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Abstract The capercaillie has been negatively affected by
the loss of mature forests. However, forestry creates young
plantations offering a superabundant food supply for
moose. Using two spatial scales, we tested whether the
landscape-level environmental requirements of the caper-
caillie and moose differ. We compared the spatial associ-
ation between the abundances of the two species in 50-×
50-km grids and, using a set of regression models, analyzed
how it was affected by various land use variables in five
regions of Finland. Both species were generally most
abundant in the same grid cells. Moreover, the association
between abundance and several landscape variables was
very similar for both species. Forest cover had a positive
impact on both species in Eastern and South-Western
Finland. Only in Western Finland was the capercaillie more
positively associated with older forest than the moose.
Human impact variables were negatively related to both
capercaillie and moose abundance in Eastern and South-
Western Finland, the effect being stronger for capercaillie.
In Northern Finland, human impact turned positive. Our
results highlight that, on broad landscape and regional

scales, we might not need to make trade-offs in manage-
ment decisions concerning capercaillie and moose. While
considering regional land use planning, the primary goal for
both species seems to be to secure large areas of forest,
preferably at a distance from human settlement.

Keywords Forestry . Game management .

Landscape ecology .Macroecology .Wildlife triangle

Introduction

The capercaillie (Tetrao urogallus) and moose (Alces alces)
are fundamentally important elements of the northern
boreal forest fauna. The capercaillie is generally considered
as a species of the wilderness, avoiding humans (e.g., Helle
et al. 1994; Storch 2000a), while the moose exploits
cultivations and forest plantations in an opportunistic
manner (Haagenrud et al. 1987; however, see Nikula et al.
2004). The importance of young forest classes for moose
(Cederlund and Okarma 1988) seems to be in contrast to
the preference of mature stands by capercaillie (e.g.,
Seiskari 1958; Angelstam 2004). Both species have a long
history of coexistence with people, as a desired target for
hunters and also regarding social, cultural, and spiritual
values (e.g., Taavitsainen 1980; Storch 2000b). However,
their contrasting population development has created a
situation where the moose, although still the most valuable
species for hunters, is often regarded as a pest among the
general public due to increased traffic collisions and
damage to forestry and agriculture (Child and Stuart 1987;
Haagenrud et al. 1987; Lavsund 1987), whereas the
capercaillie is considered as a focal symbol of healthy
forests with potential umbrella species characteristics
(Lindén 2002a; Suter et al. 2002; Pakkala et al. 2003).
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In Finland, the winter populations of moose have
increased from some hundred individuals in the 1920s to
approximately 100,000 individuals in 1980, the most recent
estimate being 86,000 individuals (Fig. 1; Nygrén 1987,
1996; Pusenius et al. 2008). The enormous increase in pine
plantations, well-designed selective harvesting, and very
small populations of large carnivores have been thought to
be responsible for the increase (e.g., Nygrén 1987;
Cederlund and Okarma 1988). In contrast, the abundant
capercaillie populations in the first half of the twentieth
century have seriously declined, and in Finland, only 20–
60% of the earlier populations are left, depending on the
region (Fig. 1; Lindén 2002b). This decrease is usually
associated with the effects of forestry and other human land
use, leading to habitat loss, forest fragmentation, and
habitat deterioration (e.g., Bevanger 1995; Baines and
Summers 1997; Storch 2000a; Ludwig et al. 2008).

Habitat suitability models created for both capercaillie
and moose suggest that habitat variables may differ in
importance according to the spatial scale (Dussault et al.
2005; Graf et al. 2005). Thus, analyses on many spatial
scales are required to build a realistic model (e.g., Wiens
1989; Levin 1992). Habitat suitability models for moose
combine information on food availability and cover, thus
stressing the importance of deciduous trees and young pine
plantations at the forest stand and home-range scales but
mature (≥30 years old) coniferous forests at the landscape
level (e.g., Allen et al. 1988; Heikkilä and Härkönen 1993;
Dussault et al. 2005, 2006). For capercaillie, the total
proportion of forest and bilberry cover have been found to
be the most important predictors of species occurrence at
home-range and landscape levels (Storch 1993a; Helle et al.
1994; Graf et al. 2005, 2007; Miettinen et al. 2008), but
mature (>50 years old) successional stages are usually
preferred at the forest stand scale, especially by older males
(e.g., Gjerde and Wegge 1989; Storch 1993b). However,
young thinning forests (typically 30–55 years old) have
more recently been found to be positively associated with

capercaillie density throughout Finland (Miettinen et al.
2008), and capercaillie males have formed new lekking
sites in young (26–46 years old) forests both in Norway and
in Finland (Rolstad et al. 2007; Valkeajärvi et al. 2007).

