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Abstract Gene expression microarrays allow for the high

throughput analysis of huge numbers of gene transcripts

and this technology has been widely applied to the

molecular and biological classification of cancer patients

and in predicting clinical outcome. A potential handicap of

such data intensive molecular technologies is the transla-

tion to clinical application in routine practice. In using an

artificial neural network bioinformatic approach, we have

reduced a 70 gene signature to just 9 genes capable of

accurately predicting distant metastases in the original

dataset. Upon validation in a follow-up cohort, this signa-

ture was an independent predictor of metastases free and

overall survival in the presence of the 70 gene signature

and other factors. Interestingly, the ANN signature and

CA9 expression also split the groups defined by the 70

gene signature into prognostically distinct groups. Sub-

sequently, the presence of protein for the principal

prognosticator gene was categorically assessed in breast

cancer tissue of an experimental and independent valida-

tion patient cohort, using immunohistochemistry. Impor-

tantly our principal prognosticator, CA9, showed that it is

capable of selecting an aggressive subgroup of patients

who are known to have poor prognosis.
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HR Hormonal receptors

HIF-1a Hypoxia induced factor 1 alpha

ROC Receiver operating characteristic

RMH Royal marsden hospital

TMA Tissue microarray

TNP Triple negative phenotype

AUC Area under the curve

Introduction

Breast cancer is a heterogeneous disease where the outcome

and response to therapy is often uncertain due to the com-

plex network of overlapping and interacting molecular

pathways. New strategies are needed to maximise thera-

peutic outcomes while limiting unnecessary over-treatment,

achievable through customised treatment regimens. Previ-

ous studies have shown the ability of microarrays [1] to

successfully predict clinical outcome in a variety of

malignancies [2–6]. In particular, the molecular classifica-

tion of malignant breast tumours using high throughput

technologies including expression arrays and immunohis-

tochemistry screening on tissue microarrays (TMAs), has

successfully identified a number of biologically relevant

subgroups [5, 7–10], showing good association between

group membership and prediction of clinical outcome, tar-

geted treatment and sensitivity to therapeutics [11–13].

Although there has been little overlap between different

studies, more recent meta-analyses have demonstrated

that different signatures identify similar groups of patients

who have tumours with high proliferation rates [14, 15].

However, these meta-analyses have also demonstrated that

most signatures reported to date have a relatively poor

discriminatory power in oestrogen receptor negative disease

[15]. Determining an optimal subset of predictive markers

from microarray data is daunting due to the number of

potential biomarker combinations present in these complex

datasets. As an example, the seminal gene expression array

data of van’t Veer et al. [13] comprised in excess of 24,000

variables (gene transcripts) per sample. More recent gen-

erations of gene chip now contain in excess of one million

variables, further highlighting the requirements for robust

computational analysis methods and emphasising the dif-

ficulties in translating these results to routine clinical

practice.

