.SOX9) were cloned into

pcDNA3 as described [31]. mRARa and mRXRa were inserted
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into pSG5 vector. 17b-Estradiol (E2; Sigma) was dissolved in

ethanol and used at 1 nM concentration. All-trans-Retinoic

acid (Sigma) was dissolved in DMSO (Sigma) and used at

1 lM concentration.

EMSA

The SOX9RE probe (50-AGGTCAACAAAG GAGGCAT

TGTTCATCA-30), the �SOX9RE probe (50-CAGGTC

AACAAAGGAGGA-30), and a probe containing consen-

sus SOX9 binding site (50-GATCCGCGCCTTTGTTCTCC

CCA-30) [32] were labeled with [c32P]-ATP (Amersham

Biosciences) using T4 Polynucleotide Kinase (USB) and

purified using a Sephadex G50 Nick column (Amersham

Biosciences). The DNA–protein binding reactions were

carried out in a 30 ll reaction containing binding buffer

(20 mM Hepes–NaOH pH 7.6, 50 mM NaCl, 10 mM

DTT, 5% glycerol, 0.5 mM EDTA, and 0.3 mg/ml BSA)

and 5 ll of in vitro transcribed/translated SOX9 using TNT

T7 Quick coupled transcription/translation system (Pro-

mega). The reaction was incubated for 15 min incubation

at room temperature before adding *20,000 cpm of the

probe followed by 20 min incubation at room temperature.

In competition experiments, a 50-fold excess of unlabeled

probe was added prior to adding the radiolabeled probe and

incubated for 5 min. In supershift experiments, 5 ll of

anti-SOX9 antibody (H-90, Santa Cruz) was added to the

mixture, before adding the probe and incubating for 5 min.

The DNA/protein complexes were separated on a 5%

native gel in 19 TBE. Gels were dried and subjected to

phosphor imager analysis.

qRT-PCR

Low passage MCF-7 cells (ATCC) were grown in phenol

red-free DMEM (GIBCO) supplemented with 5% steroid-

stripped (charcoal-treated) serum for 72 h prior to addition

of atRA or the vehicle (DMSO). Transfection of expression

plasmids was done following 72 h growth in steroid-

stripped serum. About 1 lg of total RNA, extracted from

MCF-7 cells using RNeasy (Qiagen), was reverse tran-

scribed into cDNA using Superscript III (Invitrogen) and

random hexamers (Amersham). The mRNA expression

was measured using Sybr Green (ABI) in an ABI 7500

instrument. About 100 nM of primers for SOX9 was used:

Fw (50-GTACCCGCACTTGCACAAC-30) and Rev (50-TC

GCTCTCGTTCAGAAGTCTC-30) and 300 nM of HES-1

primers: Fw (50-TAGCTCGCGGCATTCCAAGC-30) and

Rev (50-GTGCTCAGCGCAGCCGTCATCT-30). An 18S

rRNA was used as internal control by using 100 nM of

primers: Fw (50-CCTGCGGCTTTAATTTGACTCA-30)
and Rev (50-AGCTATCAATCTGTCAATCCTGTC-30).

Western blot

Nuclear proteins were extracted using standard protocols

[33] from the MCF-7 cells grown in steroid-stripped serum

and phenol-red free DMEM. About 50 lg protein per lane

was separated on a 12% SDS gel and transferred to a

nitrocellulose membrane (Hybond C, Amersham) and

exposed to anti-HES-1 [16], anti-SOX9, and anti-b-actin

antibodies (Santa Cruz). Proteins of interest were visual-

ized using HRP-linked anti-mouse or anti-rabbit IgG (GE

Healthcare), Supersignal West Pico chemiluminescent

substrate (Pierce), and Hyperfilm ECL (GE Healthcare).

