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Abstract Inhaled corticosteroid (ICS) therapy in combina-
tion with long-acting β-adrenergic agonists represents the
most important treatment for chronic airways diseases such
as asthma and chronic obstructive pulmonary disease
(COPD). ICS therapy forms the basis for treatment of
asthma of all severities, improving asthma control, lung
function and preventing exacerbations of disease. Use of
ICS has also been established in the treatment of COPD,
particularly symptomatic patients, who experience useful
gains in quality of life, likely from an improvement in
symptoms such as breathlessness and in reduction in
exacerbations, and an attenuation of the yearly rate of
deterioration in lung function. The addition of long-acting
β-agonist (LABA) therapy with ICS increases the efficacy
of ICS effects in moderate-to-severe asthma. Thus, a
800 μg daily dose of the ICS budesonide reduced severe
exacerbation rates by 49% compared to a low dose of
200 μg daily, and addition of the LABA formoterol to
budesonide (800 μg) led to a 63% reduction. In COPD, the
effects of ICS are less prominent but there are beneficial
effects on the decline in FEV1 and the rate of exacerbations.
A reduction in the rate of decline in FEV1 of 16 ml/year
with a 25% reduction in exacerbation rate has been reported
with the salmeterol and fluticasone combination. A non-
significant 17.5% reduction in all-cause mortality rate with
ICS and LABA is reported. Chronic inflammation is a

feature of both asthma and COPD, although there are site
and characteristic differences. ICS targets this inflammation
although this effect of ICS is less effective in patients with
severe asthma and with COPD; however, addition of LABA
may potentiate the anti-inflammatory effects of ICS. An
important consideration is the presence of corticosteroid
insensitivity in these patients. Currently available ICS have
variably potent binding activities to specific glucocorticoid
receptors, leading to inhibition of gene expression by either
binding to DNA and inducing anti-inflammatory genes or
by repressing the induction of pro-inflammatory mediators.
Local side effects of ICS include oral candidiasis, hoarseness
and dysphonia, while systemic side effects, such as easy
bruising and reduction in growth velocity or bone mineral
densitometry, are usually restricted to doses above maximally
recommended doses. Use of LABA alone in patients with
asthma increases the risk of asthma-related events including
deaths, but this is less observed with the combination of ICS
and LABA. Therefore, use of LABA alone is not recom-
mended for asthma therapy. Future progress in ICS develop-
ment will be characterised by the introduction of ICS with
greater efficacy with a limited side-effect profile, and by
longer-acting ICS that can be used in combination with once-
daily LABAs. Other agents that could improve the efficacy of
corticosteroids or reverse corticosteroid insensitivity may be
added to ICS. ICS in combination with LABAs will continue
to remain the main focus of treatment of airways diseases.
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Introduction

Asthma therapy was revolutionised in the early 1970s by
the introduction of inhaled corticosteroid (ICS) therapy,
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which has subsequently proved to be the most effective
anti-inflammatory treatment for asthma control. ICS thera-
py was later introduced for the treatment of COPD with
benefits particularly in more advanced disease although its
effectiveness is less evident than its effect in asthma. The
use of ICS alone as the gold standard in airways disease has
been superseded by the discovery that, in combination with
long-acting β-agonists (LABA), the effects of ICS are
improved. The combination of ICS and LABA will likely
remain the cornerstone of treatment for the next decades.
Improved understanding of the molecular mechanisms of
ICS will lead to the development of new CS molecules that
could provide even greater efficacy with a reduced risk of
systemic side-effects. Further, understanding the mecha-
nisms underlying relative CS insensitivity in asthma and
COPD may lead to novel combinations that will restore CS
sensitivity in these patients. In this review, we will examine
the mechanisms of action, the pharmacokinetics and the
clinical effects of ICS in both asthma and COPD.

Molecular mechanisms of corticosteroids

Corticosteroids belong to the family of 21-carbon steroid
nuclear hormones [1] and act by binding to the ubiquitously
expressed glucocorticoid receptor (GR) which is predomi-
nantly localised to the cytoplasm. Corticosteroids freely
diffuse from the circulation across the cell membrane into
cells and bind to cytoplasmic GR inducing a conformation-
al change in the receptor, loss of its chaperone proteins and
its nuclear localisation. GR is a phosphoprotein [2] and as
with many other transcription factors the ability of GR to
associate with the importin machinery is regulated by its
phosphorylation status [3].

Classically, two GR proteins combine together and bind
to DNA at consensus glucocorticoid response elements
(GREs) in the regulatory regions of corticosteroid-
responsive genes to induce anti-inflammatory or some innate
immune genes [3]. Once DNA-bound, the active GR dimer
recruits a number of transcriptional coactivator proteins,
including SRC-1 and cyclic AMP response element-
binding protein (CBP), and basic transcription factors to
form a pre-initiation complex. These co-activators have
intrinsic histone acetyltransferase (HAT) activity which tags
N-terminal lysine residues in the local histones (H3 and H4)
allowing recruitment of chromatin remodelling complexes
including the SWI/SNF complex [3].

Histone acetylation induced by transcriptional coactiva-
tors, such as CBP and p300/CBP-associated factor [4], is
associated with increased gene transcription whereas, in
contrast, hypoacetylation induced by histone deacetylases
(HDACs) is correlated with reduced transcription or gene
silencing [4]. GRs can bind to DNA as heterodimers with

many other transcription factors, such as members of the
signal transducer and activator of transcription (STAT)
family, the ETS transcription factors and the vitamin D3
receptor [5, 6] leading to the recruitment of distinct
coactivator (e.g. GRIP-1) or corepressor (e.g. RIP140 or
HDAC) complexes [7, 8].

