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Meta-analysis of gene expression profiles related to relapse-free survival in 1,079 breast cancer patients
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The transcriptome of breast cancers have been extensively screened with microarrays and large sets of genes associated with clinical features have been established. The aim of this study was to validate original gene sets on a large cohort of raw breast cancer microarray data with known clinical follow-up. We recovered 20 publications and matched them to Affymetrix HGU133A annotations. Raw Affymetrix HGU133A microarray data were extracted from GEO and MAS5 normalized. For classifying patients using the selected gene sets, we applied prediction analysis of microarrays and constructed Kaplan-Meier plots. A new classification including all patients was generated using supervised principal components analysis. Seven studies including 1,470 patients were downloaded from GEO. Notably, we uncovered 641 microarrays representing 251 individual tumor specimens among them, which were repeatedly described under independent GEO identifiers. We excluded all redundant data and used the remaining 1,079 samples. Eight of the 20 gene sets were able to predict response at a significance of P \ 0.05. The discrimination of good and poor prognosis groups exclusively relying on gene expression data resulted in high significance (P = 1.8E-12). A model including genes fitted by both gene expression and clinical covariates (lymph node status and grade) contains 44 genes and can predict response at P = 9.5E-7. The outcome provides a ranking of the gene lists regarding applicability on an independent dataset. We established a consensus predictor combining the available clinical and gene expression data. The database comprising expression profiles of 1,079 breast cancers can be used to classify individual patients.

Introduction

Although molecular markers like expression of estrogen and growth factor receptors, pS2, metallothionein, CD24, cathepsin D, ERBB2, and mutations in the TP53 gene all have been correlated to breast cancer prognosis, the use of single marker provides limited information for the prognosis of an individual patient [START_REF] Surowiak | Multivariate analysis of oestrogen receptor alpha, pS2, metallothionein and CD24 expression in invasive breast cancers[END_REF][START_REF] Sorlie | Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications[END_REF]. In view of the molecular heterogeneity of breast tumors and the large number of marker genes involved, studying multiple genetic alterations simultaneously is of utmost importance. With the arrival of microarray technologies, searches for tumor markers can be performed in a discovery-driven manner in high through-put.

The first microarray-based breast cancer studies have revealed distinct clinical phenotypes. Two major types, basal and luminal, have been identified, each with the potential to be subdivided into additional subtypes [START_REF] Sorlie | Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications[END_REF][START_REF] Sotiriou | Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis[END_REF][START_REF] Hu | The molecular portraits of breast tumors are conserved across microarray platforms[END_REF][START_REF] Ivshina | Genetic reclassification of histologic grade delineates new clinical subtypes of breast cancer[END_REF]. Although histological grade can provide clinically important prognostic information, as many as 30-60% of tumors are classified as grade 2. This grade is associated with an intermediate risk of recurrence and is thus not informative for clinical decision making. Gene expression signatures capable of discerning tumors of grade 1 (G1) and grade 3 (G3) histology might provide a more objective measure of grade with prognostic benefit for patients with G2 disease [START_REF] Ivshina | Genetic reclassification of histologic grade delineates new clinical subtypes of breast cancer[END_REF].