When broadening the scope from habitat and landscape
levels (i.e., a mosaic of habitats, sensu Forman and Godron
1986) to a large-scale environment (i.e., mosaic of land-
scapes), different biological variables may become impor-
tant. Macroecology aims to reveal the general mechanisms
behind broadly occurring patterns and processes on
organism, population, and ecosystem levels (Smith et al.
2008). From a species conservation perspective, it is
especially important to examine the contribution of human
activities to these patterns (Gaston 2004), such as how
human influence is shaping the abundance and distribution
of species and species richness (Pautasso 2007; Smith et al.
2008). In many cases, macroecological studies can provide
tools for better informed land use planning and manage-
ment decisions, not only considering spatial scale informa-
tion (e.g., Whittingham et al. 2007; Fortin et al. 2008) but
also temporal scales (e.g., Webb et al. 2007).

The suggested polarity in the habitat use of capercaillie
and moose has led us to test whether these two species also
differ in their responses towards large-scale human land use
and forestry activities. In other words, we have sought to
determine whether trade-offs are necessary in decisions
concerning large-scale land use planning and the manage-
ment of these two species (trade-off hypothesis). In this
paper, we assess whether (and how) differences between the
responses of the species exist on two spatial scales: in 50-×
50-km grids and in five regions that cover the whole of
Finland.

Materials and methods

Species abundance data and spatial scales

The abundance of capercaillie and moose (Table 1) was
examined using data from the wildlife triangle scheme (see
Lindén et al. 1996). The wildlife triangle network consists
of 1,650 triangles, from which 800–900 are counted twice a
year, in winter (January–March) and in late summer,
(August) mainly by volunteer hunters. The network covers
Finland in a regionally representative way. These census
routes are equilateral triangles with 4-km sides, thus
forming a route of 12 km. Moose abundance is estimated
in winter by counting snow tracks crossing the census line
(tracks/10 km/day), whereas capercaillie abundance is
based on grouse counts during August, using the same
triangles (individuals per square kilometer of forest land).
All grouse species are counted in a 60-m-wide census belt
using a three-person chain (Rajala 1974).

Fig. 1 The abundance estimates of capercaillie and moose, attained
from wildlife triangle data, from 1964 to 2008
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We pooled the data from individual triangles and
calculated the species abundances for 50-×50-km grid cells
(n=131) that cover the whole of Finland (Fig. 2). The grid
cell system was selected as the first spatial scale for several
reasons. First and foremost, we were interested in the effects
of land use patterns on large-scale differences in the
abundances of capercaillie and moose, and we assumed that
the patterns behind these differences indeed operate at
relatively broad spatial scales (e.g., Kie et al. 2002;
Mikusiñski and Angelstam 2004; Miettinen et al. 2008)
and rely mostly on population-level processes, such as birth,
death, immigration, and emigration (e.g., Andrewartha and
Birch 1954). Our approach was not to concentrate on
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Fig. 2 The wildlife triangle network in Finland, including the grid cell
(50×50 km) system used in the analyses and the five regions: South-
Western (SW; n=23), South-Eastern (SE; n=14), Western (W; n=19),
Eastern (E; n=24) and Northern (N; n=51) Finland. Two grid cells in
Northern Finland were excluded from the statistical analyses (total n=
129) and one from correlation calculations (total n=130)
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individual habitat selection, although some of the large-scale
phenomena we describe may be a result of processes
operating at smaller scales (e.g., individual or local landscape
scale; Johnson 1980).

