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Sparse Combinatorial Structures:
Classification and Applications

Jaroslav Nesetril* and Patrice Ossona de Mendez

Abstract. We present results of the recent research on sparse graphs and finite struc-
tures in the context of of contemporary combinatorics, graph theory, model theory and
mathematical logic, complexity of algorithms and probability theory. The topics include:
complexity of subgraph- and homomorphism- problems; model checking problems for first
order formulas in special classes; property testing in sparse classes of structures. All these
problems can be studied under the umbrella of classes of structures which are Nowhere
Dense and in the context of Nowhere Dense — Somewhere Dense dichotomy. This di-
chotomy presents the classification of the general classes of structures which proves to be
very robust and stable as it can be defined alternatively by most combinatorial extremal
invariants as well as by algorithmic and logical terms. We give examples from logic, ge-
ometry and extremal graph theory. Finally we characterize the existence of all restricted
dualities in terms of limit objects defined on the homomorphism order of graphs.

Mathematics Subject Classification (2010). Primary 0502; Secondary 05C75, 05C15,
05C83, 05C85, 03C13, 68Q19.

Keywords. graphs, hypergraphs, structures, homomorphism, sparsity, model checking,
bounded expansion, property testing, separators, complexity, structural combinatorics.

1. Introduction

In this paper we survey results of the recent research on sparse graphs, hypergraphs
and finite structures in the context of some of the key areas of contemporary
combinatorics, graph theory, model theory and mathematical logic, complexity of
algorithms and probability theory. We list the following areas as related to this

paper:

universal and generic structures of model theory;

Constraint Satisfaction Problems in the context of descriptive complexity;
complexity of subgraph- and homomorphism- problems;

existence of (homomorphism) dualities in the context of the homomorphism
order;

e fast model checking in first order logic;

*Supported by grant 1M0545 of the Czech Ministry of Education
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subgraphs statistics and local convergence;

the existence of sublinear separators;

property testing in sparse classes of structures;
polynomial on-line and game-colorings of graphs;

validity of homomorphism preservation theorems.

Although these are very distinct areas it is often easy to see that in all of these
problems we have to put some restrictions on the graphs to be considered: in the
full generality for finite graphs the answers to most of our questions are known to
be negative, or hopelessly hard. But often the answer tend to be negative even
for graphs which have many edges what is usually described by the term “dense
graphs”. In the context of this paper dense graphs are not only those having O(n?)
edges but even those having O(n'*¢) edges (n is the number of vertices). Even
such edge sizes do not guarantee positive answers to the above problems.

For such answers we have to look at instances with very few edges. For example
subgraph problem has a positive answer for geometrically restricted (such as planar
graphs [31, 30]) while the homomorphism preservation theorems hold for classes
of bounded degree graphs ([10]). In contrast with this, the Separator Problem has
the negative answer even for cubic (i.e. degree 3) graphs. In this case the answer
is again positive for planar graphs [52], for graphs with a fixed genus [36], and for
graphs excluding a minor [4, 3]. And similar diverse situations occur for the other
problems and some sparsity is playing a role there.

But which structures are sparse? Sparsity seems to be an elusive and typically
“fuzzy” notion and it seems that the answer to this question depends on the par-
ticular problem considered. Yet in this paper we present a classification of graph
classes which clarifies the boundary between sparse and dense instances and which
proved to be useful in many concrete applications and all of the above problems
in particular.

How to define sparsity? Perhaps the good way to define it is by means of the
stability with respect to some operations. We aim for sparsity as a self-similarity
idea, as the invariance to small changes. This approach is the one taken in this
paper. We employ the mixture of geometric and combinatorial approach and define
(time) resolution of a structure and of a class of structures. This in turn leads to
the surprisingly general dichotomy of classes of structures — there are nowhere
dense classes and classes which are somewhere dense. This is stated in Section 2.4
after the introduction in Section 2 of all the relevant notions.

In Section 4 we show how this dichotomy, which may appear on the first glance
arbitrary, can be described in several very different ways. In fact almost all the
basic extremal combinatorial parameters are suitable for the description of this
dichotomy: In Section 3.1 we deal with edge densities, in Section 2.4 with clique
number w, in Section 4.1 with the chromatic number y, in Section 4.2 with the
independence number « (and of course for the space limitations we do not mention
all relevant characterizations, see [74, 73]). All of this shows that the nowhere dense
— somewhere dense dichotomy is not just an accident or a combinatorial curiosity
but rather a natural, stable and robust dichotomy.
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There is a further evidence which goes beyond the «, x,w. Very recently this
list was complemented by the counting (densities of subgraphs) (see Section 4.3)
and also by results in mathematical logic: the nowhere dense — somewhere dense
dichotomy induces exactly the dividing line between (monotone) classes of graphs
for which the model checking for first order logic s is Fixed Parameter Tractable
(FPT) and those classes for which model checking is hard, see [21, 25]. We treat this
in Section 4.2 where (based on our earlier analysis of Nowhere Dense structures)
we extend these result to general structures.

Some of these applications will be mentioned in Section 5 and Section 6 in a
greater detail. The core of many of these applications is a possibility to approx-
imate (with arbitrary precision) any graph in a nowhere dense class by a graph
defined by finitely many data. Technically this takes form of Low Tree Depth De-
composition which for the illustration we formulate here for the case of a bounded
expansion class C of structures (defined in Section 8):

Theorem 1. (Low Tree Depth Decomposition) For every bounded expansion class
C and for every positive integer p there exists an integer N = N(p,C) such that
every structure A € C has a decomposition X = X, U...U Xy with the following
property:

A restricted to any set |J,.; X; where |I| < p, has tree depth at most |I| (par-

iel
ticularly, this substructure cannot include a path of length 2111,

(See Sections 4 and 8 for more details.) As there are only finitely many core
graphs with tree depth at most p [65] a Low Tree Depth Decomposition can be
approximated by a finite set of data and this decomposition is much in the spirit
of Szemerédi regularity lemma, [88].