Estrogen receptor (ER) status is the only globally accepted treatment predictive factor for hormonal therapy in primary breast cancer. As only a small proportion (7%) of cells in the normal mammary epithelium express ER [START_REF] Petersen | Frequency and distribution of estrogen receptor-positive cells in normal, nonlactating human breast tissue[END_REF], receptor status is the main discriminator in the high proportion of ER? tumors. The ER status of breast tumors has been suggested to either reflect tumor progression with ER-tumors evolving from ER? precursors, or to indicate a distinct origin from different types of epithelial cells in the mammary gland. Metastases from ER? tumors may be ER- [START_REF] Kuukasjarvi | Loss of estrogen receptor in recurrent breast cancer is associated with poor response to endocrine therapy[END_REF] supporting the hypothesis that ER-expressing and ER-negative breast cancers represent different disease entities [START_REF] Gruvberger | Estrogen receptor status in breast cancer is associated with remarkably distinct gene expression patterns[END_REF]. In contrast, a large proportion of the patients with ER? breast cancer do not respond to tamoxifen. These unsolved issues led to a significant number of studies investigating ER status and prognosis in breast cancer [START_REF] Gruvberger | Estrogen receptor status in breast cancer is associated with remarkably distinct gene expression patterns[END_REF][START_REF] Paik | A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer[END_REF][START_REF] Loi | Definition of clinically distinct molecular subtypes in estrogen receptor-positive breast carcinomas through genomic grade[END_REF][START_REF] Oh | Estrogen-regulated genes predict survival in hormone receptor-positive breast cancers[END_REF][START_REF] West | Predicting the clinical status of human breast cancer by using gene expression profiles[END_REF].

While many of these studies presented promising results, most proposed markers were not reproduced in consecutive studies. The proposed best discriminatory genes rarely match in different studies. A major criticism has been that in 90% of early reports the validation set of patients overlaps with the training set [START_REF] Ransohoff | Rules of evidence for cancer molecularmarker discovery and validation[END_REF]. Additional critical issues regarding the use of microarray data for prognostic classification include gene selection bias, error estimation, fragility of gene signatures, and overoptimistic performance estimation due to model over-fitting [START_REF] Buyse | Validation and clinical utility of a 70-gene prognostic signature for women with nodenegative breast cancer[END_REF]. Over-fitting means finding a discriminatory gene pattern by chance. This can happen when large numbers of variables (genes) are assessed for a small number of samples [START_REF] Ransohoff | Rules of evidence for cancer molecularmarker discovery and validation[END_REF].

Michiels et al. re-analyzed data from seven large published studies that have attempted to predict prognosis of cancer patients using data from DNA microarray analysis. They expanded the standard strategy based on unique training and validation sets by using multiple random sets. The list of genes identified as predictors of prognosis was highly unstable; molecular signatures strongly depended on the selection of patients in the training sets, the proportion of misclassified patients decreased as the number of patients in the training set increased. Five of the seven studies did not classify patients better than chance [START_REF] Michiels | Prediction of cancer outcome with microarrays: a multiple random validation strategy[END_REF]. Thus, information based on microarray analysis requires independent validation in distinct data sets [START_REF] Ioannidis | Microarrays and molecular research: noise discovery?[END_REF]. While the use of microarray technology as a diagnostic tool can potentially revolutionize current breast cancer management, critical scientists advocate further studies with profiling of larger cohorts using single microarray platforms before prospective clinical use of molecular classifiers can be contemplated [START_REF] Naderi | A gene-expression signature to predict survival in breast cancer across independent data sets[END_REF].

In present study we aimed to perform a large-scale meta-analysis to compare several different gene sets for predicting relapse in a set of raw microarray data accessible through Gene expression omnibus (GEO). A second aim of the study was to establish a consensus predictor combining all suggested genes and available patient samples.

Methods

Included raw microarray studies

We systematically searched GEO (http://www.ncbi.nlm. nih.gov/geo/) using the keywords ''breast cancer'' and ''gpl96'' (platform accession for Affymetrix HGU133A microarrays). Only studies publishing data for more than 20 patients with available clinical information were considered. Seven studies published such raw data in GEO, which were downloaded.

Included gene lists

We have searched Pubmed using the keywords ''breast cancer'' and ''microarray''. The search was then limited to studies in English with Pubmed accessible text. Only genome-wide association studies were selected. Studies investigating \20 patients or publishing \5 genes were excluded from the study.

Annotation and matching to the Affymetrix IDs was performed using the Affymetrix Netaffx analysis centre (http://www.affymetrix.com/analysis/index.affx). For the construction of the matched gene lists the available gene identifiers (Unigene ID, Genbank Accession, gene symbol, Affymetrix ID) were used. The datasets were combined using Microsoft Access 2007.

