
HAL Id: hal-00535022
https://hal.science/hal-00535022

Submitted on 11 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Allelic genotyping reveals a hierarchy of genomic
alterations in mantle cell lymphoma associated to cell

proliferation
G. Hutter, M. Scheubner, G. Ott, Y. Zimmermann, K. Hübler, S. Roth, S.

Stilgenbauer, J. Kalla, H. Stöcklein, W. Hiddemann, et al.

To cite this version:
G. Hutter, M. Scheubner, G. Ott, Y. Zimmermann, K. Hübler, et al.. Allelic genotyping reveals a
hierarchy of genomic alterations in mantle cell lymphoma associated to cell proliferation. Annals of
Hematology, 2009, 88 (9), pp.821-828. �10.1007/s00277-008-0686-2�. �hal-00535022�

https://hal.science/hal-00535022
https://hal.archives-ouvertes.fr


ORIGINAL ARTICLE

Allelic genotyping reveals a hierarchy of genomic alterations
in mantle cell lymphoma associated to cell proliferation

G. Hutter & M. Scheubner & G. Ott & Y. Zimmermann &

K. Hübler & S. Roth & S. Stilgenbauer & J. Kalla &

H. Stöcklein & W. Hiddemann & M. Dreyling

Received: 11 February 2008 /Accepted: 18 December 2008 / Published online: 10 January 2009
# Springer-Verlag 2009

Abstract Mantle cell lymphoma (MCL) is a distinct
subentity of non-Hodgkin lymphoma, characterized by the
chromosomal translocation t(11;14)(q13;q32) leading to an
overexpression of cyclin D1 in virtually all cases. However,
additional cytogenetic aberrations are apparent in the vast
majority of MCL. Applying LOH analysis in 52 MCL
patient samples, we confirmed frequent alterations in 9p21
(28.6%) and p53 (28.9%) but also detected allelic losses in
1p21, 9q21, 13q13-14, 13q31-32, 17p13.1, and 17p13.3 in
28–45% of cases and allelic gains in 3q27-28 and 19p13.3
in 14–22% of cases. In addition, losses in the 2p23 and

7q22-35 genomic regions not previously described to be
altered in MCL were identified in up to 20% of cases.
Applying multivariate analysis, a cluster of genomic
aberrations including 1p21, 3q27, 7q22-36, 6p24, 9p21,
9q31, and 16p12 alterations was identified which was
closely associated to cell proliferation as determined by
Ki67 immunostaining. This proliferation-dependent net-
work of oncogenic alterations complements the previously
identified proliferation expression signature described by
RNA expression profiling in MCL.

Keywords MCL . LOH analysis . Cell proliferation . 17p13

Introduction

Mantle cell lymphoma (MCL) has been recognized as a
distinct subtype of malignant lymphoma in the current WHO
Lymphoma classification system. It represents 6–9% of
malignant lymphomas and is characterized by distinctive
immunophenotypic and genetic features [13, 26]. The clinical
outcome of mantle cell lymphoma is dismal, with a median
survival time of only 3 years due to rapidly developing
chemoresistance and frequent relapses [13]. However, a
minority of patients survive up to 10 years, indicating the
clinical and biological heterogeneity of MCL [39].

Morphologically, two subgroups of MCL have been
recognized. The classical MCL is composed of small to
medium-sized lymphoid cells with small, irregular nuclei
and a relatively low proliferative index [2, 48]. The blastoid
variant is characterized by either pleomorphic or larger
blast-like nuclei with a fine and dispersed chromatin and
occasional small nucleoli. This variant displays a higher
cell proliferation and a more aggressive clinical course than
typical MCL [35]; [48]. Secondary transformations towards
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the blastoid variant forms have been observed in 26–70%
of MCL patients. Genetically, MCL is characterized by the
chromosomal translocation t(11;14)(q13;q32), which corre-
sponds to the juxtaposition of cyclinD1 to the immuno-
globulin heavy chain gene promoter and resulting in the
constitutive overexpression of CyclinD1. Recently, it could
be demonstrated that the proliferation gene expression
signature is a central prognostic factor in MCL [39]. The
expression profile of only four genes identified low risk
patients with a median survival of up to 10 years. Another
genetic signature distinguished Ki-67high from Ki-67low

MCL and consisted of 32 genes involved in cellular
processes, such as mitotic spindle formation, gene tran-
scription and cell cycle regulation [16]. In addition,
Katzenberger et al. show a closed correlation between the
Ki67 index of tumor cells and survival in MCL [27].