The research covered by this paper is related to the recent development which
is based on the study of homomorphisms of structures. The main idea is to study
the local structure of a large structure A by counting the homomorphisms from
various small graphs F into A (this relates to the area called property testing), and
to study the global structure of A by counting its homomorphisms into various
small graphs C (sometimes interpreted as templates). Regularity is viewed here
as a structural approximation in a proper metric and also as a convergence. For a
survey of this development, see [17]. This approach proved to be very fruitful and
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relates (among others) to the notion of quasi-random graphs, see e.g. [19], and to
the general results characterizing testable properties, see e.g. [5, 17, 29, 82, 87, 11].

In this paper we take a similar, yet different, approach. We start our analysis
with the homomorphism order. We shall see that in this setting, at a proper
level of generality, some of the results for dense graphs can be extended to the
world of sufficiently sparse classes of graphs. Along these lines we mention also
results related to the universality problems for the homomorphism order (and we
mention several results obtained jointly with Jan Hubicka, [48, 46, 47]). This
then naturally relates to the problems of finite dualities (which we characterized
jointly with Claude Tardif [79]) and then to restricted dualities which will be
characterized (in Section 9) by means of the completion of the homomorphism
order. After all the existential theorem related to the homomorphism order we
return to the counting and describe (in the case of graphs) the Nowhere Dense—
Somewhere Dense dichotomy by means of the counting functions (see Section 4.3).

2. Preliminaries

2.1. Graphs vs Structures. Let us review some basic notions which will
be used. Our graphs are finite simple undirected graphs, except when explicitly
stated otherwise and we denote by Graph the class of all such graphs. We use
standard graph theory terminology (see e.g. [59]). We find it useful to introduce
the following: for a graph G = (V, E), we denote by |G| the order of G (that is:
|[V|) and by ||G|| the size of G (that is: |E|). Similarly, a finite set system (or
hypergraph, we shall use both notions) is a pair (X, M) where M is a collection of
subsets of X. It is customary to call these sets edges again. If all the edges have k
elements then we speak simply about a k-graph. (Thus graphs are just 2-graphs.)

The distance in a graph G between two vertices  and y is the minimum length
of a path linking = and y (or oo if z and y do not belong to the same connected
component of G) and is denoted by distg(z,y). Let G = (V, E) be a graph and
let d be an integer.

A class C of graphs is hereditary if every induced subgraph of a graph in C
belongs to C, and it is monotone of every subgraph of a graph in C belongs to C.

The notion of a finite relational structure is more involved and in fact it appears
in two different formalisms.

One possibility is that we specify a language £ which accepts standard logic
and sets involves relational symbols R, S, ... each with an appropriate arity. In
such case we speak about relational structures with a given signature L.

Sometimes we want to be more explicit and we specify a finite sequence (type)
of positive integers A = (0; : i € I) which we call type. A relational structure A of
type A is then a pair (X, (R; : i € I)) where R; C X% is an d;-ary relation on X.
In this case we also put X = XA and R; = RA.

The notions of a homomorphism (monomorphism) are standardly defined as
mappings (injective mappings) preserving all relations. In a difference to algebras
the embeddings need a little more care: An injective mapping f : X4 — XB is
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called an embedding of A to B if the following hods for every relation RA:
(zi:i=1,...,0) € R* ifand only if (f(z;):i=1,...,¢) € RB.

The category of all finite graphs and all homomorphisms between them will be
denoted again by Graph, the category of all finite relational structures of type A
and all homomorphisms between them Rel(A) and the category of all finite set
systems (i.e. hypergraphs) or k-graphs and all their homomorphisms is denoted
by Hyp or Hyp(k).

The relationship of very simple models (as presented by graphs) and more
general relational systems is very interesting and far from trivial. Recently this
connection got several new impulses. For example the connection to Constraint
Satisfaction Problems, first order definability and to descriptive algorithmic com-
plexity recently were intensively studied [51, 33, 2, 45]. We report some of this
research in Section 4.2.

There are various connection between relational structures of different types.
For example if the two signatures are in inclusion (i.e. if A C A’) then we speak
about an extension (sometimes the name lift is used). This corresponds to enrich-
ment of the original structures A € Rel(A) by new relations, such as colors of
vertices, edges, orderings, etc. The inverse construction is the reduct (sometimes
shadow): We start with an object A’ € Rel(A’) and define the object A € Rel(A)
by considering only those relations from type A (and forgetting about the others),
see e.g. [44].

The reduct and extension are powerful operations (as expected; we are chang-
ing the language itself). For example, it has been proved in [51] (extending earlier
works by [32, 33]) that the question whether there exists a lift with finitely many
prescribed local properties is polynomially equivalent to a general problem in the
class NP. Similarly reducts are related to some of the classical combinatorial (Ram-
sey type) statements, see [90] (using [78]).

There are other constructions which reduce one signature to another. In the
logical context perhaps the most widely used is the following construction:

1. Gaifman Graph. To a relational structure A we associate its Gaifman graph
Gf(A) = (V,E) by putting V = X and {x,y} € E if z # y and x and y appear
in a same tuple of A. (In combinatorics this construction is known as 2—section,
[15].)

Gaifman graphs allow us to translate many graph notions to general systems.
This transformation has several advantages (the main one being perhaps its sim-
plicity) but there are disadvantages too and the sparsity (which is our central theme
here) is often not preserved. The relational system may be quite sparse and of a
very simple form, yet the corresponding Gaifman graph may be as complicated as
possible. For example the Gaifman graph of any edge is a complete graph. Other
examples (with bounded arities) include Gaifman graph of any Steiner Triple Sys-
tem (X, M) which is the complete graph on the set X. An even simpler example
can be constructed on any set X U {x} as follows: M is formed by all triples of
form {x,2', x},x # 2’ € X. The Gaifman graph is again a complete graph.