Statistical analyses

The downloaded data was MAS 5.0 normalized in the R statistical environment (http://www.R-project.org). MAS5.0 applies normalization on an individual chip; it has excellent specificity and good sensitivity. As MAS 5.0 it is the factorydefault normalization method, in the future even single microarrays can be added to our table.

In order to apply the gene sets we used the updated version of the ''Prediction Analysis for Microarrays'' (PAM) [START_REF] Tibshirani | Diagnosis of multiple cancer types by shrunken centroids of gene expression[END_REF] which uses a semi-supervised method to predict patient survival [START_REF] Bair | Semi-supervised methods to predict patient survival from gene expression data[END_REF]. PAM was performed in a leave-one-out cross validation and the threshold was set to include all genes in the prediction. When investigating datasets with GEO available microarrays, the original dataset was excluded from the analysis. PAM is a modification of the nearest-centroid method and was applied as previously described.

For establishing a new, consensus predictor, the BRB Arraytools 3.6.0-beta_3 package was used (developed by Dr. Richard Simon and Amy Peng Lam, available at http://linus.nci.nih.gov/BRB-ArrayTools.html). Instead of using a separate test-set and training-set we performed a leave-one-out cross validation to assess the performance of the new predictor. When investigating the gene sets of the seven studies delivering the GEO data, the samples resulting from the corresponding study were excluded from the analysis to avoid inclusion of the training set (the original samples the gene list was derived from) in the test set. An overview of the applied analytical pathway is depicted on Fig. 1.

Using a new approach implemented in BRBArrayTools we evaluated whether the expression data provides more accurate predictions than that provided by the two other significant clinical covariates, lymph-node status and grade. Here, an additional model is developed for a combination of the covariates and the expression data. For each cross-validated training set, genes are selected which add to predicting survival over the predictive value provided by the covariates. The principal components of those genes are computed and a model fitted containing the covariates and the supervised principal components. The survival risk group for the patient omitted from that training set is predicted using that composite model. Finally a P value is determined which measures whether the expression data adds significantly to risk prediction compared to the covariates.

Descriptive statistics, significance for clinical variables and survival plots were constructed using the Winstat for Excel software.

Results

Creating a non-redundant database for breast cancer specimens subjected to expression profiling Altogether, GEO listed 1,470 raw GPL96 microarray samples from published studies. When surveying the clinical data, we observed a high similarity between some studies. Therefore, we compared the gene expression data of all microarrays and identified 641 redundant samples related to 251 individual raw microarray files first published in GEO under the series accession number GSE3494. The remaining datasets (GSE2990, GSE4922 and GSE6532) include 389 microarrays identical to GSE3494 but supplemented with additional clinical information (some microarrays were deposited more than twice). We have listed the redundant GSE3494 samples in Supplemental Table 1 for future reference. The database includes the GEO series accession numbers, the GEO sample accession numbers and the average of normalized expression values of all transcripts for a given sample. We found identical average expression values only on identical microarrays. As none of the publications showed the complete clinical information, we merged the individual clinical features into one database (Table 1). The complete dataset containing the normalized expression values of the 1,079 chips is shown in Supplemental Table 2. The Supplemental Table 3 containing the detailed clinical information records includes all available clinical data for each patient. We excluded all redundant samples for the statistical analysis totaling 1,079 microarrays.

Meta-analysis of published gene sets

Twenty-four published studies representing 20 gene sets with discriminatory potential for clinical relapse were included in the study. If several gene lists were available in these studies, we selected the most extensive one exhibiting statistical significance. The gene lists are summarized in Table 2.