Increased transcription of anti-inflammatory genes that
are relevant to airways diseases such as annexin 1, IL-10
and glucocorticoid-inducible leucine zipper (GILZ) may
account for the anti-inflammatory effects of corticosteroids.
However, the major anti-inflammatory effects of glucocor-
ticoids are likely to be through repression of inflammatory
and immune genes since most GR-repressible genes do not
posses negative GREs. The activated monomeric form of
GR can interact directly with other transcription factors,
particularly NF-κB and activator protein 1 (AP-1), which
mediate the expression of inflammatory genes. Maximum
inflammatory gene expression probably requires that a
number of transcription factors act together in a coordinated
manner, and glucocorticoids, by targeting several transcrip-
tion factors, might have greater effects than if only a single
factor was targeted. The precise mechanism for this
repression may include binding and recruiting nuclear
receptor corepressors such as NCoR and HDACs, direct
repression of coactivator complexes, or effects on RNA
polymerase II phosphorylation [7, 8]. For example, in
primary airway smooth-muscle cells, fluticasone attenuates
TNF-α-induced histone H4 acetylation leading to a
reduction in p65 association with the native CCL11
promoter and suppression of CCL11 expression [9]. In
addition, glucocorticoids might play a role in repressing the
action of MAPKs, such as the extracellular signal-regulated
kinase (ERK), p38 MAPK, and c-Jun N-terminal kinase
(JNK) [2, 7, 8]. These actions are mutually inhibitory and,
in the case of p38 and JNK, may relate to induction of the
dual-specificity MAPK phosphatase 1 (MKP-1), which
thereby attenuates MAPK activation [10]. Importantly,
p38 MAPK-mediated GR phosphorylation can attenuate
GR function [7, 11].

Glucocorticoids can also regulate the stability of pro-
inflammatory gene mRNAs which contain adenylate-
uridylate-rich elements (AREs) within their 3′ untranslated
regions [10, 12]. ARE-binding proteins such tristetrapolin
(TTP), which promotes mRNA decay, and Hu antigen R
(HuR) family members, which are associated with mRNA
stability, interact with AREs to form messenger ribonu-
cleoprotein complexes, which modulate mRNA decay
[12]. HuR binding to AREs is dependent on p38 MAPK
[10, 12], and dexamethasone may control the levels of
HuR and TTP, thereby reducing the levels of inflammatory
gene mRNAs such as COX-2 and CCL11 through a p38
MAPK-mediated pathway subsequent to induction of
MKP-1 [10].
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The traditional genomic theory of steroid action, whether
directly interacting with DNA or involving cross-talk with
other transcription factors, does not fully explain the rapid
effects of corticosteroids such as their blanching effects on
skin, representing an acute vasoconstrictor effect, and in the
airways as an acute reduction in bronchial blood flow with
ICS [13]. Alternative explanations have been invoked to
explain this rapid effect. GR is associated with a number of
kinases and phosphatases within the inactive GR-hsp90
complex and these are released upon ligand binding [7, 8].
It is possible that these might account for the rapid changes
in cell function induced in some cells by glucocorticoids. In
addition, a distinct membrane-localised GR has been
described. These receptors have distinctive hormone-
binding properties compared with the well-characterized
cytoplasmic GR and are probably linked to a number of
intracellular signaling pathways acting through G-protein-
coupled receptors and a number of kinase pathways. This
mechanism may account for the change in bronchial blood
flow induced by inhaled corticosteroids. In addition, the
classical receptor is associated with a number of kinases
and phosphatases within the inactive GR-hsp90 complex
[14, 15]. These enzymes are released on hormone binding
and might also account for the rapid induction of tyrosine
kinases seen in some cell types by glucocorticoids.

Anti-inflammatory effects of ICS in asthma

Effects on inflammation

ICS are effective anti-asthma agents that can reverse the
specific chronic airway inflammation present in asthma
[16-19]. ICS reduce the number of mast cells, macrophages,
T-lymphocytes and eosinophils in the sputum, bronchoal-
veolar lavage and bronchial wall [20, 21]. Furthermore, ICS
reverse the shedding of epithelial cells, goblet-cell hyper-
plasia and basement-membrane thickening characteristic of
the airway mucosa of patients with asthma [18, 22]. ICS
may reduce the increased airway wall vascularity [23] and
also the increased airway mucosal blood flow present in
asthmatic patients [24]. ICS has also been reported to
reduce the increased thickness of the subbasement mem-
brane representing increased deposition of the extracellular
matrix [22, 25], but other studies do not support this. The
inflammatory component of asthmatic airways that is most
responsive to glucocorticoid treatment appears to be the
eosinophilic inflammation. Importantly, in patients with
persistent asthma, well- controlled tapering of inhaled
glucocorticoids induces an exacerbation within a few
months that is associated with a reversible increase of
eosinophilic airway inflammation [26, 27]. These observa-
tions indicate that glucocorticoids suppress the inflamma-

tory response only whilst being actively taken and the
effects wear off with time.

Cellular effects

Glucocorticoids may have direct inhibitory effects on many
of the cells involved in airway inflammation in asthma,
including macrophages, T-lymphocytes, eosinophils, mast
cells, and airway smooth-muscle and epithelial cells [28,
29]. In culture, glucocorticoids decrease cytokine-mediated
survival of eosinophils by stimulating apoptosis [30]. This
process may explain the reduction in the number of
eosinophils in the circulation and airways of patients with
asthma during glucocorticoid therapy [18, 20]. Glucocorti-
coids may not inhibit the release of mediators from mast
cells [31, 32], but they reduce the number of mast cells
within the airway [33]. In addition, ICS reduce the
expression of the activation markers CD25 and HLA-DR
in both CD4+ and CD8+ T-cell subsets in peripheral blood
and bronchoalveolar lavage fluid of patients with asthma
[34, 35]. Part of the anti-inflammatory activity of gluco-
corticoids in asthma may also involve a reduction in
macrophage eicosanoid (leukotriene B4 and thromboxane
B2) and cytokine (i.e. interleukin 1ß) synthesis [36, 37]. In
contrast, glucocorticoids either have no effect on, or may
even augment, neutrophil-mediated inflammation [38].
Glucocorticoids enhance neutrophil function through in-
creased leukotriene and superoxide production, as well as
inhibition of apoptosis [39, 40].

Anti-mediator effects

In vivo and in vitro studies suggest that glucocorticoids
produce minimal suppression of leukotriene production and
in some cases may enhance their production [38]. However,
levels of exhaled nitric oxide, a marker of asthmatic airway
inflammation, are consistently decreased by treatment with
ICS [21, 41]. Glucocorticoids also block the generation of
several pro-inflammatory cytokines and chemokines, in-
cluding interleukin (IL)-1β, IL-4, IL-5, IL-8, granulocyte-
macrophage colony stimulating factor (GM-CSF), tumour
necrosis factor α (TNF-α), RANTES and macrophage
inflammatory protein-1α (MIP-1α) [42] in the asthmatic
lung. Inhibitory effects of cytokine and chemokine release
have also been demonstrated in airway smooth-muscle cells
[43]. In contrast, glucocorticoids can increase the produc-
tion of the anti-inflammatory cytokine IL-10 from BAL
alveolar macrophages [44], but not of IL-1Rα in the
bronchial mucosa of asthmatic patients [45].