Given the obvious advantages of analysing high density

microarrays offering large (or even complete) genome

coverage, powerful approaches are required for determin-

ing prognostic gene subsets in breast cancer. One such

approach utilises Artificial Neural Networks (ANNs) to

assess the prognostic potential of each gene transcript

individually in a univariate procedure, and then adding

further genes in a sequential, multivariate manner to

improve upon the classification accuracy [16]. ANNs are a

form of artificial intelligence inspired by learning in human

neuronal systems and have been shown to be capable of

modelling complex systems with high predictive accura-

cies on blind data [3, 17–19]. ANN models are developed

by iteratively changing a network of weights, in response to

predictive error. Predictions are made by mathematically

modifying weights generated from input values (e.g. gene

transcript intensity), in turn producing a predicted output

value (for example, predicted survival). Moreover, the

importance of the individual inputs in generating these

predictions may be determined to define optimal subsets of

biomarkers within the system being analysed. In a previous

study [16], we developed a novel iterative stepwise

approach to ANN modelling. In this study, we have applied

ANN to van’t Veer’s dataset [13] to determine a minimal

set of biomarkers required for the prediction of metastasis

in patients with breast cancer. We identified a panel com-

prising just nine genes predicting tumour metastasis with

98% accuracy. The principal prognostic indicator had a

prediction accuracy of 70% when used independently in

the model and was found to be the hypoxia-associated

enzyme carbonic anhydrase IX (CA9). The prognostic gene

panel was validated on a second gene expression dataset

consisting of 295 cases [20], with CA9 expression dis-

playing an accuracy of 63% in predicting the development

of metastasis in a categorical yes/no fashion. This increased

to 66% when the remaining genes in the signature were

included and was shown to be an independent predictor of

both overall survival and metastasis free survival in this

second cohort. Consequently, we investigated the immu-

nohistochemical protein expression of CA9 as a prognostic

and predictive indicator in an independent patient TMA

containing 552 unselected breast cancers, and in 390 full-

face breast excision tumour blocks comprising an experi-

mental and validation cohort of 160 and 230 patients,

respectively.

Materials and methods

ANN model development to identify a prognostic gene

signature for metastasis

The ANN modelling used a supervised learning approach,

multi-layer perceptron architecture with a sigmoidal

transfer function, where weights were updated by a back

propagation algorithm [21]. Learning rate and momentum

were set at 0.1 and 0.5 respectively. The ANN architecture

utilised five hidden nodes in the hidden layer and ran-

domised initial weights. The output node was coded as 0 if
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the patient showed no evidence of metastasis within

5 years, and 1 if metastasis was evident. Data were

downloaded in Microsoft Excel format from http://www.

rii.com/publications/2002/vantveer.html. This initial set

consisted of 78 samples each with 24,481 corresponding

variables specifying the Log10 expression ratio of each

gene. Prior to ANN training, the data was randomly divi-

ded into three subsets; 60% for training, 20% for validation

(to assess model performance during the training process)

and 20% for testing (to independently test the model on

data completely blind to the model). This Monte–Carlo

cross validation procedure [22] avoids over-fitting of the

data, and has been shown to outperform and to be more

consistent than the commonly used leave-one-out cross

validation [23, 24], which may be a poor candidate for

estimating the prediction error [25].

The forward stepwise approach to biomarker identifi-

cation using ANNs has been previously described in detail

(for specific details the reader is referred to [16]). This

method develops a predictive model containing a parsi-

monious gene expression signature accurately classifying

the cases according to the development of metastasis.

Receiver Operating Characteristic (ROC) curves were

generated to provide statistics regarding the sensitivity,

specificity and area under the curve (AUC) of the model.

Patient selection and TMA preparation

Six paraffin processed TMA blocks containing 555 con-

secutive primary operable invasive breast carcinomas from

patients involved in the Nottingham Tenovus Primary

Breast Carcinoma Series between 1986 and 1993, were

used as detailed previously [10]. The TMA construction

involved sampling donor tissue cores from the tumour

periphery and avoiding regions of obvious necrosis. In

addition, 160 full face paraffin blocks of breast cancer were

selected for comparison because of observed heterogeneity

of CA9 distribution using immunohistochemistry. All cases

used in this study are well characterised and have data on

tissue protein expression for tumour-relevant biomarkers,

comprehensive pathology and long term clinical follow-up

data [10] including information on local, regional and

distant tumour recurrence, and survival outcome. Patients

with ER positive tumours were treated with adjuvant

endocrine therapy whereas patients with a moderate and

poor Nottingham Prognostic Index received chemotherapy.

CA9 protein expression was further validated on a cohort

of 245 patients diagnosed and managed at the Royal Marsden

Hospital (RMH) between 1994 and 2000. Patients were

selected on the basis of being eligible for therapeutic surgery,

being followed up at the RMH, having representative his-

tological blocks in the RMH pathology files, and receiving

standard anthracycline-based adjuvant chemotherapy. All

patients were primarily treated with therapeutic surgery

followed by anthracycline-based chemotherapy. Adjuvant

endocrine therapy was prescribed for patients with ER

positive tumours (tamoxifen alone in 96.4% of the patients

for the available follow-up period). Complete follow-up was

available for 244 patients, ranging from 0.5 to 125 months

(median = 67 months, mean = 67 months). Tumours were

graded according to a modified Bloom–Richardson scoring

system [26] and size was categorised according to the TNM

staging criteria. The project was approved by the Ethics and

R&D committees at NUH and RMH.