Second, we needed a scale that could offer a represen-
tative sample of observations (here, wildlife triangles).
During the study period (1989–1996), there were on
average 51 wildlife triangle counts (range, 3–210, SD=
28.8) in every grid cell; thus, more than 600 km per grid
cell was covered during that time, and almost 79,000 km
nationwide. The abundances within the grid cells are
therefore likely to be representative. Moreover, seasonal
movements of moose extend over areas within a maximum
radius of about 30–40 km in Finland (Heikkinen 2000).

Finally, we aimed to incorporate the assumed regional
differences in Finland regarding the moose–capercaillie
trade-off in linear regression models. Thus, as the second
spatial scale, we selected five study regions in Finland (Fig. 2;
see details in “Statistical analyses”). South-Western Finland
is under the heaviest human impact, with large areas being
reserved for cultivated fields (mean=21% of the grid cell
area) and human settlement. In the eastern areas (Eastern
and South-Eastern Finland), the area under cultivation is
small (7–11%) compared to other parts of the country,
whereas the total area of water bodies is dramatically larger
in the east compared to the west (Table 1). Northern Finland
is probably the most distinctive region, with the lowest
overall productivity, the oldest average age of the forest, and
the lowest degree of human impact (see Table 1).

Land use data

The land use data were compiled from multiple sources.
Forest variables were derived from the Finnish Forest
Research Institute’s 8th National Forest Survey 1986–1994
(Tomppo et al. 1998). The proportions of predominant tree
species and the age and development classes were
calculated for each municipality and subsequently as
averages for each 50-×50-km grid cell using the relative
proportions of the municipalities as weights. The total
proportion of forest land (TPF) included all the forest with
an average growth of ≥1 m3ha−1year−1 (Table 1). Unpro-
ductive forest area included idle land and other forest areas
with an average growth <1 m3ha−1year−1 and was
calculated as a proportion of TPF. The proportions of forest
under 40 years and over 60 years, as well as the average
age of forest, were all calculated from the separate age
classes. The percentage cover of agricultural fields and
water bodies, the amount of settlement (number of people),
and the total length of roads were derived from digital maps
(sources: National Land Survey of Finland, Finnish Road
Administration, and Finland’s environmental administra-
tion). The amount of scattered settlement was calculated as

the number of people living outside of population centers
according to the community planning follow-up system of
Finland’s environmental administration in 1990.

Statistical analyses

First, we characterized the relationship between the abun-
dance of capercaillie and moose by calculating correlation
coefficients separately for 130 grid cells throughout Finland.
One grid cell had to be excluded from the calculations because
of the lack of data. The correlations were calculated using the
species-specific average abundances in wildlife triangles over
the years 1989–2007 in order to emphasize the role of spatial
variation and minimize the roles of random variation and
temporal trends in our analyses. We used Spearman’s rank
correlation because the assumption of normality may not hold.
The pattern of correlations does not consist of independent
values because of the spatial autocorrelation between grid
cells. However, we present this correlative surface map as
indicative evidence of the spatial contexts defining the
relationships between the two species (Fig. 3).

Secondly, in order to examine the differences in require-
ments between capercaillie and moose, we continued our
analyses with a set of linear regression models using the
compositional aspects of land use and the structural aspects
of forestry as explanatory variables. This approach was
based on elaboration, a technique that is widely used to
analyze multivariate data in social sciences (Babbie 1987).
Elaboration has been applied in ecology by Penttilä et al.
(2006), Pellikka et al. (2007) and recently by Kukkonen et
al. (2008). The main idea of these analyses was to explore
in which contexts and how strongly the assumed difference
between species abundances was supported by the data, i.e.,
which aspects suppress or mask and which seem to promote
the contrast (if any). Following this idea, we analyzed how
the association between the abundance of capercaillie and
moose, represented by a regression slope, changed when
variables were included alone or as combinations in the
regression model. The former enabled us to generally
examine the effects of independent and dependent varia-
bles, whereas the latter reduced the role of indirect effects
associated with the other included independent variables.