Airway hyperresponsiveness (AHR) may be directly
caused by inflammatory mechanisms [46]. ICS consistently
lessen AHR in asthma [47-49] and long-term treatment
with glucocorticoids reduced airway responsiveness to both
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direct and indirect challenges including histamine, cholin-
ergic agonists, allergens (affecting both early and late
responses), exercise, fog, cold air, bradykinin, adenosine
and irritants such as sulfur dioxide and metabisulfites [50,
51]. ICS also limits the maximum narrowing of the airway
in response to a spasmogen [52]. The reduction in airway
hyperresponsiveness may not be maximal until treatment
has been given for several months, although improvements
may occur fairly quickly within a few hours. The
magnitude of the reduction differs, but often airway
responsiveness remains abnormally increased [50]. When
therapy is discontinued, airway responsiveness usually
returns to pretreatment levels [53-55].

Anti-inflammatory effects of ICS in COPD

COPD has been increasingly recognized as a chronic
inflammatory disease of the lower airways, which is
enhanced during exacerbations [56]. The GOLD guidelines
now define COPD as a preventable and treatable disease
with some significant extra-pulmonary effects that may
contribute to its severity [57]. The airflow limitation is
usually progressive and associated with an inflammatory
response of the lung to noxious particles and gases. The
pathological hallmarks of COPD are destruction of the lung
parenchyma (pulmonary emphysema), inflammation of the
peripheral airways (respiratory bronchiolitis) and inflam-
mation of the central airways [58]. The inflammation in
COPD occurs in the central and peripheral airways
(bronchioles) and lung parenchyma, and there is a marked
increase in macrophages and neutrophils in bronchoalveolar
lavage fluid and induced sputum [59]. Patients with COPD
have infiltration of T cells (with an increased ratio between
CD8+ and CD4+ T cells), macrophages and an increased
number of neutrophils within the airways mucosa and lung
parenchyma [58]. The bronchioles are obstructed by
fibrosis and infiltrated with macrophages and T lympho-
cytes. In contrast to the situation with asthma, eosinophils
are not prominent except in patients with concomitant
asthma or in some patients during exacerbations [58]. The
mechanisms underlying COPD can be diverse involving
local and systemic inflammation, metabolism, immunity
and tissue remodelling [60].

Overall, the effects of ICS on the inflammatory process
of COPD are small, if any. A 2005 meta-analysis of the
effect of ICS treatment on sputum markers in COPD
indicated that there was an overall effect of ICS in reducing
neutrophil and lymphocyte counts to a small extent
provided they were given over a prolonged period of time
of greater than 6 weeks [61]. More recent studies of
6-month duration with budesonide showed no effect on
sputum neutrophil count, although sputum eosinophil

counts were reduced [62]; indeed, the presence of eosino-
philic inflammation in COPD has been proposed as a
marker of clinical responsiveness to ICS [63, 64]. A biopsy
study showed that fluticasone treatment for 3 months had
no effect on the number of CD8+, CD68+ and neutrophils,
although CD8/CD4 ratio in epithelium and subepithelial
mast cells was reduced [65]. A separate report of the same
study reported an increase in neutrophils after fluticasone
treatment [66]. The combination of fluticasone and salme-
terol caused a reduction in CD8+ T cells, CD45+ cells and
TNFα+ and IFNγ+ cells in the submucosa, and a reduction
in differential neutrophil count and absolute eosinophil
cpount in induced sputum. These anti-inflammatory effects
were accompanied by improvements in pre-bronchodilator
FEV1 [67]. This effect of combination therapy may
represent an improvement in the anti-inflammatory effects
over that of ICS alone.

There is a strong possibility that the effects of ICS in
COPD may not only be to target lung inflammation but also
to inhibit systemic inflammation, which may lead to
beneficial effects such as a reduction in lung-function
decline or deaths. Thus, ICS therapy leads to a reduction in
systemic levels in inflammatory markers such as C-reactive
protein or surfactant-D [68, 69].

Mechanisms for the interactions between
glucocorticoids and LABA

Molecular interactions between glucocorticoids and β2-
adrenoceptors may underlie the clinical added benefits of
combination therapy [70]. Glucocorticoids may increase the
number of β2-adrenoceptors and their coupling with Gs
proteins, while β2-agonists may induce glucocorticoid
receptor (GR) nuclear translocation, activate CAAT/
enhancer binding protein (C/EBP)α together with cortico-
steroids, or alter GR phosphorylation [71, 72]. The
combination of glucocorticoids and LABA potentiates
inhibition of CXCL8 (IL-8) and CCL11 (eotaxin) release
from human airway smooth-muscle cells and their prolifer-
ation and has additive effects on granulocyte-macrophage
colony-stimulating factor (GM-CSF) release from epithelial
cells [73, 74].

Corticosteroid insensitivity in airways disease

Approximately 5–10% of patients with asthma fall in the
category of those suffering from severe asthma; in these
patients, despite the use of maximum ICS dose, and
sometimes combined with regular oral corticosteroids, their
asthma remains uncontrolled with continuing asthma
symptoms, exacerbations of asthma and persistent airflow
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obstruction [75-77]. Many of these patients are labelled as
corticosteroid-dependent, in that reduction in either main-
tenance ICS or oral CS leads to a deterioration of asthma
control. Studies have reported that there is persistent
neutrophilic and eosinophilic inflammation [78, 79] in the
airways, together with increased subbasement membrane
thickness and airway smooth-muscle mass [80, 81]. There
is altered expression of markers of epithelial proliferation
such as an increased expression of the proliferation marker,
Ki67, and reduced expression of Bcl-2, a negative regulator
of epithelial cell death [82]. Studies in alveolar macro-
phages and blood mononuclear cells from patients with
severe asthma confirmed the presence of CS insensitivity,
associated with an increase in p38 MAPK activity [11, 83].