CA9 immunohistochemistry and morphometry

Four micron thick paraffin-processed TMA and full face

sections were subjected to microwave antigen retrieval in

citrate buffer (pH 6.0), and then immunohistochemically

stained with an antibody against CA9 on a TechMate im-

munostainer (DakoCytomation, Cambridge, UK). The CA9

rabbit polyclonal antibody (Abcam 15086, Cambridge,

UK) was used at an optimised working dilution of 1:2,500

with a labelled streptavidin biotin (LSAB) technique.

Sections were counterstained in haematoxylin and mounted

using DPX mounting medium. Negative control sections

had non-immune serum substituted for the primary anti-

body and positive control sections comprising high-grade

ovarian cancer with necrotic foci were included in each

immunohistochemistry run.

The immunohistochemically stained TMA and full face

sections were scored with observers blinded to the clini-

copathological features of tumours and patients’ outcome.

Staining was assessed in the cell membrane of morpho-

logically unequivocal neoplastic cells of tumours and in

stromal fibroblasts. The presence of CA9 staining in stro-

mal fibroblasts was recorded because it has previously been

suggested to be of prognostic significance [27]. Presence of

tumour membrane and fibroblast CA9 staining was recor-

ded ‘1’ for affirmative and ‘0’ for negative. Damaged tissue

cores and those that did not contain invasive carcinoma

were excluded from scoring.

Univariate and multivariate statistics

The Chi square test was used for testing the association

between CA9 protein expression and other biomarkers

scored as categorical variables, to produce contingency

tables (Version 15, SPSS Inc., IL, USA). Similarly, the

presence or absence of tumour-associated membranous and

normal stromal cell cytoplasmic CA9 staining was cate-

gorically scored as positive or negative, regardless of

its extent or staining intensity. Kaplan–Meier survival

plots were produced to estimate disease-free interval

(DFI), breast cancer specific survival (BCSS) and the
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development time for metastasis formation. DFI was

expressed as the number of months from diagnosis to the

occurrence of invasive local recurrence, local LN relapse

or distant relapse. Survival rates were compared using the

log rank (Mantel–Cox) test. A P-value of less than 0.05

was deemed significant with 95% confidence intervals.

Results

Development of a signature to predict development

of distant metastasis using ANNs

ANN analysis identified a gene expression signature con-

sisting of nine genes which predicted patient prognosis

with 98% sensitivity and 94% specificity, with an AUC of

0.971 when assessed by ROC curve analysis. The overall

screening process assessed over eleven million individual

models. A summary of performance for the models at each

step is shown in Table 1 and Supplementary Fig. 1. To

further validate the model, an additional set of 19 samples

were downloaded from the same location as the first series

and used as a second order validation set, as in the original

manuscript [13]. This set consisted of 7 patients who

remained metastasis free, and 12 who developed metasta-

ses within 5 years. The novel nine gene expression

signature correctly diagnosed all 19 samples, further

emphasising the models predictive power. The response

curves for these genes were also analysed, with seven of

the nine having strong discriminatory responses (Supple-

mentary Fig. 2 shows the response curve for CA9. The

association between increased expression and development

of metastases is clearly seen).

As seen in Table 1, four of the nine genes showed a

positive association between increased expression and the

probability of developing distant metastases, as output by the

model. Of those four genes, CA9 gave the highest accuracy

(70%) for predicting metastases. On the contrary, three genes

showed an inverse association between increased expression

and the predicted likelihood of metastases. In addition, two

genes showed a weak response in the predicted probability of

developing metastases, possibly modulating the responses of

other genes in an additive fashion.

Validation of ANN findings

Since the ANN gene signature was capable of predicting

the development of metastases to a high degree, the

expression of these genes were further explored and vali-

dated using the NKI295 dataset [20] which includes gene

expression data for a 295 patient cohort. Using the ANN 9

gene signature to classify this series of cases into two

groups showed a significantly reduced overall survival

(P \ 0.001) and metastasis free survival (P \ 0.001)

between groups in univariate Kaplan–Meier analysis

(Supplementary Fig. 3). Interestingly, the ANN signature

was also able to split the groups defined by the original 70

gene signature into prognostically distinct groups

(P \ 0.001). In a multivariate Cox regression model

adjusted for age, nodal status, tumour size, ER status,

therapy type (chemotherapy or hormonal) and van’t Veer’s

70 gene signature, the ANN signature was shown to be an

independent predictor of metastasis free survival (P =

0.003, Hazard ratio = 1.92) and overall survival (P =

0.012, Hazard ratio = 1.89) in this larger cohort (Supple-

mentary Table 1a, b). Furthermore, analysis of CA9 gene

expression in the NKI295 dataset showed a significant

positive association with tumours of a basal-like phenotype

(P \ 0.001) and an inverse association with luminal type

cancers (P \ 0.001). These findings led us to investigate if

Table 1 Summary of the nine genes used in the gene expression signature at each step of model development