In the analyses, the dependent variable was capercaillie
abundance averaged over the years 1989–1996 to tempo-
rally correspond as closely as possible with our land use
data. Moose abundance was included as the first explana-
tory variable in the model, and it was retained in the model
throughout the modeling procedure (see Table 2). We also
performed the same modeling, with moose abundance as the
dependent variable, but the interpretation of the results
remained the same.Where the absolute value of the regression
slope (describing the relationship between capercaillie and
moose abundance) drastically decreases to near zero follow-
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ing the inclusion of a variable, this may, regardless of the
change in P values, indicate that the variable in question is
connected with the difference in species abundances.
Conversely, an increase in the absolute value of the slope
may reveal variables possibly masking the contrast.

We then included those explanatory variables in the
model that, according to the literature, should reveal a
difference between the species abundances (Table 1). Both
capercaillie and moose use forest as their primary habitat.
However, the capercaillie has long been thought to be an
old forest specialist (e.g., Rolstad and Wegge 1987a) or at
least the species seems to prefer older forest classes
whenever they are sufficiently abundant in the landscape
(Angelstam 2004), while the moose favors young forests

(Cederlund and Okarma 1988). Thus, we first included the
factor AR (age-related variables) into the model, i.e., we
performed a stepwise selection among the following
variables: (1a) the average age of the forest (AVE), (1b)
the proportion of forest under 40 years old (<40), and (1c)
the proportion of forest over 60 years old (>60). In Norway,
capercaillie habitat was classified as old forest when forests
were aged 50 years and older (Gjerde and Wegge 1989).
Lekking grounds were mainly found in forest patches older
than 60–70 years (e.g., Rolstad and Wegge 1987a).

Secondly, we included the factor HI (human impact
variables) in the model, i.e., the following variables were
included in the stepwise selection: (2a) the number of people
in scattered settlements in 1990 (SCA) and (2b) the total
number of people in settlements in 1990 (SET). Here, we did
not want to make any presuppositions about the order of
factors AR and HI. Therefore, we tested whether our
statistical reasoning was sensitive to the order of inclusion
of AR and HI variables. We found that the variables were
redundant with respect to the order of inclusion.

Finally, we included (3a) the TPF and (3b) unproductive
forest area in the model using stepwise selection. This was
because not only forested areas but also the unproductive
forest may play an important role in determining the species
abundances. A priori, these two variables should be
considered as the least powerful ones explaining the
proposed differences in the species responses because both
capercaillie and moose are forest animals and probably
benefit from high fertility, especially in the northern parts of
the country (Pellikka et al. 2006). Thus, we included both
the age-related forest variables and the human impact factor
and examined whether the remaining variation could be
explained by the more general forest landscape and soil
fertility effects. The criterion of inclusion and exclusion of
variables was always kept at P=0.05.

Table 2 The modeling steps for the dependent variable “capercaillie
abundance”

Step Model Condition

1 MOOSE

2 MOOSE+AR stepwise selection MOOSE forced
into the model

3 MOOSE+AR+HI stepwise selection MOOSE forced
into the model

4 MOOSE+AR+HI+TPF+UFA
stepwise selection

MOOSE forced
into the model

The criterion for inclusion and exclusion of variables by stepwise
selection was always P=0.05

MOOSE moose abundance, AR age-related variables (i.e., average age
of the forest, proportion of forest under 40 years old, proportion of
forest over 60 years old), HI human impact variables (i.e., the
scattered and total settlement in 1990), TPF total proportion of forest
land, UFA unproductive forest area

Fig. 3 A correlative surface map illustrating the relationship between
the abundances of capercaillie and moose, averaged over the years
1989–2007. The values are Spearman’s rank correlation coefficients
calculated for every 50-×50-km grid cell. Significant (P≤0.05)
correlations are marked with a bold rim
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We conducted the analyses for five separate regions (Fig. 2;
see also Pellikka et al. 2006), i.e., South-Western (n=23),
South-Eastern (n=14), Western (n=19), Eastern (n=24), and
Northern Finland (n=49), in order to take regional character-
istics in the landscape into account. We excluded two zero
moose abundance cells in Northern Finland from the
statistical analyses. In all cases, the residuals of the models
were normally distributed. Statistical analysis was performed
with SPSS 15 and SAS 8.2 statistical packages.