As a result of examples like these, more sensitive transformations were devised:
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2. Block graph. The block graphInc(A) of A (sometimes called Incidence graph)
is defined as follows: The vertices are formed by XA together with the set of all
pairs (4, (z1,...,2s,)),1 € I. The edges are formed by all incidences between x and
(x1,...,2s,). This construction has many forms: edges may be directed, vertices
may have colors, it is either simple graph or a multigraph, etc.

3. Path graph. The path graph Path(A) of A is defined as follows: Vertices are
XA with a tuple (x1,...,2s5) € R® being replaced by a directed path 21 — x5 —
... = x5, (thus in this for this is a directed graph). For example this is used in
[79] to classify the dualities.

4. Star selectors. We formulate this for a hypergraph (X, M): For an edge
M € M a star selector is any star with the vertex set M. A star selector of
a hypergraph (X, M) is then the union of the edge sets of star selectors of the
edges of M. This is not uniquely defined as we may get several graphs (with very
different properties). But perhaps because of this flexibility this is often the best
transformation. Let us give an example:

For a hypergraph A € C, we denote by Sel(A) the set of the star selectors of
A and by Gel(C) we denote the set of all the function ¢ : C — Graph such that
C(A) € Sel(A). We have then for example the following result (see Section 2.3 for
the definition of G v d):

Theorem 2. Let C be a class of hypergraphs. Then the following conditions are
equivalent:

1. V¥d € N 3(q € Gel(C) : suppcew(Ca(A) Vd) < oo;

2. C is a S-nowhere dense class of hypergraphs, meaning that there exists ( €
Gel(C) such that ((C) is a nowhere dense class of graphs;

3. 3C € Gel(C) Vd € N : suppecw(C(A)Vd) < oo.

We use all of these constructions according to what is most fitting for a par-
ticular result. In the context of sparse hierarchies of structures, the relationship
of various models of relational structures is not yet clarified. Perhaps the situa-
tion is reminiscent to a long development of the Szemerédi regularity lemma for
hypergraphs and finite structures, see e.g. [57, 89, 39, 83].

Yet another direction to extend the results for graphs to more general structures
is to consider an edge version of low tree depth decomposition. This naturally
generalizes to matroids [76].

2.2. Homomorphism order. The central role (and indeed the leitmotiv)
in our paper is played by the simplification of the above categories. This takes the
following form: Given structures A, B we write A < B to denote the existence of
a homomorphism f : A — B. The relation < is clearly a quasiorder on Rel(A)
or Graph or Hyp. The relation < is called homomorphism order which will be
indicated as (Graph, <), (Rel(A), <), (Hyp, <). The homomorphism order can be
reduced to a partial order in two steps:
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e First, we consider cores of all structures. A core is any minimal retract of a
structure (this term was coined in [43]);

e Then, we consider the isomorphism types of core structures. If a more pre-
cision is needed then we denote by [A] the isomorphism type determined by
the structure A.

In most of the paper there is no danger of confusion and thus we also denote by
(Graph, <), (Rel(A), <), (Hyp, <) the corresponding partial orders of isomorphism
types of the corresponding core structures.

The homomorphism order has spectacular properties, some of which will be
reviewed here:

Theorem 3. (Universality of the homomorphism order) For every countable par-
tial order P there is an embedding of P into (Graph, <). Not only that, but a much
smaller variety of graphs suffices: For every countable partial order P there is an
embedding of P into the suborder of (Graph,<) induced by planar graphs with all
degrees bounded by 3.

This is a classical result proved in [42]. The second part is much more recent
and it presented a well known problem, see e.g. [80], which was finally proved by
Jan Hubicka and J. Nesetfil [47, 46].

Theorem 4. (Density of the homomorphism order) With “a few exceptions” the
homomorphism order is dense. Explicitly, for most pairs A, B with A < B and
B £ A (with “a few exceptions”, there exists C such that A < C < B and
BLCLA.

This result is proved in [79] (extending earlier result of [91] for undirected
graphs). In fact, again with “a few exceptions”, every interval in the homomor-
phism order is itself universal (an unpublished result; see [61]).

What are “few exceptions”? They are important and they are completely
characterized. Basically the only exceptions to the density are induced by trees.
More explicitly, a pair (A, B) of structures is called a gap in the homomorphism
order if A < B,B £ A and there is no C strictly in between A and B. One of the
main results of [79] is that all gaps (A, B), B connected, in Rel(A) are induced
by trees. Explicitly, for every relational tree T there exists (uniquely determined)
predecessor structure P(T) such that the pair P(T) < T forms a gap. (Other gaps
are not connected and they are also related to trees [79].) What is a relational
tree? We can use above reductions. A relational tree is a structure such that its
path graphs (as above) is (an orientation of) a tree.

The homomorphism order has the rich algebraic structure. There is a beautiful
(and surprising) connection of gaps to the dual description of graph classes which
goes under name homomorphism dualities (defined in [77]). This can be outlined
as follows (compare [43]):

A singleton duality is a pair of objects (F, D) with the following property: For
every object A of the same type as (F, D) holds:

A — D ifandonlyif F —- A.
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For undirected graphs there are just two trivial dualities. However already for
oriented graphs we have infinitely many dualities and these dualities are important
as they relate to the chromatic number of graphs (by means of Gallai — Hasse —
Roy — Vitaver theorem, [71]). The notion of duality is motivated by algorithmic
considerations and particularly the dual description of homomorphisms into a fixed
template D by means of a simple obstacle F. It is the more than surprising that
this simple notion is in one to one correspondence with the purely order-theoretic
notion of a gap:

Theorem 5. (Gaps and Dualities [79]) There is one to one correspondence be-
tween singleton dualities (F,D) and gap-pairs (P(A), A) where A is a connected
structure.

In fact this characterization of dualities is of a categorical nature and it can be
extended to the much more general situation of Heyting algebras [35].