Chromatin immunoprecipitation

MCF-7 breast cancer cells were starved for 72 h in 25 ml

DMEM phenol-red free media supplemented with 5%

charcoal filtered FBS. After starvation, the cells were

treated with 1 lM atRA for 2 h and then prepared for

Chromatin immunoprecipitation (ChIP) according to stan-

dard ChIP protocols. Immunoprecipitations were done at

4�C overnight using a SOX9 (H-90) antibody from Santa

Cruz Biotechnology. DNA was purified using QIAquick�

PCR Purification kit from Qiagen. Purified DNA was

analyzed with quantitative PCR using Roche SYBR Green

master mix on a Roche Lightcycler� 480. The HES-1

primer sequences for the Q-PCR synthesized by MWG

Biotech Inc. are: forward 50-AGGTTGCAGGTCAACAAA

GG-30, and reverse 50-CTCCAGTCTGCAACCAAACA-30.
The input was used to normalize the real-time PCR data.

Results

Exogenous expression of SOX9 induces HES-1 mRNA

expression, and all-trans retinoic acid induces mRNA

SOX9 expression

We first examined the effect of SOX9 expression on HES-1

levels in MCF-7 cells with an exogenous expression con-

struct of SOX9. Transient transfection with an expression

vector containing SOX9 downstream of a CMV promoter

enhanced SOX9 mRNA expression eightfold (Fig. 1a). The

augmented SOX9 expression resulted in a threefold

increase of endogenous HES-1 mRNA expression (Fig. 1b).

To determine whether atRA induces endogenous SOX9

mRNA expression in MCF-7 cells, as previously shown

[30], we transiently transfected non-confluent MCF-7 cells

with RARa and RXRa plasmids and subsequently added

atRA for 6 h prior to harvest. The transfection of RARa and

RXRa plasmids was done to reinforce SOX9 expression in

response to atRA. Treatment with atRA resulted in a tenfold

increase of SOX9 mRNA expression (Fig. 1c). HES-1
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mRNA expression was induced 2.5-fold in response to

atRA (Fig. 1d), as we have shown before [18]. We specu-

lated that the inducible effect on HES-1 mRNA expression

by atRA is mediated via SOX9. To examine this possibility,

we co-transfected cells with RARa, RXRa, and a truncated

form of SOX9. The truncated SOX9 is postulated to work as

a dominant negative SOX9, because it binds to DNA but

lacks the transcriptional activation domain [31]. These

cells were treated for 6 h with atRA. Approximately 70% of

the atRA-induced HES-1 mRNA was suppressed when

truncated SOX9 was expressed or when siRNA against

SOX9 was transfected (Fig. 1d, e).

HES-1 protein expression is induced by overexpression

of SOX9, and atRA induces SOX9 protein expression

Next, we wanted to determine whether the increase in

HES-1 mRNA levels following exogenous SOX9 expres-

sion is also reflected in HES-1 protein levels. SOX9 was

transfected into MCF-7 cells and 24 h later, the cell nuclei

were extracted and subjected to Western blot analysis.

HES-1 protein was strongly upregulated by exogenous

SOX9 expression (Fig. 2a). We have shown before that

HES-1 mRNA and protein expression is downregulated by

estrogen [18] and others have shown that both HES-1 and

SOX9 are downregulated by estrogen [34]. We therefore

treated MCF-7 cells with estrogen to see whether down-

regulation of HES-1 and SOX9 could be seen in our cells.

HES-1 protein was clearly downregulated by 17b-estradiol;

however, as SOX9 protein expression in non-induced cells

could not be detected, downregulation by estrogen could

not be established (Fig. 2b). However, treatment of the

same cells with 1 lM atRA for 6 h resulted in a robust

upregulation of both HES-1 and SOX9 protein. We found

no changes in b-actin expression, neither in the presence of

estrogen nor in the presence of atRA. These results indicate

that atRA induces both SOX9 and HES-1 expression.