Results

Correlation between abundances

When capercaillie and moose abundances were correlated,
only 20 cells out of 130 had a Spearman correlation
coefficient below −0.24. The grid cells with a negative
correlation showed no clear spatial pattern, as these cells
were relatively evenly distributed throughout Finland. Only
two cells close to the eastern border had significant (P≤
0.05) negative correlations between the abundances. In
most of Finland (62% of the grid cells), the correlation
coefficient was positive. Thus, there was a general tendency
that both species reached their highest abundance in the
same grid cells. Particularly in southern Finland, the cells
with a strong positive correlation formed spatial clusters,
indicating a phenomenon that is probably explained by
factors operating on scales larger than our smallest unit of
analysis (i.e., 50×50 km; Fig. 3).

In the regionally separated regression analyses, the slope
describing the relationship between capercaillie and moose
had a positive association in Northern as well as South-
Eastern Finland (Appendix 1). In other regions, no clear
pattern between the species abundances was observed.

Effect of age-related variables

In Western Finland, the average age of the forest had a
positive impact on capercaillie abundance (significant at the
level P≤0.05 assuming grid units to be independent
samples). The effect was consistent during the whole
modeling procedure, i.e., it was found when testing the
variable independently (B=0.123, t=3.19, P=0.005) and
during modeling steps 2–4 (see Appendix 1). The inclusion
of age-related variables pushed the effect size between
capercaillie and moose to virtually zero (Fig. 4).

In Eastern and South-Western Finland, the proportion of
forest under 40 years old was included in the model at step
2 with a positive association with capercaillie abundance. In
Eastern Finland, the proportion of forest over 60 years old
was also positively related to capercaillie abundance at
step 2. However, in these regions, all the age-related

Fig. 4 The relationship between moose and capercaillie abundance at
different modeling steps (see Tables 1 and 2 for total variable list and
variable codes and Table 2 for modeling steps). The effect size is the
coefficient of regression of moose abundance on capercaillie abun-
dance (significant with P≤0.05 in Northern and South-Eastern
Finland; for detailed numerical values, see Appendix 1). A decrease
in the absolute value of the regression slope to near zero in
conjunction with the inclusion of a variable indicates that, regardless
of the change in P values, the variable in question is connected with
the difference in species abundances. Conversely, an increase in the
absolute value of the slope may reveal variables possibly masking the
contrast. Models are regional linear regressions with stepwise
selection of independent variables. The criterion of inclusion and
exclusion of variables was always P=0.05
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variables were dropped from the models in further
modeling steps. The interaction with the TPF appeared to
be the main reason for these effects, and they were masked
by the explanatory power of this variable. There was a
significant positive correlation between the TPF and forest
under 40 years old in both Eastern (Pearson r=0.684, P<
0.0001) and South-Western Finland (r=0.832, P<0.0001)
and between the TPF and forest over 60 years old (E Fin,
r=0.667, P=0.0001; SW Fin, r=0.839, P<0.0001). In both
Eastern and South-Western Finland, with the inclusion of
age-related variables, the effect size between capercaillie
and moose abundances increased (Fig. 4).

Age-related variables also had strong correlations with other
model variables in Northern Finland, where there was a strong
negative correlation between the average age of the forest and
the proportion of scattered settlement (Pearson r=−0.621,
P<0.0001). Although none of the age-related variables were
included in the models in Northern Finland, the average age
of the forest had a negative impact on capercaillie abundance
when tested independently (B=−0.018, t=−2.45, P=0.018).

Effect of human impact variables

The human impact (HI) variables were selected from a
group of correlative variables that included the proportion
of fields and the total length of roads [Pearson r varied
between 0.425 and 0.920, and the P values between 0.0001
and 0.130 in all cases except the comparison of total
settlement (SET) versus fields]. There was a positive
association between scattered settlement and capercaillie
abundance in Northern Finland (see Appendix 1). The
amount of scattered settlement had more explanatory power
than correlated age-related variables, namely, the average
age of the forest (see above). With the inclusion of human
impact variables in the regression model, the effect size of
moose abundance was reduced but remained significantly
positive (Fig. 4).