All these dualities are class dependent. They hold in the class of structures
with a fixed signature (i.e. in classes Rel(A)). This is also clear from yet another
reformulation of the duality pair (F, D). First, let us define the class Forb(F) as the
class of all structures (of a given signature) A for which there is no homomorphism
F— A:

Forb(F) = {A: F — A}

(Similarly we define Forb(F) for a finite set F of structures.) Now (F,D) is a
duality pair if and only if the object D is the (finite) maximum of the class Forb(F')
in the homomorphism order. This point of view is taken in [63] and it allows to
treat universal and generic structures together with dualities, [51, 45]. In yet
another interpretation every finite duality is the equation of two classes Forb(F)
(for a finite set F) and CSP(D) defined as a principal ideal in the homomorphism
order:

CSP(D) = {A: A — D}.

Let us note by passing that finite dualities (i.e. equations Forb(F) = CSP(D))
are exactly those Constraint Satisfaction Problems (i.e. membership problems
for classes CSP(D), in this setting D is usually called template) which are first
order definable: Only for duals of tree structures is the corresponding Constraint
Satisfaction Problem decidable by a first order formula. This follows from [79] and
[9].

In Section 9 we define more general notion of restricted dualities and prove that
our sparse classes have all restricted dualities. We then go on by characterizing this
phenomenon (see Theorem 18). Advancing this we include the schematic Figure
which hods for any planar graph G:
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N T~ T

This was (in retrospect) one of our motivating examples [62, 63]. The homo-
morphism orders are fascinating structures with a rich algebraic and combinatorial
contents.

2.3. Sparsity via Resolution in Time. Let us start this section by
considering undirected graphs.

As remarked earlier, the notion of a sparsity of graphs is a fuzzy notion. First
it does not relate to any particular graph but rather to a set, or sequence, or a
class of graphs. Secondly the notion should be (certainly from naive point of view)
be invariant to some small changes of a graph. Third, to be a sparse graphs is
clearly a global property and the property should be hereditary.

Combining these observations and motivated by numerous particular cases we
are led to the following definitions:

For any graphs H and G and any integer d, the graph H is said to be a shallow
minor of G at depth d ([81] attribute this notion, called then low depth minor
to Ch. Leiserson and S. Toledo) if there exists a subset {z1,...,2,} of G and a
collection of disjoint subsets V7,..., V), of vertices of G, each inducing a connected
subgraph of G, such that z; € V;, every vertex in V; is at distance at most d from
z; in the subgraph of GG induced by V;, and so that H is a subgraph of the graph
obtained from G by contracting each V; into x; and removing loops and multiple
edges (see Fig. 1).

Figure 1. A shallow minor of depth r of a graph G is a simple subgraph of a minor of G
obtained by contracting vertex disjoints subgraphs with radius at most r

The set of all shallow minors of G at depth d is denoted by G V d. In particular,
G v 0 is the set of all subgraphs of G. Hence we have the following non decreasing
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sequence of classes (which we interpret as evolving in time):
GeGVOCGEV1IC---CGEVdC...GVoo.

We extend this definition to arbitrary class of graphs C by:

Cvd= U Gvd.

GeC

We have the following (time dependent) hierarchy of classes

CCCv0C(CVv1lC---CCVvdC...CVo.

We call this sequence minor resolution of the class C and denote it by CV. Note
that C V0 is the monotone closure of C and that C V oo is the minor closed class
generated by C.

2.4. The Nowhere Dense — Somewhere Dense Dichotomy. The
minor resolution of a class naturally leads to a classification of general classes and
to their interesting properties. The following are the key definitions of this paper:

Definition 1. (The Nowhere Dense — Somewhere Dense Dichotomy) An infinite
class of graphs C is somewhere dense if there exists an integer d such that CvVd =
Graph. Thus C is somewhere dense if every graph is a bounded depth shallow
minor of a graph in C. In other words: we get all graphs in a fixed time.

If an infinite class is not somewhere dense, it is nowhere dense.

It follows directly from the definition of the minor resolution that a class C is
nowhere dense if and only if for every d the supremum of w(G) for G € CVd is
finite (here w(QG) is the the cligue number of graph G, i.e. the maximal order of a
complete graph in G). (It is perhaps surprising, as we shall see in Section 4.2, that
nowhere dense classes may be defined by their independence number as well.)

For relational structures and hypergraphs we can define analogous notions.

Definition 2. (The Nowhere Dense — Somewhere Dense Dichotomy via Gaifman)
An infinite class of structures C is G-somewhere dense if the class Gf(C) of all
Gaifman graphs of structures in C is somewhere dense. In other words: C is
somewhere dense if every graph is a bounded depth shallow minor of the Gaifman
graph Gf(A) of a structure A € C.

If an infinite class is not G-somewhere dense, it is G-nowhere dense.

Definition 3. (The Nowhere Dense — Somewhere Dense Dichotomy via Incidence)
An infinite class of structures C is I-somewhere dense if the class Inc(C) of all
incidence graphs of structures in C is somewhere dense. In other words: C is
somewhere dense if every graph is a bounded depth shallow minor of the incidence
graph Inc(A) of a structure A € C.

If an infinite class is not I-somewhere dense, it is I-nowhere dense.
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For path-graphs and star selectors we first observe that our resolutions are de-
fined by means of distances and this “symmetric” neighborhoods. After that we
define the dichotomy for these two constructions as well (P-somewhere dense/P-
nowhere dense and S-somewhere dense/S-nowhere dense). Although in many in-
stances are these approaches equivalent in general they differ and it is convenient
to use all these definitions simultaneously.

3. Trichotomy for Binary Structures

We consider graph models in this section. For general structures the situation is
more complicated and although we get analogous results we need stronger results
(particularly the subgraph counting presented in Section 4.3).

3.1. Classification by Edge Densities. Let C be an infinite class of
graphs and let f : C — R be a graph invariant. Let Inj(N,C) be the set of all
injective mappings from N to C. Then we define:

limsup f(G) = sup limsup f(¢(7))
Gec ¢€Inj(N,C) i—o0

Notice that limsupgee f(G) always exist and is either a real number or oo.