Despite the fact that cyclinD1 has been identified as an
important oncogene in various solid tumors, the trans-
forming properties of cyclin D1 seem to be less efficient
than other oncogenes [23]. Thus, in cyclin D1 transgenic
animals mice the lymphomagenesis required the coopera-
tion of other additional oncogenes, indicating that addition-
al molecular alterations are necessary for the clinical
development and progression of MCL [30].

Accordingly, secondary molecular alterations are fre-
quently detected in MCL. Blastoid variants of MCL have a
high incidence of p53 gene mutations [20, 21], p16INK4a

deletions or hypermethylation [14, 25, 36]. In addition,
shorter survival among MCL patients has been correlated
with overexpression of c-myc [32] and a high cell
proliferation index as measured by immunostaining of
other proliferation-associated transcription factors [44].
Applying FISH analysis, a deletion of the 11q14-q24
chromosomal region including the ATM gene could be
identified in 46% of MCL cases [45]. The detection of
mutations of ATM in MCL patients suggested a potential
susceptibility role in the tumorigenesis of MCL [42].
Another important tumor suppressor region on chromo-
somal band 13q14 was deleted in 70% of MCL [14, 46].

Comparative genomic hybridization (CGH) and array-
based genomic analysis revealed amplifications in 3q, 7p, 8q,
12q, 18q, 9q and deletions in 6q, 1p, 11q, 10p, 17p, 9p, and
13q as frequent secondary genetic alterations [1, 5, 19, 28, 41,
44]. Those genetic alterations were more frequently found in
blastoid than in classical MCL [4, 31].

Despite these important observations, little is known
about the functional interaction of secondary genomic
aberrations in MCL. To determine the impact of chromo-
somal imbalances on tumor cell proliferation, a compre-
hensive genomic allelotyping was performed in 52 MCL
patient samples (blastoid and classical) using 87 micro-
satellite-primers evenly distributed over the whole genome.
Applying PCR-based LOH analysis, tumor DNA and

normal control samples of individual patients were ana-
lyzed for deletions or amplifications of distinct genomic
regions.

Materials and methods

Tumor samples Fifty-two MCL patients with a median age
of 66.5 years were investigated in this retrospective study.
All tumors were reviewed by a member of the European
MCL Pathology panel (G.O.) and classified according to
the criteria of the WHO lymphoma classification. Cyclin
D1 overexpression or t(11;14)(q13;q32) translocation were
identified by Northern blot analysis or cytogenetic FISH
analysis, respectively. Genomic DNA was extracted from
formalin fixed tumor tissue and/or buffy coat from
leukemic samples as previously described [25]. After Ficoll
separation of lymphocytes (buffy coat) and granulocytes
(pellet), DNA was extracted applying the NucleospinR

Blood XL kit (Machery Nagel, Dueren, Germany). Purity
of cell compartments (>95%) was confirmed by cytospin
analysis. Control DNA was obtained from granulocytes or
whole blood (non-leukemic cases).

LOH analysis DNA of 52 morphologically confirmed
MCL and control cells were comparatively analyzed for
genomic imbalances by semi-automated allelotyping apply-
ing 87 fluorescence-labeled microsatellite markers evenly
distributed throughout the human genome (supplement
Table 1; RER/LOH assay kit, PE Biosystems, Foster City,
CA; Table 1) labeled with either FAM (blue), TET (green),

Table 1 Overview of frequently altered genomic regions in MCL and
association to other genomic alterations