The effect of scattered settlement turned negative in
Eastern and South-Western Finland when the variable
was tested independently (E Fin, B=−0.000, t=−2.28,
P=0.033; SW Fin, B=−0.000, t=−2.10, P=0.048). How-
ever, during the modeling steps, the variable was not
included in the models, but it was masked by the amount of
total (scattered and non-scattered) settlement. The amount of
total settlement had a negative effect on capercaillie
abundance in Eastern and South-Western Finland at step 3
(see Appendix 1). In both Eastern and South-Western
Finland, the relationship between moose and capercaillie
abundance was reduced with the inclusion of total settlement
in the regression model (Fig. 4). In Eastern Finland, the
effect size decreased close to that at step 1 but remained
positive. In contrast, in South-Western Finland the effect size
turned negative.

Effects of forest and unproductive forest cover

The TPF had a positive effect on capercaillie abundance in
Eastern and South-Western Finland (Appendix 1). In both
regions, the effect size of moose abundance increased when
including the TPF in the model. In South-Western Finland,
the effect size again turned positive (Fig. 4).

The effect of unproductive forest area was frequently
masked by other variables, namely, the TPF and age-related
variables. There were strong correlations among all these
variables, for example, among the unproductive forest area
and the average age of the forest (Pearson r varied between
0.381 and 0.714, and P values between 0.001 and 0.0646 in
all other areas except South-Eastern Finland). Hence, for most
regions, the variable was not included in the models at all.
When tested independently, the unproductive forest area had a
positive impact on capercaillie abundance in Eastern Finland
(B=3.697, t=2.35, P=0.028) and a negative trend in South-
Eastern Finland (B=–14.051, t=−1.87, P=0.086). However,
in South-Eastern Finland, the variable was negatively
associated with capercaillie abundance at step 4, after
controlling for the effects of other variable groups. When
including the unproductive forest area in the model, the
effect size of moose abundance slightly increased in South-
Eastern Finland (see Appendix 1), suggesting that the
negative relationship between unproductive forest area and
species abundance is similar for capercaillie and moose.

To summarize, the relationship between capercaillie and
moose abundance, i.e., the effect size in Fig. 4, remained
mainly positive, irrespective of the region or model step.
The downward swing in the effect size curve (Fig. 4), i.e.,
support for the trade-off hypothesis, was in three out of five
regions connected with the effect of human impact
variables and in one case connected with forest age.

Discussion

The relationship between the abundances of capercaillie and
moose was not significantly negative in any of the five regions.
This provides indicative evidence against the trade-off
hypothesis. Unexpectedly, in two of the regions, a significant
positive relationship was detected, indicating that the require-
ments or conditions that determine the large-scale abundance
of these two species are shared more than they are divergent.

Effect of age-related variables

In Western Finland, the trade-off hypothesis was partially
supported in the sense that capercaillie abundance seems to
be more positively associated with older forest than moose
abundance. Traditionally, the capercaillie has been thought
to be dependent on older forest stages (e.g., Rolstad and
Wegge 1987a; Helle et al. 1989). Some more recent studies
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similarly indicate that capercaillie seem to prefer older forest
whenever it is sufficiently available in the landscape (Helle et
al. 1994; Sjöberg 1996; Angelstam 2004). On the contrary,
younger forest age classes and plantations are considered as
a continuous food supply for moose (Cederlund and
Markgren 1987), and clear cuts and young pine stands are
often particularly highly used (Cederlund and Okarma 1988).

The average age of the forest was negatively associated
with capercaillie abundance in Northern Finland. This result is
consistent with other recent studies, suggesting that young and
middle-aged forest classes are common in the vicinity of high
capercaillie abundances in Northern Finland (Miettinen et al.
2005). The capercaillie is also capable of forming new
lekking sites in young forests (26–46 years old, Rolstad et al.
2007; Valkeajärvi et al. 2007). This is somewhat surprising
when considering the traditional viewpoint that lists the
capercaillie as an “old forest specialist” (e.g., Rolstad and
Wegge 1987a). One explanation can be found in the
extensive forest management practices (e.g., clear cuttings
and forest regeneration by plantations) introduced after
World War II and started in Northern Finland (Lindén et al.
2000). The total area of clear-cuts and plantations of different
ages has grown enormously, nowadays comprising most of
the forested area. Hence, forest age might no longer act as a
factor distinguishing different quality capercaillie landscapes
in Finland, especially in the north (see also Miettinen et al.
2008). However, it is important to note that Northern Finland
is the largest region of all those considered here and thus
contains the greatest variability. The large spatial scale in our
study may mask some connections between capercaillie
abundance and smaller scale habitat selection.