Theorem 6 (Trichotomy theorem). Let C be an infinite class of graphs (asymp-
totically not all edgeless). Then the limit

- log || G|
¢dens(CY) = lim lims
ns(C7) = I I sup e 1

may take only three values, namely 0,1 and 2. Moreover, we have:

0, Zﬁ SUPgec ”GH < o9,
¢dens(CY) =< 0 or 1, iff C is nowhere dense,
2, iff C is somewhere dense.

For a proof see [74]. It can be seen easily that ¢dens(CV) < 0 if and only if the
class C contains only graphs with at most kg edges. These essentially finite classes
can be non-trivial. A prime example is the class of all core graphs with tree depth
bounded (see Section 4.1 for the definition of the tree depth).

It is very interesting (and we feel surprising) that this theorem has a topological
version which counts the edges in shallow subdivisions. (Recall that a graph G’ is
a subdivision of a graph G if G’ arises from G by adding vertices (of degree 2) on
edges of G.) Thus in the topological sense we have homeomorphic graphs: all edges
of G are replaced by simple openly disjoint paths. If all these paths have length
< 2d + 1 we say that G’ is a d-shallow subdivision of G. Conversely, we say that
H is topological shallow minor at depth d of a graph G if there exists a subgraph
H’ of G such that H' is a shallow subdivision of H at depth d. Having defined
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this we can proceed similarly as for the shallow minors and define the notion of
topological minor resolution. For a proof of the topological version of Theorem 6
see [74]. (This extends work of Zdenék Dvordk [22, 23].)

Also, the property that there exists a critical value 7(C) at which the topological
resolution stabilizes to Graph is equivalent to the existence of a critical value
7(C) at which the minor resolution stabilizes to Graph. Notice that, according to
Theorem 6, the existence of a critical value 7(C) is equivalent to the existence of a
value T'(C) such that there exists € > 0 with

1
lim sup M =1+e

cecore) loglGl

Moreover, the difference between 7(C) et T'(C) is actually bounded by a function
of € (see Fig .2).

lim supM
A Gecw. |Gl
2 [ o
THe s 14 2¢
L 2 —elog(2(x —T(C))+1)

T(AC) ?(C) T(C) + k(e) x (log scale) -

Figure 2. Evolution of the upper logarithmic density Zdens(C‘v“) of the topological resolu-
tion of a typical somewhere dense class C

However, for nowhere dense classes, the asymptotic behavior of the resolution
varies. For instance, the class D3 of graphs with maximum degree at most 3 is
such that D3 V co = Graph but D3 V co = Ds.

Why do we state this topological variant of shallow minors, when we then
claim just analogous results? The main reason is that this connection is surprising
and non-trivial. The fact that minors and topological minors lead to the same
classification of classes is interesting in the context of graph-minor theory where
minors and topological minors lead often to very different results (as demonstrated
for example by Hajés and Hadwiger’s conjectures), see [74, 69] for more details.
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4. Some Alternative Characterizations

We mention just 3 characterizations. Yet they should indicate the robustness of
our dichotomy classification of classes.

4.1. Classification by Decomposition — Chromatic Numbers.
First we consider the graph case. The building blocks of our decompositions will
be induced by trees.

A rooted forest is a disjoint union of rooted trees. The height of a vertex x
in a rooted forest F is the number of vertices of the path from the root (of the
tree to which x belongs to) to  and is noted height(z, F'). The height of F is the
maximum height of the vertices of F. Let x,y be vertices of F'. The vertex z is an
ancestor of y in F' if x belongs to the path linking y and the root of the tree of F'
to which y belongs to. The closure clos(F) of a rooted forest F is the graph with
vertex set V(F') and edge set {{z,y} : x is an ancestor of y in F,z # y}. A rooted
forest I’ defines a partial order on its set of vertices: © <g y if = is an ancestor of
y in F. The comparability graph of this partial order is obviously clos(F).

The tree-depth td(G) of a graph G is the minimum height of a rooted forest F'
such that G C clos(F') [65] (see Fig 3).

N

Figure 3. The tree-depth of the 3 x 3 grid is 4.

A principal property of the class of all graphs with td(G) < k is that this
class is finite when restricted to core graphs (or core structures). This holds more
generally for colored graphs and for relational structures in general. This has also
a number of consequences. For example the class of all graphs with td(G) < k is
well quasi ordered with respect to induced subgraph ordering. Nevertheless one
should remark that the number of core graphs with td(G) < k has an Ackermann
growth.

In [65] we introduced the following parametrized generalization of the chromatic
number: for any integer p, x,(G) denotes the minimum number of colors one shall
use to color the vertices of GG in such a way that for every subset I of at most p
colors, the subgraph Gy of G induced by the vertices with color in I has tree-depth
at most |I|. Thus x; is the usual chromatic number of a graph (i.e. no edge is
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monochromatic) and Y, is minimal coloring with the property that no path with
4 vertices gets less than 3 colors.

These generalized chromatic numbers characterize nowhere dense classes ([67,
74]):

Theorem 7. Let C be an infinite class of graphs. Then the following conditions
are equivalent:

e C is nowhere dense,

1 G
e for every integer p, lim sup 08 Xp(©) =0

cec log|G|

Thus any graph G in a (fixed) nowhere dense class C can be decomposed into
a small number of classes such that the subgraphs induced by any < p classes of
the partition have components of only finitely many (homomorphism) types. Thus
p is then parameter expressing the precision of such decomposition. Moreover
such a decomposition can be found in almost linear number of steps. This has a
number of algorithmic consequences which are not covered here, see ([64, 67]. Such
a decomposition is called Low Tree Depth Decomposition (LTDD).

Let us return to structures. We formulate this time the result for G-nowhere
dense classes. The

Theorem 8. Let C be an infinite class of structures. Then the following conditions
are equivalent:

e C is G-nowhere dense,

1 G
e for every integer p, limsup %p() =0

ceatc) log|G|

Of course we can define x,(A) directly and it has a similar meaning as for
graphs.