For the meta-analysis of the previously published breast cancer associated genes we used Prediction Analysis of Microarrays to predict the risk of relapse using the nonredundant set of microarrays. The analysis was performed independently for all 20 published discriminatory gene

GEO raw datasets, n=7

(Table 1)

Gene sets, n=20

Normalization: MAS5 (Table 2 sets. Eight of them were able to predict relapse at a P value \0.05 (Table 2). Using PAM we also constructed the training error plots to estimate the performance of top discriminatory genes defined in these studies. Notably, even gene sets exhibiting low overall predictive ability contained some top genes capable of discriminating patient tumors with or without relapse (data not shown).

Establishing a new predictor for relapse-free survival

We have computed a new predictor based on all genes associated with breast cancer and all available microarrays. In this setting only the gene expression data was used. In the supervised principal component analysis the threshold was set to 0.001 to fit Cox proportional hazard model. The best discriminatory gene signature contains 376 genes (Supplemental Table 4) and the result of a leave-one-out discrimination has a significance of 1.8E-12. The Kaplan-Meier survival plot is presented in Fig. 2.

We have calculated the predictive power of the available clinical variables: lymph node status (P = 0.01) and grade (P = 0.0005) were significant, while ER status (P = 0.11) was not predictive for relapse-free survival (Fig. 2). Therefore, the predictive calculation was extended to evaluate whether the expression data provides more accurate predictions than that provided by the two other significant clinical covariates, lymph-node status and grade. Forty-four genes performed over the adjusted clinical covariates. The prediction based on these genes and the clinical covariates was highly significant (P = 9.5E-7) and is presented in Fig. 2 and the gene list in Supplemental Table 3.

Establishing a database for future predictions All available MAS 5.0 normalized microarray expression data were merged into a large training set to permit inclusion of new patient data as test samples and to allow classification of those in a straight forward manner. The complete data set of all samples with complete clinical information (and the necessary experiment descriptor file) is available as Supplemental Tables 5 and6 in a BRB-ArrayTools compatible format for independent application.

Discussion

We have critically assessed the potential of microarray data for predicting relapse-free survival in breast cancer patients based on a large cohort of tumor samples (n = 1,079) previously collected in and documented by different clinical centers. The gene lists which were developed to predict prognosis generally outperform those [27] Only MAS5 data. Used complex analysis including different techniques. Validated in [START_REF] Desmedt | Strong time dependence of the 76-gene prognostic signature for node-negative breast cancer patients in the TRANSBIG multicenter independent validation series[END_REF] and [START_REF] Foekens | Multicenter validation of a gene expression-based prognostic signature in lymph node-negative primary breast cancer[END_REF] 76 transcripts 0.00001 (gse2034 excluded)
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As of [START_REF] Wang | Gene-expression pro-files to predict distant metastasis of lymph-node-negative primary breast cancer[END_REF] Validation of predictor [START_REF] Foekens | Multicenter validation of a gene expression-based prognostic signature in lymph node-negative primary breast cancer[END_REF] --198

As of [START_REF] Wang | Gene-expression pro-files to predict distant metastasis of lymph-node-negative primary breast cancer[END_REF] Validation of predictor [START_REF] Desmedt | Strong time dependence of the 76-gene prognostic signature for node-negative breast cancer patients in the TRANSBIG multicenter independent validation series[END_REF] Unavailable online software used for analysis --651

As of [START_REF] Paik | A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer[END_REF] Prediction of chemotherapy benefit [START_REF] Paik | Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer[END_REF] Used focusing on ER receptor or subtype. Our results provide a ranking of published predictors with regard to their applicability on independent data sets. The best discriminative pattern can be reached by including all available samples. When screening relevant publications and entries in public databases, we detected 389 microarray-based data sets that had been repeatedly entered in GEO with new accession numbers. Since the inclusion of repeated microarray data that were not derived independently could result in overoptimistic classification and lack of reproducibility in validation studies, we emphasize the necessity for curating public databases to eliminate such anomalies. Another comparative analysis was based on 374 genes extracted from published gene lists relevant for breast cancer prognosis [START_REF] Lauss | Consensus genes of the literature to predict breast cancer recurrence[END_REF], but did not validated the original gene sets like our study. The authors included redundant samples from GSE2990 and GSE4990. Although their repeatedly validated gene-set predicted clinical response better than tumor size, lymph node status, ER status and grade, the presence of redundant data might influence their results.