In COPD, the beneficial effects of corticosteroids are
very limited and airflow obstruction of COPD responds
minimally to either inhaled or oral CS therapy. There is a
small response of airway inflammation to ICS therapy [61].
Dexamethasone is less efficient in inhibiting the induced
release of IL-8 by IL-1β or cigarette smoke extracts from
alveolar macrophages from COPD patients compared to
non-COPD smokers [84]. HDAC2 activity is reduced in the
lungs and in lung macrophages of patients with COPD, the
degree of reduction being related to severity of COPD [85];
this may result in CS insensitivity through lack of
repression of NF-κB-mediated gene expression [7]. Since
HDAC2 is important for deacetylation of histone H3 [86],
the increase in histone H3 acetylation in COPD [87] may
result from a reduction in HDAC2 activity. Theophylline,
which has been used for the treatment of asthma and COPD
as a bronchodilator and as a potential anti-inflammatory
agent, can recruit HDAC and restore CS sensitivity of
macrophages in vitro [88, 89].

Mechanisms of corticosteroid insensitivity

In view of the presence of CS insensitivity in asthma and
COPD, it is reasonable to address the potential underlying
mechanisms contributing to decreased anti-inflammatory
effects of corticosteroids of which several have now been
identified; there may well be heterogeneity of mechanisms
even within each single disease. IL-2 and IL-4, which are
overexpressed in the airways of patients with CS-resistant
asthma [90], together reduce GR nuclear translocation and
binding affinity within the nucleus of T-cells [7]. IL-13
alone mimics this effect in monocytes [7]. These cytokines
may reduce GR function via phosphorylation of GR by p38
MAPK, an effect blocked by a p38 MAPK inhibitor [91].
p38 MAPK is greatly activated in alveolar macrophages
from severe asthmatics compared to non-severe asthma
patients [1]. Similar effects are seen with JNK, ERK and
JAK3 depending upon the specific stimulus driving steroid
insensitivity in vitro [7]. In severe asthmatic patients, there

is also a significant reduction in MKP-1 expression in
alveolar macrophages after steroid exposure, correlating
with increased p38 MAPK activity [11].

Increased expression of GRβ has been reported in steroid-
resistant patients with asthma [7]. GRβ is induced by
proinflammatory cytokines and has the capacity to compete
for the binding of GRα to GRE, thus acting as a dominant-
negative inhibitor [92]. Another mechanism may be
through interference with GRα nuclear translocation, since
knockdown of GRβ in alveolar macrophages from steroid-
resistant asthma patients results in increased GRα nuclear
localisation and increased steroid responsiveness [93].

Excessive activation of AP-1 has been identified as a
mechanism of steroid resistance in asthma as AP-1 binds
GR and thus prevents its interaction with GRE and other
transcription factors [7]. AP-1, a heterodimer of Fos and
Jun proteins, is increased in PBMCs and bronchial biopsies
of steroid-resistant compared to steroid-sensitive asthma,
with no reduction in JNK activity or c-Jun after high doses
of oral steroids [94].

HDAC2 activity and expression are reduced in severe
asthma and particularly in patients with COPD [85, 95].
The steroid resistance of COPD observed in lung macro-
phages is completely reversed by overexpressing HDAC2
to the level seen in control subjects [96]. The mechanism of
HDAC2 reduction in COPD may involve oxidative stress,
which is increased in most severe and steroid-resistant
inflammatory diseases.

IL-10 is an important anti-inflammatory and immuno-
regulatory cytokine and secreted by regulatory T cells
(Treg) in response to steroids [97]. In patients with steroid-
resistant asthma, there is a failure of T-helper cells to
secrete IL-10, but this is restored to normal by vitamin D3
(calcitriol) in vitro [6]. Furthermore, administration of
vitamin D3 to three SR asthmatics also restored the T-cell
IL-10 response to steroids. Vitamin D may be an important
regulator of Tregs so that low dietary intake or lack of
sunlight may be contributory to reduced steroid responses
in inflammatory diseases.

Properties of topical ICS

The topical corticosteroids have a very high binding affinity
for the glucocorticoid receptor and a high first-pass hepatic
metabolism. Many topical corticosteroids are available for
asthma and include beclomethasone dipropionate (BDP),
budesonide, fluticasone propionate (FP), ciclesonide, fluni-
sonide, triamcinolone acetate and mometasone furoate
(MF). Some pharmacokinetic parameters of ICS are shown
in Table 1. The clinical equivalent doses divided as low,
moderate and high doses are shown in Table 2. The potency
of corticosteroids has been measured in vitro in terms of
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their binding affinity to glucocorticoid receptors in lung
tissues and in terms of their ability to induce cutaneous
vasoconstriction. For example, FP is twice as potent in
terms of binding affinity and cutaneous vasoconstrictor test
than budesonide and BDP/BMP, while MF is as potent as
fluticasone. In vitro anti-inflammatory assays such as the
repression of the activity of pro-inflammatory transcription
factor NF-κB in A549 lung epithelial cells show the
equipotency of BDP, ciclesonide and budesonide, while
FP and MF are 5- to 10-fold more potent [98].

Factors other than in-vitro potency need to be taken into
account when it comes to assessing ICS in clinical practice.
Efficacy of ICS is affected by the delivery device, or by the
mechanism of action (e.g. prodrugs such as BDP and
ciclesonide). BDP and budesonide are nearly equiactive,
whereas fluticasone is equally active at half the microgram
dosage. Mometasone is nearly equipotent with FP, and
ciclesonide probably falls somewhere between the potency
of BDP and fluticasone. The overall effect of ICS is also
dependent on its deposition in the airways. A large
proportion of the dose (60–90% depending on the inhaler
device used and on the inhalation technique) is deposited in
the upper airways (mouth, larynx and pharynx) and enters
the gastrointestinal tract. The level of systemic absorption
of the corticosteroid determines the systemic bioavailability
and potential for systemic side effects and is dependent
upon the efficiency of absorption of the dose deposited in

the lower airways (direct absorption into systemic circula-
tion) and upon the efficiency of first-pass liver metabolism
of the portion absorbed from the gastrointestinal tract.

Most of the drug absorbed through the gastrointestinal
tract undergoes first-pass metabolism, with maximum
breakdown of up to 99% for fluticasone, compared to
20% for prednisolone [99]. The remaining bioavailability is
dependent on the absorption through the lower respiratory
tract, and if fluticasone and budesonide undergo first-pass
metabolism in the liver, then their absorption though the
lower airways determines their bioavailability. The oral
bioavailability of ICS has been reduced with newer ICS.
Values for BDP and budesonide are quoted as 41 and 11%
respectively, and those for the newer ones such as FP,
ciclesonide and MF are less than 1% [100].