4.2. Classification by Independence. The homomorphism preserva-
tion theorem [58] states that a first-order formula is preserved under homomor-
phisms on all structures (finite and infinite) if and only if it is equivalent to an
existential-positive formula. Answering a long-standing question in finite model
theory [34], Ben Rossman proved [85] that the homomorphism preservation theo-
rem remains valid when restricted to finite structures (unlike many other classical
preservation theorems, including the Los—Tarski theorem and Lyndon’s positivity
theorem). It is interesting to note that one of the main tools of Rossman’s proof is
the notion of tree depth (which corresponds to the quantifier depth). In the con-
text of relativizations of this theorem to specific classes of structures Anuj Dawar
[20] introduced the following notion of quasi-wideness:

Let d > 1 be an integer. A subset A of vertices of a graph G is d-independent
if the distance between any two distinct elements of A is strictly greater than d.
Note that if we denote by aq(G) the maximum size of an d-independent set of G,
then aq(G) is the usual independence number a(G) of graph G.
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A graph G is quasi-wide if there is a function s : N — N such that for every
integers d and m, every sufficiently big graph G € C (i.e. of order at least F'(d,m))
contains a subset S of size at most s = s(d) so that the graph ay4(G — S) > m.

The quasi-wide property is not hereditary. Thus we introduce the following,
stronger version:

A graph G is uniformly quasi-wide if there is a function s : N — N such that for
every integers d and m, every sufficiently big subset A of vertices of a graph G € C
(i.e. such that |A] > F(d,m)) is such that G contains a subset S of size at most
s = s(d) so that G — S contains a d-independent set of size at least m included in

A.

It appears that uniform quasi-wideness is strongly related to our classification:

Theorem 9. Let C be an infinite class of graphs. Then the following conditions
are equivalent:

e C is nowhere dense,
e the hereditary closure of C is quasi-wide,
o C is uniformly quasi-wide.

This is a non-trivial results with several consequences, see [70]. Combined
with Low Tree Depth Decomposition one deduces (via an appropriate data struc-
ture) that the model checking problems for first order formulas is Fixed Param-
eter Tractable for a monotone class C of structures if and only if the class C is
nowhere dense (assuming standard hardness assumption in parametrized complex-
ity). Thus the nowhere dense classes can be defined by the validity of arithmetic
meta-theorems, see [21, 24] for graph case. For structures we can use I-Nowhere
dense definition.

4.3. Classification by Counting. The trichotomy theorem (Theorem 2)
is related to counting the numbers of copies of K5 in a graph. This may be
extended (using the decomposition theorem) if we consider homomorphism or in-
duced copies of any non-trivial graph F. (Recall that hom(F,G) denotes the
number of homomorphisms from F' to G and that #F C G denotes the number of
induced subgraphs of G which are isomorphic to F'.)

Theorem 10. Let F' be a (connected) non trivial graph (i.e. with at least one
edge). Then the following limits

lim lim sup M, lim lim sup M

im0 GeCvi log |G| 900 GecVi log|G| 7
.. log#F C G .. log#F C G
lim limsup ————, and lim limsup ——————

imwoo geevi  log|Gl =% gecyi  10g|G]

can only take the values —00,0,1,...,a(F) and |F|, where a(F) stands for the
independence number of F. Moreover, C is somewhere dense if and only if the
limit is |F|.
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For a proof, see [72]. There is more to this than meets the eye. The re-
cent theory of graph limits developed by Laci Lovéasz with his coauthors, see e.g.
[54, 55, 57, 56] deals with counting of homomorphisms from small graphs, or al-
ternatively, with probabilities that a random map is a homomorphism. In this
context the last alternative description is very pleasing as it may be seen as bridg-
ing the gap between these approaches and an approach based on the analysis of
the homomorphism order, i.e. with existence of homomorphism (see [71]). For
structures is the situation more involved and we do not state it here.

There are other alternative descriptions of nowhere dense - somewhere dense
dichotomy (related to on-line colorings and game chromatic numbers). We refer to
the forthcoming book [73]. From manyfold applications we mention (in the next
two sections) only two recent ones (and refer to e.g. [73, 64, 70, 75] instead).

5. Vertex Separators

Let G be a graph of order n. Recall that an a-vertex separator of G is a subset
S of vertices such that every connected component of G — S contains at most an
vertices.

5.1. Sub-exponential w-expansion. A celebrated theorem of Lipton
and Tarjan [52] states that any planar graph has a separator of size O(y/n). Alon,
Seymour and Thomas [3] showed that excluding K} as a minor ensures the exis-
tence of a separator of size at most O(h*/2/n). Gilbert, Hutchinson, and Tarjan
[36] further proved that graphs with genus g have a separator of size O(,/gn) (this
result is optimal). Plotkin et al. [81] introduced the concept of limited-depth mi-
nor exclusion and have shown that exclusion of small limited-depth minors implies
the existence of a small separator. Precisely, Plotkin et al. prove in [81] that any
graph excluding K}, as a depth ! minor (i.e. any graph G such that K; ¢ G V1)
has a separator of size O(lh?logn + n/l) hence proving that excluding a K}, minor
ensures the existence of a separator of size O(hy/nlogn).

We combine this with the following variant of expansion: The w-expansion of
a class C is the mapping

i— sup w(Q),
GeCcvi

where w(G) stands for the cligue number of G, i.e. the order of the largest complete
subgraph of G. Notice that a class has bounded w-expansion if and only if it is
nowhere dense.

A class C has sub-exponential w-expansion if

1 G
limsup sup ngi,() =0.

i—woo GECVi ?