Step Input added Gene name Description Cumulative

accuracy (%)

Error Response

1 NM_001216 CA9 Carbonic anhydrase IX 70 0.44 Positive

2 Contig52778_RC EST 80 0.38 Weak

3 Contig35076_RC EST 83 0.38 Negative

4 Contig40557_RC FLJ13409 EST 87 0.35 Positive

5 AB032973 LCHN LCHN protein 80 0.40 Positive

6 AB004064 TMEFF2 Transmembrane protein with EGF-like

and two follistatin-like domains 2

95 0.23 Positive

7 NM_006101 HEC/KNTC2 Kinetochore associated 2 95 0.22 Weak

8 AF161451 HSPC333 HSPC337 96 0.17 Negative

9 Contig33475 EST’s 98 0.15 Weak

Table details the identity of the input added at each step, the gene name (where known) and description. The model accuracy and error when

applied to the independent validation data splits are also shown, together with the direction of response of the gene as it correlated with

metastases
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our gene expression findings could be translated into a

routine immunohistochemistry practice for the principal

prognosticator CA9.

CA9 protein distribution in breast tumours

within the Nottingham patient cohort

CA9 staining was heterogeneously distributed in the cell

membrane of tumour tissue and in the cytoplasm of stromal

fibroblast. CA9 staining of tumours was predominantly

associated with necrotic glandular foci (Fig. 1a, b) but in

contrast, positively stained fibroblasts did not always show

close association with necrotic malignant tissue. In TMAs,

552 cores were readable but comparison with the full face

sections showed lack of concordance (Supplementary

Table 1). Membranous CA9 expression was under-repre-

sented in TMAs due to heterogeneity in CA9 localisation

and because of avoidance of necrotic regions during TMA

construction. Membranous CA9 expression was identified

in 26/552 (4.7%) TMA cores compared with 29/160

(18.1%) full face cases. For these reasons, only data from

the full face sections was used.

Associations between CA9 expression

and other clinicopathological variables

Membranous CA9 staining was significantly increased in

younger patients with high histological grade cancers

(P \ 0.001; Table 2). However, membranous CA9 expres-

sion showed no significant association with menopausal

Fig. 1 CA IX immunostaining (arrow) was detected in breast tumour

cell membrane (a), cytoplasm (b) and stroma (c) in TMA sections but

its frequency was reduced due to its heterogeneous localisation. The

latter is demonstrated in full face sections of ductal cancer (d),

especially in cases showing glandular necrosis (N) (e) associated with

hypoxia. Original magnification a–d 209; e 49
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status, tumour size, lymphovascular invasion (P = 0.056)

or lymph node metastases (P = 0.051; Table 3a, b).

Membrane expressing tumours showed a strong negative

association with the steroid hormonal receptors (HR) [ER,

PgR and androgen receptor (P \ 0.001 each)], and the

luminal cytokeratin CK19 (P = 0.015). Importantly, tum-

ours expressing membranous CA9 showed a triple negative

phenotype (ER-, PgR-, HER2-) [28] and expressed basal-

like markers [CK5/6 (P = 0.001), CK14 (P = 0.02),

BRCA1 nuclear positivity (P = 0.002), p53 (P = 0.001)

and P-cadherin (P = 0.01). No association with E-cadherin

expression was seen (Table 3a, b).

Fibroblast expression

Stromal fibroblast CA9 staining was seen in 26 (16%)

cases; 5 of them showed coexisting membranous and

stromal cell CA9 expression (Table 2). Stromal expression

showed no significant association with tumour size or

menopausal status (Table 3c, d). CA9 expression showed a

trend towards association with p53 (P = 0.06) and lymph

node involvement (P = 0.051), but showed no signifi-

cant associations with the other clinicopathological vari-

ables including HR, E-cadherin, HER2, CK56 or CK14

(Table 3c, d).