Another property of ICS regarding systemic availability
is its retention in the lungs dependent on lipophilicity. For
example, FP is more lipophilic than budesonide, and this
increases the affinity of FP for lung tissue, increasing the
retention time of FP in the lung. On the other hand,
budesonide forms highly lipophilic fatty acid ester conju-
gation in the lung, which can serve as a depot from which
the active moiety can be regenerated. These are not
absorbed from the lung into the systemic circulation and
are not active. The more lipophilic the ICS, the more slowly
it is released into and from the lung lipid layer and the
longer the latency between inhalation and its appearance in

Table 1 Pharmacokinetic properties of inhaled corticosteroidsa

Inhaled corticosteroid Relative receptor binding affinityb Oral bioavailability (%) Clearance (L/h) T1/2 (h)

Beclomethasone propionate 53 15–20 150 0.5

17-beclomethasone mono-propionate 1,345 26 120 2.7

Budesonide 935 11 84 2.8

Ciclesonide 12 <1 152 0.36

Des-ciclesonide 1,200 <1 228 3.4

Fluticasone propionate 1,800 <1 66–90 7–8

Mometasone furoate 2,300 <1 54 5.8

Triamcinolone acetate 233 23 37 2.0

a Adapted from [100]
b Receptor binding affinity relative to dexamethasone (100)

Inhaled corticosteroid Low daily dose (μg) Medium daily dose (μg) High daily dose (μg)

Beclomethasone propionate 200–500 >500–1,000 >1,000–2,000

Budesonide 200–400 >400–800 >800–1,600

Ciclesonide 80–160 >160–320 >320–1,280

Flunisolide 500–1,000 >1,000–2,000 >2,000

Fluticasone propionate 100–250 >250–500 >500–1,000

Mometasone furoate 200–400 >400–800 >800–1,200

Triamcinolone acetonide 400–1,000 >1,000–2,000 >2,000

Table 2 Equipotent daily doses
of inhaled corticosteroids for
adults
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the plasma. Thus, the rate of dissolution of budesonide in
human bronchial fluid is quoted as only 6 min while it is
over 8 h for fluticasone [99].

Some topical steroids are only activated in the lungs.
BDP is metabolised in the airways to BMP, which is a more
active steroid than BDP, while budesonide is stable within
the airways. Fluticasone furoate, which is currently being
developed, has a binding affinity to the human lung
glucocorticoid receptor reported to be the highest of all
topical CS together with the most pronounced retention in
lung tissue [101], properties that may contribute to a
prolonged and potent effect in the lungs.

Ciclesonide is a prodrug which is converted into an active
moiety in the airways and has a high binding to plasma
proteins; it has a pharmacokinetic profile that is associated
with a lesser risk of systemic and local side effects. Absorption
of ICS, particularly of FP, from the lungs is higher in normal
non-asthmatic individuals than in asthmatics with airflow
obstruction, probably due to the reduced penetration of
aerosols in an obstructed airway [102-104]. This differential
absorption between normal and asthmatic individuals
appears to be less marked for budesonide and ciclesonide
[103, 104]. Another interesting property of ciclesonide is its
very high protein binding to plasma proteins of 99%, similar
to MF (98–99%) and higher than FP (90%) and budesonide
(88%). This property allows the ICS to be kept in the blood
stream preventing its diffusion into tissues, hence the
propensity for causing systemic side effects.

Dose-response relationships

The dose ranges of various ICS in clinical use are shown in
Table 2, and the dose range used to treat an asthmatic
patient may be determined by the severity of the disease.
All ICS demonstrate a dose-response relationship for
efficacy measures for asthma, however, most of the benefit
of ICS may be obtained in the low to moderate dose range
of each ICS [105]. In some patients, higher doses of ICS
may lead to further improvement in asthma control, but at
the expense of a greater increase in the potential of side
effects. For fluticasone propionate, there were no statisti-
cally significant differences between 400–500 and 800–
1,000 μg, and between 50–100 and 800–1,000 μg, but
800–1,000 μg daily favoured a greater improvement in
FEV1 and symptoms compared to the 200 μg, although the
gain was relatively small [106]. However, very high doses
of FP may allow for a reduction in maintenance oral
prednisolone in some patients with severe asthma. In terms
of prevention of excerbations, the dose-response of ICS in
COPD is unclear. It appears that as far as response to
symptoms, there is little difference in effect between
500 μg and 1,000 μg per day dosage [107, 108], but there

is only one study on the effect of Seretide on exacerbations
using a 1,000 μg daily dose [109]. The dose-response effect
on reduction of exacerbations in COPD needs to be clarified.

Effects of corticosteroids on asthma control

Control of asthma may be obtained in most asthmatics with
inhaled glucocorticoids [110, 111] with improvement in
asthma symptoms, in lung function and in a reduction in
exacerbations of disease. This applies throughout the
severity spectrum of asthma.

Mild persistent asthma

Recent studies have focused on the use of ICS particularly
at the early and at the moderate-to-severe stages of the
disease. The early intervention of mild persistent asthma at
the time of diagnosis has been conclusively examined in the
START study of 7,241 patients aged 5–66 years in 32
countries who had less than 2 years of mild intermittent
asthma and who had not been previously treated with
corticosteroids [112]. Patients treated with low-dose bude-
sonide had fewer courses of systemic corticosteroids and
more symptom-free days than those on placebo. Post-
bronchodilator FEV1 improved significantly by 1.48% after
1 year and by 0.88% after 3 years. In the first year of the
START trial, 34% of asthmatics on placebo needed
additional treatment with ICS and 4% had a severe
exacerbation. In those treated with ICS, only 20% needed
additional ICS and 2% had a severe exacerbation. During
the third year, 50% of patients on placebo were being
treated with ICS and 6% had a severe exacerbation;
correspondingly, in the budesonide arm, 30% were being
given additional ICS and 3% had a severe exacerbation.
There were small but significant improvements in both pre-
bronchodilator and post-bronchodilator FEV1 at the end of
3 years. Thus, this study indicated benefits of ICS even in
the mildest of asthma patients.