Frequently altered
genomic loci

Associated to alterations

1p13 7q, 8q, 13q13-33, 15q25, 17p13.1
2p23 4q, 6q, 8q
3p25-pter 17q23
3q22-23 7q, 8q, 13q31
3q27-q28 7q, 8q, 13q31
4q31.1 1p
6p24 19p13, 17p13.1
6q23-26 2p, 8q, 13q, 17p13.2
7q 1p, 9p21, 3q
8q 15q25, 13q13-33
9p21 7q, 17p13.1, 17p13.2, 13q13-33, 16p12
9q 3q, 15q, 17p12-13, 17p13.2, 17p13.3, 17q23
11q14 4q
12q
13q13-33 1p, 3q, 6q, 8q, 9p21
15q25 8q, 1p, 9q, 9p21
16p12 8q, 15q, 9p21
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or HEX (yellow). PCR was performed with 25 ng genomic
template DNA in a 20 µl reaction volume according to the
manufacturer’s protocol. After an initial AmpliTaq gold
(Applied Biosystems) activation step at 95°C for 10 min,
35 PCR cycles were performed at 95°C for 10 s, 55 for 30 s
and 72°C for 2 min followed by a final extension at 72°C,
10 min. Amplification products were pooled and analyzed
on an ABIPrism310 DNA sequencer (PE Biosystems).
Analysis of peak height and fragment size was performed
with the Genescan Fragment Analysis and Genotyper
software (PE Biosystems). Based on previous standardiza-
tion experiments, allelic imbalance was diagnosed if the
peak ratio of both alleles differed by more than three
standard deviations between lymphoma and normal periph-
eral blood cells. Allelic imbalances were evaluated by
calculating the ratio between the allele ratio of the healthy
sample and that of the diseased sample considering a score
higher than 1.35 as an amplification and lower 0.67 as loss
of heterozygosity [43].

Proliferation index and p53 expression status The prolifer-
ation (Ki67) index and p53 expression were assessed by
immunohistochemistry as previously described [14, 35].
P53 overexpression was defined as strong p53 staining of
>20% of tumor cell nuclei.

TP53 mutation status MCL patient samples were screened
for mutations in p53 exons 5–9 by PCR-SSCP analysis
coupled with direct PCR sequencing as previously de-
scribed [50].

Data analysis For statistical analysis Chi-square tests,
Fisher’s exact t-test and odds ratio analysis were performed.
An association was assumed significant if p<0.05. The

NCBI data base http://www.ncbi.nlm.nih.gov/genome/
guide/human/d and http://www.ncbi.nlm.nih.gov/entrez/
query was searched for potential candidate genes. The
human (Homo sapiens) Genome Browser Gateway http://
genome.cse.ucsc.edu/cgi-bin/hgGateway was used to
screen for microRNA locations.

Results

Identification of genomic imbalances In 560 out of 4,367
analyses (12.8%) genomic imbalances were identified
including 378 deletions (67.5%) and 182 amplification
(32.5%). The median number of losses and gains per
patient was 7.3 and 3.5. In all patients, at least one genomic
alteration was detected, with a median number of 11
genomic imbalances per patient. Number of genomic
imbalances was not significantly different in blastoid or
classical MCL as well as those with low and high
proliferation.

Imbalances of genomic regions The frequencies of identi-
fied genomic imbalances are summarized in Fig. 1. In 13 of
87 microsatellite markers, a significant rate (>20%) of
allelic losses were detected corresponding to nine of the 37
analyzed chromosomal arms (24.3%). The most frequently
detected allelic losses involved chromosomal bands 1p21
(28%); 2p23 (20.4%); 6q26 (20.9%), 7q35 (20.6%); 9q21
(42.1%), 9q31-33 (24.2%); 9p21 (28.6%); 13q13-14
(26.5%); 13q31-32 (25%), 17p13.1 (45.2%); TP53
(28.9%), and 17p13.3 (50%; Fig. 1).

A significant rate (>10% of patients) of allelic gains were
detected in 9.7% of chromosomal bands corresponding to
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five of 37 analyzed chromosome arms (13.5%). Allelic gains
were most frequently detected on chromosomal bands 3q27
(22.2%), 4q31.1 (14.2%), 6p24 (15%), 19p13.3 (14.2%;
Fig. 1).

Allelic losses and/or gains of 5 additional frequently
altered loci (3p25-pter, 7q22, 8q12, 11q14, 12q13-23) were
identified (Fig. 1).