Fig. 1 HES-1 and SOX9 mRNA expression in MCF-7 cells with

exogenous expression of SOX9, or treated with all-trans retinoic acid.

a SOX9 mRNA expression in the transiently transfected MCF-7 cells

with SOX9 expression plasmid. b HES-1 mRNA expression in MCF-

7 cells exogenously expressing SOX9. c SOX9 mRNA expression in

MCF-7 cells transiently transfected with expression vectors for RARa
and RXRa and treated with atRA for 6 h. d Transient transfections of

MCF-7 cells with expression vectors for RARa, RXRa, and truncated

SOX9 (tr.SOX9) followed by 6 h treatment with atRA. e mRNA

expression of HES-1, SOX9, and GAPDH after transfection of siRNA

against SOX9. All controls are set to 1. Results are representative of

several experiments and presented as fold change from control (±SD)

Fig. 2 HES-1 and SOX9 protein expression in MCF-7 cells. Nuclear

proteins were harvested and separated on an SDS-gel following

exposure to anti-HES-1, anti-SOX9 or anti-b-actin antibodies. a HES-

1 and b-actin expression in cells transfected with SOX9 expression

plasmid. Harvest of proteins was performed 24 h after transfection.

b HES-1, SOX9, and b-actin expression in MCF-7 cells that were

grown in the presence or absence of 17b-estradiol (E2) and atRA, as

indicated, for 6 h
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HES-1 and SOX9 mRNA expression is increased after

1 h in response to atRA and continues to be increased

for the following 6 h

It has been shown that HES-1 oscillates in response to

serum treatment [35] and it is suggested that HES-1

oscillation is required for efficient cell proliferation [36].

To study the dynamics of SOX9 and HES-1 mRNA

expression in response to atRA, we performed a time

course study in MCF-7 cells. Non-confluent cells were

grown in steroid-depleted serum for 72 h prior to addition

of 1 lM atRA followed by RNA extraction every hour for

6 h. Relative mRNA expression levels were measured by

qRT-PCR. SOX9 mRNA was upregulated twofold as early

as after 1 h treatment with atRA (Fig. 3a). We found a

steady increase of SOX9 mRNA with time with a maxi-

mum fourfold upregulation after 6 h in response to atRA.

The non-treated samples expressed SOX9 mRNA at con-

stant levels; the variance from 1 to 6 h was\33% (Fig. 3a).

Since we hypothesize that SOX9 regulates HES-1 trans-

criptionally, we anticipated HES-1 mRNA to be upregulated

at the same time points as SOX9 mRNA was, in response to

atRA. Indeed, after 1 h in the presence of atRA, HES-1

mRNA was upregulated 2.5 times (Fig. 3b). The steady

increase of SOX9 mRNA with time in response to atRA,

however, was not observed with HES-1 mRNA. Instead we

found decreased HES-1 mRNA expression with time, with a

minimum of 1.45-fold induction at 6 h treatment with atRA.

Furthermore, in contrast to the constant levels of SOX9

mRNA in non-treated samples, we found fluctuating levels

of HES-1 mRNA (Fig. 3b).

A putative SOX9 response element upstream

of the HES-1 gene

To identify a SOX9 response element (SOX9RE) regulat-

ing the HES-1 gene, we performed an in silico analysis of

up to 50 kb upstream of the HES-1 gene. At -3,771 bp 50

of the HES-1 transcriptional start site, we found two

putative binding sites for SOX9, arranged in opposite ori-

entation to each other with a 4 bp spacer, AACAA

AGgaggCATTGTT. To determine whether this element,

containing two putative binding sites for SOX9, could be

bound by SOX9 we performed an in vitro binding assay.