In the Childhood Asthma Management Plan (CAMP)
study, 1,041 children aged 5–12 years with mild-to-
moderate asthma were studied and randomly allocated to
budesonide (200 μg/day), nedocromil sodium (8 mg) or
placebo twice daily for 4–6 years. The active treatments did
not change the primary outcome of change in FEV1 after
bronchodilator. However, children who received budeso-
nide had a significantly smaller decline in FEV1/FVC ratio
and improved airway responsiveness to methacholine,
fewer hospital admissions, greater reduction in the need
for rescue medication, and fewer courses of prednisolone
compared to nedocromil [113].

In a study of mild persistent asthma, budesonide alone
(200 μg/day) reduced the rate of severe asthma exacer-
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bations from 0.77 per patient per year to 0.29 per patient
per year, with improvement in days with asthma symptoms
and nights with nocturnal symptoms [114]. In this study,
the addition of formoterol to budesonide did not confer any
additional benefit in this group with mild persistent asthma.

Because the use of ICS for long periods of time is not a
popular option chosen by asthma patients, likely because of
unreasonable fear of CS adverse effects and poor compli-
ance with inhaled therapies, other possibilities have been
looked into such as the use of oral leukotriene receptor
antagonist (LTRA). However, LTRA do not provide as
good a benefit as low-dose inhaled CS therapy [115, 116]
although they remain an alternative therapy, particularly in
pediatric patients. One study indicated that the intermittent
use of ICS combined with a short-acting β-agonist (SABA)
as needed was as effective as the regular use of ICS twice
daily with SABA as needed [117]. This is an interesting
concept that could be considered further. In addition, the
use of intermittent courses of oral corticosteroids to treat
exacerbations without any maintenance treatment appears
to be as effective as using ICS regularly [118], however, the
size of cohort used was probably not big enough to show
any differential effect. Another issue with the response of
ICS is that at least the bronchodilator response as measured
by FEV1 is not uniform across a population of patients with
mild to moderate asthma, and a percentage of patients do
not respond to ICS [116, 119]. In the study of Martin et al.,
46 % of patients with mild to moderate asthma did not
respond to low-dose ICS defined as an FEV1 response of
less than 5% of baseline, and the non-responders were
associated with a lesser bronchodilator response to salbu-
tamol but without any greater inflammatory index as
measured by sputum eosinophils or exhaled nitric oxide
levels [119]. Whether this population is more responsive to
other treatments such as LTRA is not known.

The other issue is the use of ICS in patients with mild-to-
moderate asthma who continue to smoke. The therapeutic
response of these patients to ICS is attenuated [120, 121],
and whether they should be treated with higher doses of
ICS, or with combination therapy of ICS and LABA or
LTRA is unclear.

Moderate persistent asthma

Moderate persistent asthmatics are those patients whose
asthma is inadequately controlled on low-dose ICS of <500
ug BDP or equivalent ICS. The additional benefits of
adding a LABA to ICS compared to increasing the dose of
ICS alone in this group include enhanced effects on lung-
function parameters, exacerbation rates and a decrease in
the use of rescue-inhaled rapid-acting β2 agonists. These
benefits are seen in all types of asthma from moderate to
severe and resulted in similar clinical control at a lower

dose of ICS [74]. Indeed, even a single dose of combination
formoterol/budesonide gave a greater protection against
allergen-induced late asthmatic response and bronchial
hyperresponsiveness than either component alone [122].
In a recent meta-analysis, the addition of a LABA to ICS
lowered exacerbation rates by ∼14% compared to that
observed when ICS doses were doubled [123], resulted in
fewer withdrawals from clinical trials and, apart from
increased rates of tremor, was safe [124]. The current
recommendation is to add LABA to ICS as supported by
studies that show no further benefit of doubling the low
dose of ICS and the benefit of adding LABA to low-dose
ICS. The benefits of combination therapy therefore include
a reduction in the rate of asthma exacerbations and
prevention of exacerbations with improvement in most
indicators of asthma control [114, 125-128]. In the FACET
study, a four-fold increase in the dose of ICS (budesonide
200 μg/day to 800 μg/day) improved all asthma outcomes;
addition of LABA to 800 μg/day budesonide provided the
greatest benefit, with a maximum four-fold reduction in
exacerbation rate compared to the budesonide 200 μg/day
treatment arm [129].

In the GOAL study, in a group of asthmatics with a wide
range of severity, three groups of patients were identified at
entry taking no ICS (steroid-naïve), low-dose or moderate-
dose ICS with not-well controlled asthma [128]. The
patients were allocated to either increasing doses of the
ICS flixotide alone or with the LABA salmeterol for 1 year.
Total asthma control, defined as patients with no symptoms,
normal lung function and no limitation of activities, could
be achieved in <50% of the population and <30% of
patients already taking moderate doses of ICS at random-
ization. Well-controlled asthma with only occasional symp-
toms was reported in 78% of patients not receiving ICS
before entry to study and in 62% of these already on
moderate doses of ICS. Combination of ICS and LABA
was significantly better than ICS alone. Thus, with
individualized incremental treatment, comprehensive asth-
ma control can be achieved in the majority of patients.

Short-term (12-week) studies have shown that these
improvements in clinical parameters were associated with
reduced tissue and sputum inflammatory markers, however,
this was not seen in biopsies following 16 weeks of
formoterol/budesonide treatment [130]. Moreover, improve-
ments in lung function, symptom scores and bronchial
hyper-responsiveness following inhaled fluticasone (500 μg
daily) in combination with salmeterol (100 μg daily)
treatment were associated with changes in sputum α2
macroglobulin and albumin rather than in sputum cell
counts [131] and also reduced serum IL-5 and peripheral
blood eosinophil numbers [132].

O’Byrne and colleagues examined in a population of
asthmatics with moderate to severe disease the use of the
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combination formoterol/budesonide (Symbicort) as both
maintenance and reliever medication (Symbicort mainte-
nance and relief therapy, SMART) [125]. This was
associated with a 54% reduction in the annual rate of
severe exacerbations compared with ICS alone and a 60%
reduction in the mean daily dose of ICS compared with ICS
mono-therapy. Similar benefits were obtained when for-
moterol and budesonide combination was used as mainte-
nance and reliever medication when compared to the use of
this combination as maintenance, with either as-needed
terbutaline or as-needed formoterol [133].