Morphology, proliferation index, and genetic imbalances De-
tailed statistical analysis (odds ratio, chi square tests)
revealed a cluster of genomic alterations of chromosomal
bands 1p21, 3q27, 6p24, 7q35, 9p21, 9q31-33, and 16p12
which was closely associated with a high proliferation
index (Fig. 2). Alterations of 7q35 were mainly associated
to alterations of loci of the proliferation cluster (9p21; 1p;
3q) but also to 17p13.1 (Fig. 2; Table 1). Genomic
alterations of 3q27, 6p24, and 4q31.1 were significantly
more frequent in samples with blastoid morphology.

p53 alterations p53 alterations, p53 mutations and/or alter-
ations in P53 protein expression, were found in 47% of
analyzed samples. These alterations were directly correlated
to genomic imbalances in 17p13.1 (p<0.05). Genomic
alterations in 17p13.1 were highly associated to blastoid
morphology and loci of the proliferation-associated cluster
like 1p21, 6p24, 9p13-21, and 9q31-33 (Table 2, Fig. 3).

Discussion

MCL is characterized by the t(11;14)(q13;q32) chromo-
somal translocation leading to constitutive overexpression
of cyclinD1 [49]. However, this translocation alone is not
sufficient to promote MCL development but additional
genomic alterations appear to be essential for malignant
transformation [30]. To identify secondary genetic alter-

ations involved, several groups have applied different
techniques such as cytogenetic analysis, comparative
genomic hybridization or DNA microarray [1, 5, 11, 19,
28, 44]. In this study, we used a comprehensive method of
allelotyping for the detection of genomic gains and losses
in MCL [24].

Our data confirmed previously described MCL genomic
alterations. Allelic losses and gains were encountered most
frequently in chromosomal bands 1p21, 9p21, 9q21,
13q13-14, 13q31-32, 17p13.1, and 17p13.3.

One of the most frequently altered locus in the present
study (9q21; 42%) harbors various genes involved in DNA
repair and maintenance of chromosome stability, but also
the B-cell-associated tyrosine kinase which was described
as a potential therapeutic target by genomic and expression
profiling [38]. Alterations of 9q21-q22 have recently been
described as a novel marker of inferior outcome in MCL
[40]. We could demonstrate a borderline association between
genomic alterations of 9q21-q22 and p53 (p=0,052). Such
p53 mutations have been described to be associated with
variant cytology and predict a poor prognosis [20]. In the
present study, alterations of the 9q21 locus were not
directly associated to proliferation, but to the proliferation-
associated cluster of alterations (Table 1).

The 9p21 locus is one member of the proliferation-
associated cluster, which harbors the INK4 tumor suppressor
gene cluster. Inactivation of tumor suppressor genes p15
(INK4b) and p16(INK4a) has previously been shown to be
involved in secondary transformations of indolent lymphoma
[14], [15, 17] and specifically in the blastoid variant of MCL
[14, 37]. Accordingly, in the present study, LOH of 9p21
was closely associated with cell proliferation but also p53
alterations (Figs. 2 and 3). The previously described rare p16
(INK4a) promoter methylation may represent an additional
mechanism of gene-specific cell cycle dysregulation in MCL
[25]. 9p21 alterations were indirectly associated to other
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Fig. 2 The proliferation-associ-
ated cluster of frequent genomic
alterations. Associations were
determined as significant if
p<0.05

824 Ann Hematol (2009) 88:821–828



members of the proliferation cluster (Table 1). However,
alterations of the genetic loci 3q27 and 1p13-36, members of
the proliferation cluster, were not associated to each other
and thus may represent alternative signal pathways linked to
7q alterations (Table 1). Other members of the proliferation-
associated cluster are constituted by alterations in 9q31-33,
6p24, and 16p12 (Fig. 2) harboring potential interesting
candidate genes such as rad23, the e2f transcription factor3,
eef1E1 (eukaryotic translation elongation factor 1 epsilon),
and the eef1E1 kinase.

We could also show frequent alterations (amplification
and LOH) in the 12q13 locus. This locus potentially
involves the cdk4, mdm2, rarg, atf, and cd63 genes [4].
Those genes were reported to be differentially expressed in
MCL as compared to normal B-cell populations [22]. In
addition, Hernandez et al. reported that cdk4 and mdm2
gene alterations mainly occur in MCL with wild-type

INK4a/ARF locus and may contribute to the higher
proliferation and more aggressive behavior of the tumor
[22]. However, in our series, only a tendency towards
reverse correlation between 9p21 and 12q13 alterations has
been detected (data not shown).