Effect of human impact variables

The main reason for the positive association between
scattered settlement and the abundance of both species in
Northern Finland might be connected to overall soil
fertility: Human settlements are generally situated on more
fertile grounds (see also Pautasso 2007). Studies conducted
in northern Alberta and Alaska (Schneider and Wasel 2000;
Maier et al. 2005) reported higher moose densities close to
towns due to high-quality food in the surroundings of towns,
habituation to people as well as avoidance of predators (i.e.,
wolves and bears, which do not tolerate humans; see also
Stephens and Peterson 1984). In Northern Finland, moose
predation by large carnivores is largely hindered by man.
Wolves, in particular, are usually shot whenever dispersing
into the reindeer husbandry regions in North Finland (Kojola
et al. 2006), and the same practice has been reported in
Sweden and Norway (Wabakken et al. 2001). For capercail-
lie, predator avoidance is probably not the cause of the positive
human impact because small and middle-sized carnivores
usually reach higher densities close to fields and scattered

settlements (Kurki et al. 1997). Some of the settlements in the
north have followed the locations of good hunting grounds,
which may also explain the positive relationship between
scattered settlement and capercaillie abundance.

The human impact on both of the species turned negative in
Southern Finland (Lindén et al. 2000; Lindén 2002a; Miettinen
et al. 2008), showing how important it is to account for
geographical gradients in the analyses (Fortin et al. 2008). In
South-Western Finland, the trade-off hypothesis was sup-
ported when first controlling for forest age and then including
the effect of total settlement in the model (the negative effect
size in Fig. 4). It therefore seems that the capercaillie is, to
some extent, more affected by the negative aspects of human
settlement than the moose. It has been suggested that winter
home ranges of moose may have a more distant location from
man-made landscapes compared to summer ranges (Nikula et
al. 2004). Although roads and moose fences make the
approach toward cities difficult for ungulates in Scandinavia
(Nellemann et al. 2001), fences may also increase moose
densities near roads (Ball and Dahlgren 2002). The caper-
caillie, on the other hand, is among the grouse species that
clearly avoid areas with a heavy human impact (e.g., Helle et
al. 1994; Kurki et al. 2000; Storch 2000a, 2007).

Effect of forest cover

The TPF had a positive impact on capercaillie abundance in
Eastern and South-Western Finland. In South-Western
Finland, in particular, intensive agriculture and other human
land use negatively affects capercaillie. It has been
reported, for example, that in Southern Finland, the amount
of forest is an important variable in predicting the
occurrence of capercaillie lekking sites compared to the
average landscape (Lindén and Pasanen 1987; Helle et al.
1994). The positive effect of total forest land is important
for the lekking sites up to 1.5 km distance from the lekking
center (Lindén and Pasanen 1987; Helle et al. 1994).
Because the minimum size for a lekking area is 300 ha
(Wegge and Larsen 1987), capercaillie males seem to have
difficulties in forming lekking sites in Southern Finland,
probably due to forest loss and fragmentation. In this study,
the need for vast forested areas for capercaillie in South-
Western Finland was clear, even after controlling for forest
age and human impact. Several other studies have also
reported negative effects of forest loss on capercaillie on
different scales (e.g., Rolstad and Wegge 1987b; Kurki et
al. 2000; Storch 2000a; Mikusiñski and Angelstam 2004).