Theorem 11. Let C be a class of graphs with sub-exponential w-expansion.
Then the graphs of order n in C have separators of size s(n) = o(n) which may
be computed in time O(ns(n)) = o(n?).
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As random cubic graphs almost surely have bisection width at least 0.101n [50],
they have almost surely no separator of size smaller than n/20 It follows that if
log f(z) = (log2)z, the graphs have no sublinear separators any more. This shows
the optimality of Theorem 11.

6. Property Testing and Weak Hyperfiniteness

6.1. Property testing. Property testing has been introduced by Blum,
Luby and Rubinfeld [16] and Rubinfeld and Sudan [86] (in the context of pro-
gram testing), and by Arora, Lund, Motwani, Sudan, and M. Szegedy [7] and
Arora and Safra [8] (in the context of probabilistically checkable proofs). Testing
graph properties was first investigated by Goldreich, Goldwasser, and Ron [37].
(From a “mathematical” point of view, the main ingredients of property testing
are:

e a random sampling of the large structure,
e a suitable notion of distance between objects.

Let P be a class of graphs (called graph property in this context). A graph G is
said to have property P if G € P; it is said to be e-far for satisfying P if no graph
at distance at most e from G satisfies P. A testing algorithm (or tester) for graph
property P and accuracy e is an algorithm that distinguishes with probability at
least 2/3 between graphs satisfying P from graphs that are e-far from satisfying
it. More precisely, the property testing algorithm

e should accept with probability at least 2/3 every input graph that belongs
to P,

e should reject with probability at least 2/3 every input graph that has distance
more than e from any graph in P, i.e. if its e-far from satisfying P.

A graph property P is testable if for any € > 0, there is a constant time randomized
algorithm that can distinguish with high probability between graphs satisfying P
from those that are e-far from satisfying it.

One should notice that the introduction of the parameter ¢ will make some
properties impossible to distinguish. Precisely, two properties P and Q are indis-
tinguishable if for every e > 0 there exists N = N(e) such that:

e for every graph G € P with order at least NV there exists H € Q with the
same order such that dist(G, H) < e,

o for every graph H € Q with order at least N there exists G € P with the
same order such that dist(G, H) < e.

As proved in [2] (in the context of dense graphs, but easily extended to the general
case), if two properties are indistinguishable then either they are both testable or
none of them is testable. Dense graphs (and more generally structures) seem to be
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well understood and we refer here to a spectacular chain of results [6, 5, 84, 82, 12,
49, 11] to name just a sample of this development (which starts with Szemerédi
regularity lemma [88]). For sparse graphs the situation seems to be much less
understood. Extending earlier results [38, 13, 1, 87] most general result is using
the notion hyperfiniteness:

A class C of (finite) graphs is hyperfinite if for every positive real € > 0 there
exists a positive integer K (€) such that every graph G € C has a subset of at most
€|G| edges whose deletion leaves no connected component of order greater than
K(e) (see e.g. [53, 26, 27, 28, 41].

In [14], Benjamini, Schramm and Shapira showed that every minor-closed graph
property can be tested with a constant number of queries in the bounded degree
model. For instance, planarity is testable in the bounded degree model. Actually,
they prove a much stronger theorem:

Theorem 12 ([14]). Every monotone hyperfinite graph property is testable.

Using a detailed analysis of bounded expansion classes with an sub-exponential
growth we can extend the range of applications of this result.

6.2. Weakly hyperfinite classes. A class C of graphs is weakly hyperfinite
if for any € > 0 there exists K (¢) such that every G € C has a subset of at most
€|G| vertices whose deletion leaves no connected component of order greater than
K.

Although it is obvious that a monotone class of graphs needs to have bounded
degrees in order to be hyperfinite, weakly hyperfinite classes may have unbounded
degrees. Moreover, it is straightforward that any hyperfinite class is also weakly
hyperfinite.

The relation between the two notions will be made precise by the following
result:

Theorem 13. For a positive integer D, denote by Ap the class of the graphs
having mazimum degree at most D. Let C be a monotone class of graphs with
bounded average degree.

The class C is weakly hyperfinite if and only if for every integer D the class
C N Ap is hyperfinite.

A key advantage of the notion of weak hyperfinite class is its connection with
the existence of sublinear vertex separators. For space limitations we leave out
details and we just state the following:

Theorem 14. FEvery monotone class of graphs with sublinear vertex separators
is weakly hyperfinite. Consequently we have: Let C be a monotone class of graphs
with sublinear vertex-separators and bounded average degree and let D be a positive
integer. Then the subclass of C including those graphs in C which have maximum
degree at most D is hyperfinite.

Combining with our results about vertex separators we arrive to the following:

Theorem 15. Let P be a monotone class of graphs with sub-exponential w-expansion.
Then the property G € P is testable in the bounded degree model.
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7. Selected Examples

1. Classical Sparse Classes. Fig. 4 shows the inclusion map of some important
hereditary nowhere dense classes which were studied in combinatorial as well as
algorithmic context.

Asymptotically 2dens(CY)
ens i

edgeless
Bounded size Zdens(CY) <0
Bounded degree Planar Z(lens(c§) <1

T

Bounded genus ~ —» Lzl [pontoeled

tree-width

; :

. Locally excluded
Excluded minor —— -
minor

¢ } |

Excluded Bounded Locally bounded
topological minor expansion expansion

:

Nowhere dense =

Almost wide —> .
Quasi wide

:

Zdens(CY) = 2 Somewhere dense

Figure 4. Inclusion map of some important hereditary nowhere dense classes.