Predictions of clinical outcome based on gene expression patterns were met with some skepticism, because multiple, non-overlapping gene sets were able to predict molecular phenotypes correctly. For example, a recent study on microarray data related to breast cancer, renal tumors and lymphoma and including clinical information compared the prediction errors using different training sets. The results suggested that expression profiles established in this way showed little overlap [START_REF] Gormley | Prediction potential of candidate biomarker sets identified and validated on gene expression data from multiple datasets[END_REF]. We achieved significant prediction success using different gene sets established on different microarray platforms, and therefore we provide additional support to this finding.

To increase the significance of the prediction, we have used all available samples to build the consensus predictor instead of splitting the microarray data into a training and test set. Ntzani et al. found by investigating 84 diverse microarray studies that significant associations were 3.5 times more likely when the sample size was doubled and 9.7 times more likely when the number of microarray probes were increased tenfold [START_REF] Ntzani | Predictive ability of DNA microarrays for cancer outcomes and correlates: an empirical assessment[END_REF]. These authors also advocated the use of complete cross validation in order not to inflate the predictive power [START_REF] Ntzani | Predictive ability of DNA microarrays for cancer outcomes and correlates: an empirical assessment[END_REF]. Accordingly, we included all samples in the initial training set and the Kaplan-Meier plot was based on the results of a leave-oneout cross validation (LOOCV). The LOOCV provides a nearly unbiased estimate of the true error rate of the classification procedure [START_REF] Simon | Pitfalls in the use of DNA microarray data for diagnostic and prognostic classification[END_REF]. At the end of the LOOCV process, we have constructed different models for each sample only to estimate the prediction error. The model that is suggested for future predictions is the one constructed at the beginning using all 1,079 samples.

We used the supervised principal component analysis and the prediction analysis of microarrays for classification. More sophisticated algorithms do not perform better than the simple ones as shown by Dudoit and colleagues who have evaluated simple-diagonal linear discriminant analysis and nearest-neighbour classification-and complex-classification trees and machine-learning techniques such as bagging and boosting-classification methods [START_REF] Dudoit | Comparison of discrimination methods for the classification of tumors using gene expression data[END_REF]. The analysis was performed after mapping the gene sets to a single platform. This mapping relies on the proven fundamental assumption that different microarrays are capable to reproducibly measure gene expression [START_REF] Shi | The MicroArray Quality Control (MAQC) project shows inter-and intraplatform reproducibility of gene expression measurements[END_REF].

In our study we demonstrate that different microarray datasets can be used to predict relapse in an independent dataset established using single channel microarrays. In this context, our study is a validation for the original studies using a much larger patient cohort. Finally, we established a database incorporating the genes from 20 microarray studies and gene expression data for 1,079 patients. This BRB Arraytools compatible database in an easily extendable format and can be used to validate future studies or to classify individual patients.
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 1 Fig.1Overview of the applied analytical pathway
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 2 Fig.2Kaplan-Meier survival plot for all patients using the best 376 genes, lymph-node status, ER status, grade and the top 44 genes fitted by both gene expression and covariates (lymph node status and grade)
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Table 1