Overall forest cover was positively related to the
abundance of both capercaillie and moose, as expected.
Indeed, on the European scale, the moose is also negatively
affected by forest loss (Mikusiñski and Angelstam 2004).
Some studies have suggested that not only forest cover but
also soil fertility plays an important role in determining moose
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abundance. In winter, moose habitat and home ranges include
significantly more pine-dominated forest on peatland or shrub
land (Heikkilä and Härkönen 1993; Nikula et al. 2004;
Cassing et al. 2006). In Finland, the moose is generally more
controlled by hunting than the capercaillie. The management
of moose aims at a population level that is widely accepted
by agriculture, forestry, and road traffic (Haagenrud et al.
1987; Nygrén and Pesonen 1993). In this sense, moose
abundance in Finland is first and foremost regulated by
humans (Lehtonen 1998). However, to have an effect on our
results, the capacity of hunting to regulate abundances
should be correlated with our land use variables. In other
words, hunting should be more efficient in grid cells with a
large proportion of certain land use class(es). According to
our knowledge, no clear evidence of such a correlation exists
(other than the fact that more animals are hunted in areas
with higher population levels). In addition, the use of long-
term average abundance values reduces the potential hunting
effects in our models. Furthermore, the abundance estimates
for moose were collected in winter, while the hunting season
is in autumn. Thus, even if moose abundance is lowered to
an acceptable level by hunting each autumn, the remaining
wintering population may be assumed to seek out and settle
in areas with desirable land use characteristics. Nonetheless,
it would be of interest to include the effect of hunting in
future studies. Regarding the capercaillie, not even the
relatively high shooting yields seem to be correlated with
grouse population trends in Finland (Lindén 1991).

Conclusion

To address regional problems in game management, it is
important to study large-scale landscape characteristics (for
example see Angelstam et al. 2004; Mikusiñski and
Angelstam 2004). Landscape patterns on large spatial
scales may be informative in predicting phenomena on
smaller scales (Gaston 2004; Cassing et al. 2006). However,
we cannot simply assume that the patterns and processes at
the landscape level or on broader scales are only reflections
of habitat-level phenomena (see also Whittingham et al.
2007). Therefore, it is especially important to incorporate
several spatial and temporal scales when examining the
relationship between species and their environment (Wiens
1989; Levin 1992). Overall, regional game management
should be based on data covering both large areas and
multiple species requirements.

We observed a general trend that rejects the trade-off
hypothesis: The capercaillie and moose do not appear to
have dissimilar responses to large-scale land use, despite
their divergent habitat requirements. We can reject the
hypothesis based on the twofold evidence. First, the
correlation between the abundance of capercaillie and moose
was mainly positive, indicating that the species are abundant

in the same broad areas. Second, further support was given
by the regression models, which provided no clear evidence
of any examined factor revealing a difference between the
species on large spatial scales. Instead, the species responses
to landscape variables were in general very similar.

We acknowledge that our explanatory variables, and the
scales that we chose, were somewhat coarse. For moose, for
example, earlier studies have found evidence of responses
on multiple scales, including scales below the level of the
habitat patch (Bowyer and Kie 2006). However, we did not
intend to create another habitat suitability or habitat use
model for these species because this has already been done
in several papers (e.g., Allen et al. 1988; Gjerde and Wegge
1989; Dussault et al. 2006; Graf et al. 2005). Many of the
studies concerning moose habitat choice have operated either
within home ranges or on the landscape level (e.g., Nikula et
al. 2004; Dussault et al. 2005; Cassing et al. 2006), and
broad landscape-level variables are usually strong predictors
of capercaillie occurrence (e.g., Mikusiñski and Angelstam
2004; Graf et al. 2007; Miettinen et al. 2008). Our selection of
large spatial scales also appeared appropriate in the light of
the results obtained in the sense that the grid cells with a
strong positive correlation formed spatial clusters (Fig. 3). In
addition, the extent of the study scale (2,500 km2 per grid
cell) and our use of long-term average abundance values
gives reason to believe that the seasonal differences in species
abundances (capercaillie data collected in summer and moose
data in winter) are not an important source of error in our
analyses. Nonetheless, we stress that our study provides only
a preliminary and general overview of the responses of these
species to large-scale land use.

It is clear that the existing differences between the
species are due to mechanisms mostly operating on finer
scales than the ones studied here. On a more local scale,
such as the home range and/or a forest stand, the species
probably occupy different habitats. This may be one reason
for the observed contrasting population trends of capercail-
lie and moose (Fig. 1). However, it seems to be too strong
to argue that capercaillie and moose have completely
opposite environmental requirements. While considering
regional land use planning, the primary goal for both
species seems to be to secure large enough areas of forest,
preferably at a distance from human settlement (e.g., Storch
2000a; Mikusiñski and Angelstam 2004).
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