Survival analysis

No significant association between membranous CA9

immunohistochemical expression in cancer cells or stromal

cells was observed with BCSS, DFI or local/regional

recurrence.

CA9 protein expression in the validation patient cohort

CA9 protein expression was validated in a cohort of 245

patients, of which 230 could be evaluated for CA9

immunohistochemical expression. Membranous CA9 pro-

tein expression was present in 29 cases. Similar to the

experimental patient group, the validation cohort showed a

significant negative association with ER and PgR expres-

sion (Table 3a, b), and was significantly associated with

triple negative basal-like tumours (P \ 0.001). Similar to

the Nottingham patient group, the validation group showed

no significant association between CA9 expression in

cancer cells or fibroblasts and other clinicopathological

variables including tumour size, vascular invasion, or

patients’ outcome in terms of BCSS and DFI. However,

CA9 staining in the validation group differed in showing a

negative significant association with ER (P = 0.033),

CK5/6 (P = 0.01), and CK14 (P = 0.001), and an absence

of borderline association with lymph node involvement

(P = 0.268; Table 3c, d).

Discussion

The aim of our study was to derive a minimal gene

expression signature predictive of the outcome of breast

cancer patients by applying an ANN approach to analyse a

previously published dataset of breast cancer [13]. We

hypothesised that this signature would be capable of pre-

dicting survival to at least the degree of accuracy obtained

in the original study. Using an ANN approach developed

specifically for the identification of optimal biomarker

subsets in complex data, we found just nine genes were

necessary to predict metastatic spread with sensitivity of

98%. This compares favourably with the computational

approach used in the original manuscript [13] that resulted

in the identification of a prognostic panel comprising 70

genes with a prediction accuracy of 83%. The principal

prognostic indicator in our signature was identified as CA9,

and this gene correctly predicted metastasis in 70% in the

original cohort (van’t Veer’s) and in 63% of the validation

Table 2 Distribution of patients according to localisation of CA9 immunostaining by age, tumour grade and lymph node involvement

Cytoplasmic staining Membrane staining Fibroblast staining

Age distribution

Grade 1 51 (39–59) 44 (44) 55.6 (54–57)

Grade 2 54.5 (28–69) 53.5 (51–56) 49 (41–69)

Grade 3 47 (25–66) 48.8 (25–66) 51.1 (28–67)

CA9 distribution (%) CAIX (?) CAIX (-) CAIX (?) CAIX (-) CAIX (?) CAIX (-)

Grade 1 8/89 (95.5) 20/71 (71.8) 1/29 (3.4) 26/131 (19.8) 3/26 (11.5) 24/134 (17.9)

Grade 2 26/89 (30.8) 31/71 (50) 3/29 (10.3) 54/131 (41.2) 7/26 (26.9) 49/134 (36.5)

Grade 3 55/89 (57.5) 20/71 (15) 25/29 (86.2) 49/131 (37.4) 16/26 (61.5) 55/134 (41)

Node involvement (%)

Lymph node negative 85/89 (95.5) 51/71 (71.8) 28/29 (96.5) 106/131 (80.9) 25/26 (82) 105/134 (78.3)

Lymph node positive 4/89 (4.5) 20/71 (28.2) 1/29 (3.4) 23/131 (17.5) 1/26 (3.8) 23/134 (17.1)
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Table 3 Association between CA9 IHC protein expression with biological markers and clinical parameters assessed in full face sections of

breast tumours, according to the cytoplasmic, membranous, or stromal staining pattern of localisation

Parameter Experimental cohort Validation cohort

Number of samples (%) v2 P value Number of samples (%) v2 P value

CA9(-) CA9(?) CA9(-) CA9(?)

a

Tumour size

Small 59 (88.1) 8 (11.9) 3.194 0.074 180 (86.5) 28 (13.5) 3.117 0.210

Large 70 (76.9) 21 (23.1) 12 (85.7) 2 (14.3)

Menopausal status

Premenopausal 41 (74.5) 14 (25.5) 4.567 0.102 – – – –

Postmenopausal 72 (85.7) 12 (14.3) – – – –

ER

Negative 24 (53.3) 21 (46.7) 27.196 \0.001 28 (66.6) 14 (33.3) 16.946 \0.001

Positive 87 (91.6) 8 (8.4) 161 (90.9) 16 (9.1)