Three double stranded oligonucleotides were designed for

the experiment: one probe containing consensus SOX9

binding site (consensus probe) [32], one probe composed

of one putative SOX9 binding site (�SOX9RE), and

another probe composed of both sites (SOX9RE). We

detected very strong binding of in vitro transcribed/trans-

lated SOX9 to the consensus probe (Fig. 4, lane 2), which

was abolished by an anti-SOX9 antibody (lane 3) or by

non-consensus probe (lane 4). When we used the probe

with one putative SOX9 binding site (�SOX9RE), we

detected binding, although weak in comparison to the

consensus probe (lane 6). The binding to �SOX9RE was

abolished when adding anti-SOX9 antibody (lane 7) or the

non-labeled �SOX9RE (lane 8). We detected strong

binding to the element that is composed of two putative

SOX9 binding sites (SOX9RE; lane10). The slower

migration of the SOX9RE complex compared with con-

sensus probe or �SOX9RE complexes may be explained

by the binding of SOX9 to both putative SOX9 binding

sites in SOX9RE. The binding of SOX9 to SOX9RE was

completely abolished by the non-labeled SOX9RE (lane

12). No super-shift was detected with anti-SOX9 antibody;

the complex seems to be immovable in the wells (lanes 3

and 11). Also, we found no binding with 10 lg bovine

serum albumin (BSA) to any of the probes (lanes 1, 5,

and 9). These data show that SOX9 binds, in vitro, to the

described upstream element in the HES-1 gene.

atRA induces SOX9 binding in vivo to HES-1 enhancer

To determine whether SOX9 binding to the consensus

binding site adjacent to the HES-1 gene occurs in vivo, we

performed chromatin immunoprecipitation (ChIP) experi-

ments using specific antibodies against SOX9. ChIP

Fig. 3 SOX9 and HES-1 mRNA expression in MCF-7 cells treated

with all-trans retinoic acid (atRA) for 6 h. MCF-7 cells were grown in

steroid-stripped serum for 72 h prior to the addition of 1 lm atRA.

Cells were harvested every hour for 6 h and subsequently, SOX9 and

HES-1 mRNA expression was analyzed using qRT-PCR

Breast Cancer Res Treat (2010) 120:317–326 321
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analysis of SOX9 binding in MCF-7 cells treated with

atRA for 2 h showed SOX9 binding to the putative binding

site when compared with the untreated controls (Fig. 5a).

No SOX9 binding was observed on an irrelevant control

site. An average 2.1-fold increase in SOX9 binding was

observed by quantitative PCR when compared with

untreated controls in three replicate experiments (Fig. 5b).

These findings indicate that SOX9 proteins are recruited to

the cis-regulatory region of HES-1 in response to retinoic

acid treatment.

The putative SOX9 response element

is transcriptionally active

To examine the transcriptional activity of the consensus

SOX9 binding site adjacent to the HES-1 gene, we multi-

merized the element and cloned it upstream of an SV40

promoter in a luciferase reporter plasmid. We chose to

transfect HEK 293 cells rather than MCF-7 cells to

accomplish high transfection efficiency. Co-transfections

with the reporter construct containing four copies of the

element (49 SOX9RE) and the SOX9 expression vector in

HEK 293 cells gave a fourfold induction of relative lucif-

erase activity (Fig. 6a). About six copies of the element (69

SOX9RE) resulted in an eightfold induction in response to

exogenously expressed SOX9. A minor, non-significant

change by exogenous expression of SOX9 was seen on the

empty vector. To determine whether this enhancer respon-

ded to atRA, we co-transfected the reporter, 69 SOX9RE,

with RARa and RXRa expression vectors in the presence of

Fig. 4 SOX9 binding to a putative SOX9 response element upstream

of the HES-1 gene as shown by EMSA. In vitro transcribed/translated

SOX9 was mixed with either radiolabeled probe containing consensus

SOX9 binding site (cons), a probe containing one of the two putative

SOX9 binding sites (�SOX9RE) or both putative SOX9 binding sites

(SOX9RE). Antibody (a-SOX9) and non-labeled probe (comp) were

added before adding the radiolabeled probe

Fig. 5 In vivo SOX9 binding to the SOX9 binding site adjacent to

the HES-1 gene increases following retinoic acid treatment. a Binding

of SOX9 to the binding site was visualized by gel electrophoresis of

amplicons containing the binding site in the pre-ChIP input and the

ChIP samples. MCF-7 cells were treated with 1 lM atRA for 2 h and

then subjected to ChIP analysis using specific antibodies against

SOX9. Untreated cells were included as a reference control.