 1 Descriptive statistics of the raw datasets used in the study

	Reference			[26]	[27]	[28]	[3]	[ 5]	[10]	[29]				
	Number of	individual	CEL files	159	286	251	102	1	82	198		1,079		
	Relapse event Average Age (year) Size (mm) Number of Number of	relapse free published included GSE3494	survival CEL files CEL files	40 (25%) 6.2 ± 2.3 NA NA 159 0	107 (37%) 6.5 ± 3.5 NA NA 286 0	NA NA 62 ± 14 2.2 ± 1.3 251 (251)	67 (35%) 6.6 ± 3.9 56 ± 12 2.2 ± 1.1 189 87	89 (36%) 7.1 ± 4.3 62 ± 14 2.2 ± 1.3 249 247 b	44 (34%) 5.6 ± 3.2 64 ± 10 2.6 ± 1.2 138 56	91 (46%) 9.3 ± 5.6 46 ± 7 2.2 ± 0.8 198 0	438 (36%) 7.0 ± 4.2 58 ± 14 2.3 ± 1.4 1,470 641	386 (36%) 9.0 ± 3.4 56 ± 13 2.3 ± 1.2 251		excluding redundant samples, only these arrays were included in the analysis
	GEO ID Grade: 1/2/3 Proportion of ER? Proportion	of lymph	node?	GSE1456 28/58/61 NA NA	GSE2034 a NA 209 (73%) 0	GSE3494 67/128/54 213 (85%) 84 (33%)	GSE2990 64/48/55 147 (78%) 30 (16%)	GSE4922 68/126/54 211 (85%) 81 (33%)	GSE6532 1/94/4 114 (88%) 55 (43%)	GSE7390 30/83/83 134 (68%) NA	TOTAL 258/537/312 1,028 (79%) 250 (30%)	TOTAL c 123/206/151 700 (77%) 121 (13%)	NA not available	a Only MAS5 data; b one additional CEL file is from GSE2990; c

  The analysis results correspond to the P value of a Kaplan-Meier after classification of patients described in Table1with PAM using the matched set of genes published

			Relapse P value:	Kaplan-Meier survival			0.99			0.88			0.44			0.044 b			-				0.09		0.64			0.87		0.00007			-	0.033 a	0.018			0.00071		
		Analysis results	Number of matched for	HGU133A (=markers	used for analysis)		75 transcripts			149 transcripts			35 transcripts			331 transcripts			-				329 transcripts		242 transcripts			256 transcripts		13 transcripts			-		19 transcripts	30 transcripts			91 transcripts		
	Table 2 continued	Summary of the study	Number Platform Number of Classification problem Reference Remark	of markers in	patients published set	Main focus on estrogen receptor	58 cDNA 50 genes List of genes which [8] Used Artificial neural network and Hclust	microarray, discriminate according	6,728 genes to ER status	49 Affymetrix 100 genes Discrimination of [12] Used a Bayesian regression model	HuGeneFL estrogen receptor	status	668 RT-PCR 16 ? 5 genes Recurrence of tamoxifen-[9] Used a multistep statistical approach	treated node-negative	breast cancer	65 Agilent whole-822 genes Estrogen regulated genes [11] Used SAM	genome predict survival in	microarrays ER? patients	335 As of [3] Clinical outcome in [10] Study includes additional samples from [3]	Tamoxifen-treated	ER? breast cancer	Main focus on differentiating subtypes	78 cDNA array, 264 cDNA To identify tumor [2] Used SAM and Hclust. Validated in [41]	8,102 genes clones subclasses	189 Affymetrix 242 transcripts Histological grade [3] Used complex analysis to calculate the Gene	HGU133A Grading Index. 128 transcripts in an	unpublished list.	105 Agilent human 306 genes Tumor classification into [4] Used SAM and Hclust	oligo arrays subclasses	249 Affymetrix 18 transcripts Genetic grade signature [5] Used PAM and SWS	HGU133A to differentiate G1 and	and B G3	Cox proportional hazards model	The values in bold denote significance at P \ 0.05	244 In silico 7 genes Prognostic signature for [39] Used PACK a P ER-tumors = 0.08 if ER? samples excluded; b with batch adjustment for ER status, without adjustment P = 0.08	162 cDNA array 21 genes Signature to predict [40] Used PAM, SAM, and correlation	with 10,368 breast cancer outcome	spots	135 Agilent human 70 genes Prognostic signature [17] Used Cox-clustering	1A oligo	microarray
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