PgR

Negative 38 (64.4) 21 (35.6) 13.746 \0.001 41 (74.5) 14 (25.5) 8.586 .003

Positive 73 (90.1) 8 (9.9) 148 (85) 16 (15)

AR

Negative 23 (56.1) 18 (43.9) 16.401 \0.001 – – – –

Positive 79 (87.8) 11 (12.2) – – – –

P-cadherin

Negative 53 (86.9) 8 (13.1) 4.110 0.043 – – – –

Positive 56 (72.7) 21 (27.3) – – – –

E-cadherin

Negative 47 (87.0) 7 (13.0) 2.984 0.084 60 (85.7) 10 (14.3) 0.055 0.973

Positive 66 (75.0) 22 (25.0) 111 (86.7) 17 (13.3)

b

c-erbb2

Negative 96 (79.3) 25 (20.7) 0.283 0.413 161 (87.5) 23 (12.5) 2.003 0.157

Positive 21 (84.0) 4 (16.0) 25 (78.1) 7 (21.9)

CK5/6

Negative 111 (87.4) 16 (12.6) 27.806 \0.001 172 (89.5) 20 (10.5) 11.685 0.001

Positive 8 (38.1) 13 (61.9) 14 (63.6) 8 (36.4)

CK14

Negative 103 (83.1) 21 (16.9) 6.456 0.011 179 (89) 22 (11) 13.089 \0.001

Positive 11 (57.9) 8 (42.1) 12 (60) 8 (40)

P53

Negative 91 (87.5) 13 (12.5) 14.276 \0.001 130 (86.6) 20 (13.4) 0.207 0.649

Positive 23 (59.0) 16 (41.0) 48 (84.2) 9 (15.8)

Vascular invasion

Absent 87 (79.8) 22 (20.2) 1.353 0.508 61 (83.5) 12 (16.4) 0.762 0.408

Present 42 (87.5) 6 (12.5) 130 (87.8) 18 (12.2)

Lymph node involvement

Absent 106 (79.1) 28 (20.9) 3.801 0.051 68 (85) 12 (15) 0.481 0.531

Present 23 (95.8) 1 (4.2) 121 (88.3) 16 (11.7)

Tumour recurrence

Absent 112 (83.6) 22 (16.4) 2.208 0.137 – – – –

Present 17 (70.8) 7 (29.2) – – – –

Overall survival – – 2.976 0.085 – – 1.310 0.253

DFI – – 2.756 0.097 – – 2.870 0.093
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Table 3 continued

Parameter Experimental cohort Validation cohort

Number of samples (%) v2 P value Number of samples (%) v2 P value

CA9(-) CA9(?) CA9(-) CA9(?)

c

Tumour size

Small 58 (86.6) 9 (13.4) 0.827 0.363 170 (81.7) 38 (18.3) 3.703 0.157

Large 73 (81.1) 17 (18.9) 14 (100) 0 (0)

Menopausal status

Premenopausal 42 (76.4) 13 (23.6) 4.567 0.102 – – – –

Postmenopausal 71 (85.5) 12 (14.5) – – – –

ER

Negative 36 (80.0) 9 (20.0) 0.183 0.669 30 (71.4) 12 (28.6) 4.562 0.033

Positive 78 (114) 16 (17.0) 151 (85.3) 26 (14.7)

PgR

Negative 51 (86.4) 8 (13.6) 0.986 0.321 42 (23.2) 139 (76.8) 2.023 0.155

Positive 64 (80.0) 16 (20.0) 13 (34.2) 25 (65.8)

AR

Negative 34 (85.0) 6 (15.0) 0.288 0.592 – – – –

Positive 73 (81.1) 17 (18.9) – – – –

P-cadherin

Negative 54 (88.5) 7 (11.5) 1.258 0.262 – – – –

Positive 62 (81.6) 14 (18.4) – – – –

E-cadherin

Negative 23 (82.1) 5 (17.9) 0.029 0.865 163 (92.6) 13 (7.4) 1.692 0.429

Positive 96 (83.5) 19 (16.5) 106 (82.8) 22 (17.2)

d

c-erbb2

Negative 9,100 (83.3) 20 (16.7) 0.161 0.688 151 (82) 33 (18) 0.100 0.751

Positive 20 (80.0) 5 (20.0) 27 (84.4) 5 (15.6)