These studies also suggest that at least part of the benefit
of this approach is due to increasing the glucocorticoid dose
in patients at the onset of symptoms. However, this study
did not address whether control could be maintained if
treatment was reduced. More recent work has suggested
that when treatment reduction is indicated it is best to
reduce the glucocorticoid dose rather than remove the
LABA [134]. Currently, overall, there is no clear clinical
evidence that suggests that one drug combination is better
than the other in the short term [135] although differences
in the device may be important in lung deposition in
asthmatic patients with poor inspiratory flow [136] and
treatment regimes may benefit some patients over others
[125, 133, 137, 138]. Indeed, the recent demonstration that
the combination of formoterol/beclomethasone in a single
inhaler is equivalent to formoterol/budesonide and salmeterol/
fluticasone with respect to asthma control, rates of asthma
exacerbations and frequency of adverse events emphasises
this point [139-141].

Effects of inhaled corticosteroids in COPD

ICS are now widely prescribed for COPD and are often used
as frequently in patients with COPD as in those with asthma.
However, long-term clinical trials with high doses of ICS in
the treatment of stable COPD have been disappointing, as
they do not appear to arrest the progressive decline in lung
function even when treatment was started before the disease
became symptomatic. Regular long-term treatment of stable
COPD patients with ICS has only small and inconsistent
effects on symptoms, quality of life or exacerbations. At the
same time this treatment can produce systemic adverse
effects, including skin bruising, adrenal suppression or loss
of bone density [142-144]. Not surprisingly the inflamma-
tion in COPD is scarcely suppressed by inhaled or oral
glucocorticoids, even at high doses [66, 145, 146].

Effect of ICS alone

The long-term effects of ICS have been studied over the
last 15 years. First, because of its anti-inflammatory effect,

it was hoped that long-term ICS could alter the natural course
of COPD such as the long-term decline in FEV1. However,
no significant effects of ICS alone on slope has been shown
[142, 147-149]. However, in two subsequent meta-analyses
published, one concluded that ICS reduced FEV1 decline
by a small statistical mean rate of 7.7 ml/year [150], while
another meta-analysis showed a non-significant 5.0 ml/year
reduction [151]. However, in the 3-year TORCH study, a
multicentre double-blind placebo-controlled randomised
clinical trial involving 6,112 patients with COPD (mean
post-bronchodilator FEV1 of 44%), fluticasone showed a
significant improvement in FEV1 decline of −42 ml/year
compared to placebo of −55 ml/year [152]. This effect was
not significantly different from that of salmeterol or of the
combination of salmeterol and fluticasone together. This
definite effect of treatments on lung-function decline was
likely to have been observed because of the adequate size
of the COPD cohort in this study.

These studies show that ICS can induce a small degree
of sustained improvement in baseline FEV1, which aver-
ages 50 to 75 ml, and which occurs fairly rapidly after ICS
initiation [142, 148, 153, 154]. Mean improvements in
SGRQ of between 1 and 3 units are reported [109, 142,
153, 155]. In one of the largest studies, the improvement
observed with fluticasone over a 3-year period was −2.0
units with 95% CI of −1.0 to −2.9 units compared to
placebo arm [154]. These changes were within the 4-unit
change in SGRQ which is not considered clinically
important. Small improvements in cough and dyspnea have
also been reported [107, 108, 156], which are probably
reflected in the improvements in SGRQ. Similar results
have been obtained with mometasone furoate (800 μg/day)
taken either once daily or twice daily [157].

In a systematic analysis of 10 trials that included 3,724
patients [158], a relative reduction of 22% in the number of
subjects who experienced one or more exacerbations was
found. In the TORCH study, fluticasone compared to
placebo reduced moderate to severe exacerbations by
18%, but with no significant effect on hospitalisation due
to exacerbations of COPD [159]. Most studies indicate that
the greatest benefit in terms of exacerbations appears to be
in those with the most advanced COPD, as measured by the
baseline FEV1 [160-162]. Withdrawal studies also led to an
increase in the rate of mild exacerbations and symptoms,
and a decrease in health status, with decreases in FEV1

[161, 163, 164].
Observational studies of COPD databases have sug-

gested that inhaled corticosteroids either alone or in
combination with long-acting β-agonists may reduce
mortality rates in COPD [165-167]. Another study did not
show this advantage when data were analysed based on an
according-to-treatment approach, and the survival benefit of
the previous studies was attributed to bias from unaccount-
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ed immortal time in the cohort design and analysis [168]. In
a review of seven randomised controlled trials comparing
ICS with placebo that lasted 12 months or longer involving
5,058 patients, a significant 27% relative reduction in all-
cause mortality was found, but because the overall rate of
mortality was only 4%, the absolute risk reduction worked
out to be ∼1% [169]. This data may be biased because of
incomplete ascertainment of mortality in those patients who
did not complete the study. However, in the TORCH study,
there was no effect of ICS alone on mortality compared
with placebo (HR 1.06; 95% CI 0.89–1.27).

Combination of ICS with LABA

The ICS and LABA combination is now widely recommen-
ded for prescription for COPD using combination formula-
tions such as salmeterol and fluticasone or formoterol and
budesonide because, in general, the addition of LABA to ICS
provides additional benefits. An additive bronchodilator
response from ICS is observed, and most studies show a
mean improvement in FEV1 of 50–75 ml [107-109, 142, 154,
156, 170]. The same studies also demonstrate an additive
effect on the SGRQ score, with an average increase below
the 4-unit change that is regarded as clinically significant
improvement [171]. The TORCH study is likely to be the
best one to demonstrate the effect of the combination of
LABA and ICS in reducing the annualised COPD exacerba-
tion rate, which was significantly lower than for ICS alone
[154]. In the TORCH study, the combination of ICS and
LABA reduced the rate of decline in FEV1 in patients with
moderate-to-severe COPD by 16 ml/year compared to
placebo. This improvement was also observed in the
LABA-only and in the ICS-only group [152].

Combination of LABA with ICS reduced the number of
exacerbations over a 1-year period, while ICS alone had no
effect [153, 170]. The TORCH study found that there was a
25% reduction in exacerbations with a combination therapy
compared with placebo, which was significantly better than
ICS alone [154]. This study also reported that the
combination of salmeterol and fluticasone decreased the
risk of all-cause mortality over a 3-year period by 17.5%
compared with placebo at a P value of 0.052.