2. Simplicial Graphs. A k-dimensional simplex, or k-simplex, is the convex
hull of k + 1 affinely independent points in R? space. A d-dimensional sim-
plicial complex is a collection of k-simplexes, k& < d, closed under sub-simplex
and intersection. For example, a 3-dimensional simplicial complex is a collec-
tion of cells (3-simplexes), faces (2-simplexes), edges (1-simplexes) and vertices
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(O-simplexes). A d-dimensional simplicial graph is the collection of edges and
vertices of a d-dimensional simplicial complex. The aspect ratio of a body is
its diameter divided dth root of its volume [60]. The volume of a regular d-
simplex, d-cube, and d-ball of unit diameter are respectively 2-%2\/d + 1/d!, d=%/?
and 2-%7%2/(d/2)!. Hence the aspect ratios of a d-simplex, d-cube, and d-ball
are respectively o, = 2/2(d)V/4(d 4+ 1)~/ ~ \/2d/e,a. = Vd, and a;, =
2= 12(d/2)1"/4 ~ \/2d/(em). A simplicial graph of aspect ratio a means a sim-
plicial graph coming from a complex in which every d-simplex has aspect ratio at
most a.

Classes of simplicial graphs with bounded aspect ratio exclude big shallow
complete minors as proved by Plotkin, Rao and Smith [81]. It follows that such
classes are nowhere dense.

3. High Girth Graphs. A standard example of a monotone nowhere dense class
of graphs is the class of the graphs whose maximum degree does not exceed some
function of the girth, i.e. By = {G: A(G) < ¢(girth(G))}.

Such classes may have average degree as big as n°!) as a consequence (see for
instance [18]): For every positive integer n and an “expected degree” k (where k <
n/3), there exists a graph G of order n, size |nk/2|, vertex degrees in {k—1, k, k+1}
and whose girth ¢ is such that g > log,(n) + O(1). Hence, for any decreasing
function f: RT — RT such that lim, .o f(z) = 0 there exists a constant C such
that the class By defined by ¢(z) = (f~'(1/z) + C)'/* contains graphs with order
n, girth at least 1/f(n) and degrees k + 1 with k ~ n/(™),

8. Bounded Expansion Classes

A specific example of classes which are nowhere dense are classes with bounded
expansion. These classes have been introduced in [64]. A class C has bounded
expansion if there exists a function f : N — R (called expansion function) such
that

Vd € N sup M < f(d).
cecva |Gl

The value supgce v g % is denoted by V4(C) and, in the particular case of a single

element class {G}, V4(G) is called the greatest reduced average density (grad) of
G of rank d.
Classes with bounded expansion include [75]

e classes excluding a topological minor (this includes classes excluding a minor,
like planar graphs, and also classes with bounded maximum degree),

e k-non-repetitively colorable graphs (see [40] for more details on non-repetitive
colorings),

e geometrically defined classes like classes with bounded stack number and
classes with bounded queue number,
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e classes of highly subdivided graphs (allowing to construct examples of classes
with arbitrary non-decreasing expansion function),

e sparse random graphs (in the sense that for every positive real d there exists
a class Ry with bounded expansion such that random graphs with edge
probability d/n asymptotically almost surely belong to Rg).

For an extensive study of bounded expansion classes we refer the reader to [66],
[67], [68], [22], [23], [75].

(See [75] for the definition of stack and queue numbers. This paper contains
further examples of bounded expansion classes.)

As for nowhere dense classes, several equivalent characterizations exist for
classes with bounded expansion:

Theorem 16. Let C be a class of graphs. The following properties are equivalent:

e C has bounded expansion,
o for every integer p, sup x,(G) < co.
GeC

Thus any graph G in a (fixed) bounded expansion class C can be decomposed
into a fixed number N,(G) of classes such that the subgraphs induced by any < p
classes of the partition have components of only finitely many (homomorphism)
types. Thus p is then parameter expressing the precision of such decomposition.
Moreover such decomposition can be found in a linear number of steps. Not sur-
prisingly, this has a number of algorithmic consequences ([64, 67]. Such a decom-
position is called Low Tree Depth Decomposition and it was described explicitely
in the Introduction.

9. Restricted Dualities — a Characterization

In the Introduction we described homomorphism dualities for general relational
systems. Clearly if we restrict the universe of the considered structures G then
we can expect more “dual phenomena”. In such cases we speak about restricted
dualities. Explicitly, a (singleton) C- restricted duality is formed by a pair (F, D)
such that for every structure A € C holds:

F-A- A — A —D.

. Note that we do not assume that D € C. In the interpretation of the homomor-
phism order this just amounts to Forb(F) NnC = CSP(D) NC.
In the extremal case that for every connected F' € C there exists Dp such that
F, Dp form a C-restricted duality we say that C has all restricted dualities [68].
These two examples actually fit to a much more a general setting which has
been proved by [68]:

Theorem 17. Every class of structures with G—bounded expansion has all re-
stricted dualities.
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Explicitly: For every bounded expansion class C and for any finite set F =
{F1,Fa,...,F} of connected graphs there exists a structure Dz such that Dz €
Forb(F and A — Dz for every A € C and A € Forb(F).

A characterization of classes with all restricted dualities was not known until
recently (see e.g.[69]). One can deduce such a characterization using the follow-
ing notions (related to the completion of the homomorphism order): Given two
structures A, B we define their distance dist(A,B) as 27 L where L is the minimal
order |C| of a structure C which distinguishes A and B either from left or right.
This has the following meaning: distinguishing from left means that either C < A
and C £ B or C £ A and C < B; similarly, distinguishing from right means that
either A < Cand B £ Cor A £ C and B < C. dist(A,B) is an ultrametric
on the class Rel(A) which can be used to define the completion of the homomor-
phism order. This completion has interesting properties particularly with respect
to dualities (see [71]). Let us just state here the following:

For a structure A and a real € > 0, define ¢°(A) as a minimum order of a
structure B such that A — B and dist(A,B) < € (we arbitrarily choose between
those structures which have these properties, by using, for instance, some arbitrary
linear order on Rel(A); such structure B we can call e-retract of A).

Theorem 18. Let C be a class of structures. Then C has all restricted dualities if
and only if for every e > 0 we have supp ¢ ¢(A) < 0.
Moreover, for every connected structure F, there is a sequence Dy(F) < Dy 1 (F) «
. of duals of F relative to C which converges to sup(C*t N Forb(F)), where C*
denotes the closure of C by all finite disjoint unions of structures in C.
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