CK5/6

Negative 104 (82.5) 22 (17.5) 0.129 0.72 164 (85.4) 28 (14.6) 6.692 0.010

Positive 18 (85.7) 3 (14.3) 14 (63.6) 8 (36.4)

CK14

Negative 101 (82.1) 22 (17.9) 1.932 0.165 173 (86) 28 (14) 16.621 \0.001

Positive 18 (94.7) 1 (5.3) 10 (50) 10 (50)

P53

Negative 90 (87.4) 13 (12.6) 3.533 0.060 129 (86) 21 (14) 5.570 0.025

Positive 29 (74.4) 10 (25.6) 41 (71.9) 16 (28.1)

Vascular invasion

Present 91 (83.5) 18 (16.5) 1.482 0.477 123 (83.1) 25 (16.9) 0.029 0.865

Absent 39 (83) 8 (17) 60 (82.2) 13 (17.8)

Lymph node involvement

Absent 106 (79.1) 28 (20.9) 3.801 0.051 63 (78.8) 17 (21.2) 1.226 0.268

Present 23 (95.8) 1 (4.2) 116 (88.5) 21 (11.5)

Tumour recurrence

Absent 113 (85.0) 20 (15.0) 1.460 0.227 – – – –

Present 18 (75.0) 6 (25.0) – – – –

Overall survival – – 1.989 0.158 – – 0.120 0.7280

DFI – – 1.431 0.232 – – 0.700 0.4034

P values refer to v2 or log rank test for overall survival. Significance level = \0.05
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cohort [20]. In this validation cohort, the ANN 9 gene

signature was showed to be an independent predictor of

both metastasis free and overall survival, and interestingly,

was able to split the groups defined by the original 70 gene

signature into prognostically distinct groups.

A further aim of our study was to investigate if our

ANN-derived minimal gene panel for predicting poor

prognosis in breast cancer could be successfully translated

into routine practice. To test this, we studied the immu-

nohistochemical localisation of the principle prognosticator

CA9 in unselected breast cancer. Carbonic anhydrases are

induced by hypoxia induced factor 1 alpha (HIF-1a) and

assist cancer cells in avoiding death by neutralising acid pH

conditions associated with hypoxia-induced glycolysis.

Furthermore, it has been proposed that CA9 promotes

tumour migration and invasion via its role in extracellular

matrix degradation and through the induction of growth

factors [29]. These important roles suggest that not only is

CA9 a key candidate prognostic biomarker for determining

clinical outcome, but because of its resistance to degrada-

tion, it could be a more robust marker of hypoxia than HIF-

1a protein [30]. Previously, a number of studies have

shown that over-expression of CA9 is functionally impor-

tant in several tumour types including colorectal [31],

cervical [32] and uterine [33] cancers, and sarcomas [34].

Although the contribution of CA9 as a prognostic marker

in breast cancer has been obscured by conflicting reports,

some authors [35] demonstrated that its expression is

associated with tumours characterised by a basal-like

phenotype and showing reduced patients’ survival,

emphasising the relationship between CA9 expression and

poor prognosis.

In this study, we found membranous expression of CA9

is associated with tumours showing aggressive features

including younger patients’ age, high grade ductal cancers,

basal-like phenotype (CK5/6?, CK14?; ER-, PgR-,

HER2-) and BRCA1 positivity. Such patients showed a

tendency towards reduced breast cancer specific survival

and disease free interval even in the absence of lymph node

involvement. It should be noted, however, that immuno-

histochemical expression of CA9 was not significantly

associated with outcome of breast cancer patients.

Immunohistochemical assessment of CA9 was shown to

be heterogeneously distributed and was frequently associ-

ated with regions showing necrotic foci. Donor tissue used

in TMA construction specifically avoided necrotic regions

resulting in under-representation of CA9 expression. For

this reason, results of full face sections were considered in

our study. Supporting our concern about the unsuitability

of TMAs for studying CA9 expression, Brennan et al. [35]

also identified a reduced frequency (11%) of membranous

expression in TMAs when compared with larger samples of

tumours.