As previously described, we detected a high frequency
of LOH in the p53 locus, which has been reported as a
marker of poor prognosis associated with blastoid variants
of MCL [20, 21]. Accordingly, Tamaru et al. concluded that
overexpression of p53 and p27KIP1 may be linked to a
cellular mechanism involved in the development of the
variant form of MCL [47]. Mutant p53 alleles were also
correlated to proliferation signature and worse overall
survival in comparison to wild-type cases [20]. In line with
these observations, LOH in 17p13.1 harboring p53 were
associated to members of the proliferation-associated
cluster in our study.
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Fig. 3 The cell proliferation
cluster of frequently genomic
alterations in MCL. An associa-
tion was determined significant
if p≤0.05. p53 alterations in-
clude mutations in p53 and
alterations in P53 protein
expression

Table 2 Associations between
genetic alterations in 17p13.1
and genetic alterations of other
loci

+ Presence of alterations, − no
alteration

Locus/morphology (number of analyzed
samples)

Alterations in 17p13.1 (nr; %) Odds ratio p value

1p21(D1S206) (42)
13 + +(11; 84.6%) 5.8 0.04
29 − −(14; 48%)
6p24 (D6S1574) (42)
10 + +(9; 90%) 7 0.05
32 − −(18; 56%)
9p13-21 (D9S285, D9S171, D9S273) (50)
20 + +(17; 85%) 5.13 0.016
30 − −(15; 50%)
9q31-33 (D9S1677) (37)
10 + +(6; 60%) 6.6 0.014
27 − −(5; 18.5%)
17p13.2 (D17S938, D17S516) (45)
23 + +(14; 60.8%) 15.5 0.014
22 − −(2; 8.3%)
Morphology (33)
10 + (blastoid) +(6; 60%) 33 0.01
23 − (classical) −(1; 4.3%)
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We could also identify a distinct frequently altered
chromosomal region on 17p13.3, with several candidate
tumor suppressor genes such as tusc5, ovca2, mnt/rox, or
hic1 which were described to be altered in other cancers [10,
29]. Interestingly, a functional cooperation between hic1 and
p53 has been described. Hic1 was involved in certain feed-
back regulation of p53 by histone deacetylase sirt1 [7, 8].

The frequently altered loci of chromosomal arm 13q31-33
harbor miRNA, small non-coding RNAs thought to be
involved in physiologic and developmental processes by
negatively regulating expression of target genes (http://micro
rna.sanger.ac.uk/). Ota et al. identified a new gene C13orf25
in 13q31-32 which contains seven mature microRNAs in its
untranslated region [34]. Additionally, O’Donnel et al.
showed that c-myc activates expression of a cluster of six
miRNAs on chromosome 13. Furthermore, expression of
e2f1, another target of c-myc promoting cell cycle, is
negatively regulated by two miRNAs of this cluster [33].

Another important tumor suppressor region on chromo-
somal band 13q14, deleted in up to 70% of MCL, has been
suggested relevant for the pathogenesis of mantle cell
lymphomas [14, 46]. In CLL deletions of 13q13-14 have
been reported to be strongly associated clinical outcome [3,
12]. Accordingly, genetic alterations of 13q14 have been
associated with inferior overall survival in MCL [28]. In
this region, miR-15a and miR-16a have been reported to be
frequently deleted and/or down-regulated in CLL patients
[6]. Expression of miR-15a and miR-16a has been inversely
correlated to BCL2 expression in CLL and characterized as
negative regulator of bcl2 at posttranscriptional levels [9].

In summary, most of the frequent genomic alterations
demonstrated in MCL in the present study are associated
with dysregulation of the cell cycle machinery and interfere
with the cellular response to DNA damage. Systematic
genotyping identified a proliferation-associated cluster
involving 1p21, 6p24, 9p21, and 9q31 loci. These results
support and complement the proliferation signature previ-
ously defined by RNA expression profiling [18, 39].
Additional studies of this genomic region will provide
further insights into the molecular pathogenesis of MCL.
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