Experiments using an irrelevant site from the HES1 transcript coding

region (Control Site, central panel) and antibody against hemmaglu-

tinin (Anti-HA ChIP, lower panel) were included as negative controls.

b SOX9 binding was quantified by real-time PCR and presented as

percent binding of the atRA treated samples relative to the untreated

controls. The error bar represents standard error or means from three

independent experiments. Binding of SOX9 in the untreated controls

is set at 100% as a reference. Real-time PCR data was normalized to

the input
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atRA for 18 h. We found an induction of approximately

threefold in the presence of atRA, whereas no induction was

found with the empty vector, pGL3 pro, in response to atRA

(Fig. 6b). To determine whether the effect observed to atRA

on the 69 SOX9RE construct was mediated by SOX9, we

co-transfected the reporter, RARa and RXRa with truncated

SOX9 and treated the cells for 18 h with atRA. We found

that truncated SOX9 strongly inhibited the ability of atRA

to activate the 69 SOX9RE reporter construct (Fig. 6b).

Altogether, these results suggest that SOX9 is a mediator of

atRA-induced HES-1 gene expression.

Discussion

We show in this paper that, in the human breast cancer cell

line MCF-7, atRA induces both SOX9 and HES-1 gene

expression. We also show that overexpression of SOX9

induces HES-1 gene expression, and that by inhibiting

endogenous SOX9, by overexpressing a dominant negative

SOX9, the effect of atRA on HES-1 expression is

decreased. Moreover, we found an enhancer regulating

HES-1 gene that binds SOX9, in vitro and in vivo, and that

responds to atRA. By using the dominant negative SOX9,

we demonstrated that SOX9 is necessary to mediate the

effect of atRA on the HES-1 enhancer.

It is postulated that dimerization of SOX9 is required for

chondrogenesis, but not for sex determination [37]. SOX9

binds as a monomer in the regulatory region of the sex-

determining gene SF1, whereas SOX9 binds as a dimer to

enhancers in genes involved in chondrocyte differentiation,

such as Col11a2 and Col9a2 [37]. The novel enhancer

found -3,771 bp upstream of the HES-1 gene binds

dimeric SOX9; it is composed of two SOX9 binding sites

in opposite orientation to each other with a 4-bp spacer,

similar to the chondrocyte-specific enhancer elements

bound and activated by dimeric SOX9 in the type XI col-

lagen gene Col11a2 [38]. By using the enhancer found 50 of

the HES-1 gene in an in vitro binding assay, we found

weak binding to a probe composed of a single SOX9

binding site compared to the stronger binding to a probe

composed of the paired SOX9 binding site, indicating

binding of a SOX9 dimer. To add another layer of com-

plexity to retinoic acid regulation of HES-1, we have found

a putative RARE upstream of the HES-1 gene (character-

ization is ongoing). Whether retinoic acid regulates HES-1

expression primarily via SOX9 and/or the RARE, syn-

chronously and/or synergistically, is to date not known.

During chondrogenesis, HES-1, retinoic acid, and SOX9

have been shown to be essential components. Expression of

HES-1 is enhanced in chondrocytes during chondrogenesis

[39], and a recent report suggests that Notch signaling,

where HES-1 is an effector protein, is necessary to initiate

chondrogenesis, but has to be turned off in order for a

continuation of chondrogenesis [40]. Retinoic acid

activates RARs that keep chondroprogenitor cells undif-

ferentiated, whereas in the absence of retinoic acid, SOX9

expression and activity are enhanced followed by differ-

entiation of chondroprogenitor cells into chondroblasts

[41]. These data are not concordant with our data from

breast cancer cells, where we show that retinoic acid

induces SOX9 expression, which in turn induces HES-1

expression, suggesting different roles for these factors in

different cellular contexts.