In agreement with others [27, 36, 37], CA9 expression

was identified in the cell membrane of tumour cells and in

the cytoplasm of stromal fibroblast cells. The experimental

and validation patient cohorts were concordant for mem-

brane staining. In agreement with other studies [35, 38] our

data provide further evidence that CA9 occurs in tumours

with features of aggressive clinical behaviour, including

loss of hormonal receptors, showing poor response to

adjuvant endocrine therapy [38].Previously, it was reported

that hypoxia can down-regulate ER expression via tran-

scriptional nuclear factors and this might explain the

observation seen in the current study [39]. In addition,

hypoxia is reported to promote basal tumour-like features

(ER-/HER2-negative, CK5-positive) due to up-regulation

of SLUG gene expression [40]. Here, our data showed that

62% membrane CA9-expressing tumours significantly

associate with the basal markers CK5/6 [41], and have a

triple negative phenotype (TNP) [28], supporting the recent

findings of Van den Eynden et al. [42]. More recently, it

has been proposed that the use of five immunohistochem-

ical markers (ER-, PgR-, HER2-, CK5/6?, EGFR?)

can identify a basal subgroup with a worse prognosis

(10 year BCSS, 62%) than that seen in TNP (10 year

BCSS, 67%) [43]. We showed that 12/29 (41.3%) cases of

membranous CA9 fall in the five marker subgroup and,

similar to Nielsen et al. [43], we found no lymph node

involvement despite their poor prognosis. In addition,

16/26 (61.5%) of the membrane CA9 group were positive

for BRCA1 nuclear IHC positivity [44].

The biological significance of CA9 localization in

fibroblasts is not readily understood but it has been pro-

posed that it might be caused by the effect of HIF-1a
induction factors in these cells due to reasons other than

hypoxia [45]. Further work is required to explore the sig-

nificance of fibroblast CA9 staining.

Other genes identified in our expression signature were

more compatible with a tumour suppressor function,

including TMEFF2 and HEC. TMEFF2 encodes for a

transmembrane protein containing an epidermal growth

factor (EGF)-like motif and two follistatin domains. Our

data showed a negative correlation between TMEFF2

expression and the development of distant metastases,

supporting the study of Gery et al. [46] who showed that

TMEFF2 could suppress the growth of prostate cancer

cells. More recently [47], it was proposed that TMEFF2

suppression may contribute to the oncogenic properties of

c-Myc, thereby promoting cell proliferation, differentia-

tion, and apoptosis. HEC (also known as kinetochore-

associated 2), was shown here to be associated with

metastases with increased expression. Similar findings

have been reported [48] where HEC was identified as part

of an 11 gene signature predictive of disease recurrence

and distant metastasis in prostate and breast cancer.
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Furthermore, elevated HEC expression has been shown to

be associated with poorer prognosis in non-small cell lung

carcinomas [49], and therefore a potential target for treat-

ment of cancers, highlighted further still by Gurzov and

Izquierdo [50]. Four of the nine genes identified in our

panel represent expressed sequence tags (EST’s) and the

associated gene is therefore of unknown function. How-

ever, given their predictive capability with regard to

survival, further analysis is justified.

To conclude, using powerful ANN methodologies, we

have identified a minimal gene signature that is predictive of

outcome at least with a similar degree of accuracy to that

obtained in van’t Veer’s study [13]. Interestingly, this gene

signature was shown to have a similar accuracy in predicting

the development of metastasis and to be an independent

predictor of outcome (metastasis free and overall survival)

in a larger validation series from the same group [21].

Moreover, using immunohistochemistry we confirmed its

practical and translational application. In agreement with

van’t Veer et al. [13] we have shown that whilst single genes

are capable of discriminating between different disease

states, multiple genes in combination enhance the predictive

power of these models. Our signature predicted the hypoxic

marker CA9 as the principal indicator of poor clinical out-

come and although assessment of CA9 protein expression

showed no significant association with patients’ outcome

when compared with our prediction gene panelta, CA9

expression showed association with variables of poor

prognosis and aggressive behaviour. In particular, CA9 is

associated with basal-like and triple negative cancers. Fur-

ther studies of all nine genes in combination using

immunohistochemistry are warranted to assess the prog-

nostic value of this signature in routine practice.
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