Interestingly, SOX9 regulation of HES-1 has recently

been suggested to play a role during organogenesis of the

pancreas; HES-1 mRNA was decreased following pan-

creas-specific inactivation of SOX9 in mouse embryos. The

pancreas of these mice showed hypoplasia, as a result of

depletion of the progenitor pool as seen in HES-1 knock-

out mice. In the pancreatic epithelium, HES-1 has

been shown to inhibit both endocrine and exocrine

Fig. 6 Transient transfection of the putative SOX9 response element

upstream of HES-1 gene into HEK 293 cells. a 49 SOX9RE and 69

SOX9RE have four and six copies, respectively, of the putative SOX9

response element from HES-1 upstream of the SV40 promoter. Cells

were co-transfected with either empty vector (white bars) or 100 ng

of SOX9 expression vector (black bars). b A reporter vector

containing six copies of the putative SOX9 response element (69

SOX9RE, represented by black bars) and empty reporter vector

(white bars) were co-transfected with RARa and RXRa expression

vectors with or without truncated SOX9 expression vector

(tr.SOX9).Treatment with all-trans retinoic acid (atRA) was done

for 6 h. Results are presented as fold change. The experiment was

done in triplicates and the results are presented as mean values (±SD)
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differentiation, keeping the progenitor cells in an undif-

ferentiated cell pool. Similarly, SOX9 maintains the

pancreatic progenitor cell pool by stimulating its prolifer-

ation and survival [42–44]. HES-1 prevents progenitor

cells from exiting the cell cycle by repressing the cell cycle

inhibitor p57 [43]. However, retinoic acid has been shown

to promote endocrine differentiation. Thus, the develop-

ment of the pancreas does not seem to be in agreement with

the regulation of proliferation of breast cancer cells, with

reference to the roles of retinoic acid, HES-1, and SOX9

regulation.

In contrast to chondrogenesis and organogenesis of the

pancreas, studies suggest that HES-1 plays a different role

than SOX9 in intestinal epithelial cell differentiation. HES-

1 is expressed in putative progenitor stem cells in crypt base

columnar cells and in lower crypt cells, between and above

the Paneth cells, respectively, but not in the Paneth cells

[45]. Results from gain of function and loss of function

studies of Notch cascade/HES-1 indicate that increased

HES-1 expression in progenitor cells results in enterocytes,

whereas lack of HES-1 expression differentiate cells into

secretory lineage cells, which can further differentiate into

Goblet, enteroendocrine, and Paneth cells [44, 46–48].

SOX9 on the other hand, is expressed both in the progenitor

cell pool and in Paneth cells, where SOX9 is needed for

Paneth cell differentiation. In SOX9 knockout mice, there

are no Paneth cells formed although enterocytes, Goblet,

and endocrine cells exist, whereas HES-1 knockout mice

show premature differentiation of Paneth cells [49–51]. The

differences of HES-1 action as an inhibitor of differentiation

in pancreatic organogenesis, intestinal epithelial cells, and

chondrogenesis and as an inhibitor of proliferation of breast

cancer cells, respectively, could be due to Notch-dependent

or Notch-independent regulation of HES-1 expression.

HES-1 has been shown to be regulated, Notch-indepen-

dently, by c-Jun N-terminal kinase (JNK) in human

endothelial cells [52]. Moreover, in HeLa cells, over

expression of HES-1 resulted in repression of cyclin-

dependent kinase inhibitor p27Kip1 followed by a promotion

of proliferation, whereas, following cell cycle arrest, over

expression of HES-1 in PC12 cells led to upregulation of the

cell cycle inhibitor p21 [19, 53]. These data are not in

accordance with our data from breast cancer cells; we nei-

ther see changes of p21 nor of p27 in breast cancer cell lines

MCF-7 and T47D when ectopically expressing HES-1 (data

not shown). This suggests that the mechanisms described in

this paper are likely to be specific to the regulation of breast

cancer cell proliferation.

Acknowledgments We thank Véronique Lefebvre and Gerd
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