Using ICS for treating exacerbations of asthma
and COPD

Asthma exacerbations

Three randomised placebo-controlled studies have failed to
demonstrate a benefit from doubling the dose of ICS to
treat exacerbations of asthma [172-174]. On the other hand,
high-dose ICS can improve symptoms and lung function

during exacerbation to the same extent as a standard course
of oral corticosteroids [175-181]. Single high ICS doses, as
well as high doses delivered in the emergency room over a
3- to 8-h period also produced improvement in symptoms
and/or lung function similar to those achieved by intrave-
nous or oral corticosteroids. Thus, increasing ICS to high
doses as an alternative to oral corticosteroids to treat
exacerbations is supported by evidence in adults. Studies
that used ICS doses equivalent to 2,400–4,000 µg of BDP
for 1–2 weeks during mild-to-moderate exacerbations
demonstrated improved symptoms and lung function with
effects similar to those of oral corticosteroids. It would be
reasonable to consider using daily doses of up to 2,000 µg
of fluticasone or 3,200 µg budesonide or equivalent for 7–
14 days [182]. The long-term side effects from this
approach are unknown. Oral corticosteroids remain the
treatment of choice for severe exacerbations or for
exacerbations that do not respond to high-dose ICS.

COPD exacerbations

Successful use of nebulised budesonide has been reported
in the treatment of acute exacerbations of COPD [183]. In
this study, nebulised budesonide (2 mg) provided statisti-
cally significant improvements in post-bronchodilator FEV1

compared to placebo treatment, and the improvement found
was similar to that caused by using prednisolone 30 mg
every 12 h. Treatment with nebulised budesonide was safer
than that provided by oral prednisolone which increased the
prevalence of hyperglycaemic episodes. One of the major
limitations with nebulised treatment in acute exacerbations
of COPD is the penetration and deposition of aerosol into
the small airways; further progress in this area will depend
on the development of efficacious methods of aerosol
delivery in the face of severe airflow obstruction.

Side effects of ICS

Local side effects

The major local side effects of ICS include oral candidiasis,
hoarseness and dysphonia. Cough is also a potential side
effect induced by the inhaler and not dependent on the
constituent of the inhaled drug. It can usually be overcome
by changing the delivery device (e.g. changing dry powder
inhaler to a metered dose inhaler, or adding a spacer device
to an MDI). In all studies in COPD, there was greater
incidence of candidiasis in the fluticasone only or the
combined fluticasone- and salmeterol-treated groups com-
pared to the placebo and salmeterol groups. In the 1-year
Tristan study, the frequency of candidiasis in the fluticasone
group was 7%, and in the combination group 8% compared
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to 2% in both placebo and salmeterol groups [109]. Oral
candidiasis can be prevented by gargling, washing with
water and then spitting out after using the inhaler. Local
antifungal agents may be needed. Hoarseness and dyspho-
nia are caused by the myopathy of the arytenoid muccles
caused by the deposition of ICS on the vocal cords; these
effects are also dose-related and are more of a problem in
those who use their voice a lot. Ciclesonide may cause
fewer local side effects since it is not metabolised into
active ciclesonide in the upper airways. Use of high-dose
ICS is particularly associated with an increased incidence of
oral thrush and dysphonia in COPD [160].

Systemic side effects

These result from the portion of steroids that is absorbed
from the bronchial submucosa, as a large portion of ICS
absorbed from the gastrointestinal tract is usually metab-
olised by the liver. The degree of systemic side effects
depends on the amount deposited in the lower airways, and
this in turn depends on the efficiency of the inhaler device
[100]. An ideal corticosteroid that would have minimal
potential for systemic side effects should stay in the airways
for a sufficient period of time to have its anti-inflammatory
actions in the airways (estimated at 2–3 h), and then be
metabolised in inactive metabolites before absorption into
the systemic circulation. High protein binding in the
circulation may also be important, as this would minimise
the exposure of tissues to the effects of corticosteroids [100].

Systemic side effects of inhaled steroids may be assessed
by surrogate markers such as blood cortisols or serum
osteocalcin. A progressive reduction in adrenal function can
be observed with increasing doses of ICS over relatively
short periods [102, 184, 185]. For example 5 days of
treatment with high doses of fluticasone and budesonide
caused near-complete reduction of the 24-h plasma cortisol
profile [185]. Morning cortisols decreased during flutica-
sone treatment and during combination therapy, while they
increased in the placebo and salmeterol groups, after
52 weeks of treatment, but these changes were small and
levels remained within the normal reference values.
However, cases of adrenal crises have been reported with
ICS; of the 33 patients reported, 28 were children and most
were taking doses of ICS within the recommended doses
according to UK guidelines at that time. There is potential
for ICS to cause adrenal suppression but this is not a
common event, and clinicians need always to be aware of
this idiosyncratic potentiality [186, 187].

Of the randomised prospective studies of the side effects
of ICS when compared to placebo, there is about a 2-fold
increase in patients reporting easy bruising [148, 149],
reduction in growth velocity [112, 113] and in bone mineral
density [149]. There have been no comparable data for the

onset of cataract or fractures because such studies would
need longer duration of observation, but case-control and
cross-sectional studies have found associations between
ICS and cataract [188], glaucoma [189] and bone mineral
density measurements [190]. In children, dose-related
inhibition of growth has been seen in some short- and
intermediate-term studies, but long-term studies have found
no detrimental effect on final height. There is some
evidence of a small decrease in statural growth during the
initial period of ICS therapy, an effect that was more
marked at daily doses of >200 μg and did not apply to all
treatment regimens. Studies examining final attained adult
height found no difference between children treated with
ICS and those receiving nonsteroidal therapy [191].

Of more relevance to COPD, an increase in pneumonia
has been reported in patients with moderate to severe
COPD treated with high-dose ICS [154]. In the TORCH
study, patients in all fluticasone treatment arms experienced
an excess in the rate of non-fatal pneumonia of ∼3 per 100
per year compared to treatment arms not containing
fluticasone. This may be related to the immunosuppressive
effect of corticosteroids and the decreased immune
responses of advanced COPD patients.

Bone and risk of fractures

Long-term studies are needed to assess the risk of osteopo-
rosis. Measurements of morning cortisols and of plasma
levels of osteocalcin or markers of bone activity indicate that
inhaled steroids at doses above 800–1,000 μg/day of BDP or
budesonide equivalent may have systemic effects. ICS have
minimal systemic effects in most patients when taken at
recommended doses and the benefits of ICS therapy
outweigh the risks of uncontrolled asthma.

Two studies have now shown a relationship between the
doses of ICS taken during a 2- to 3-year period and a
reduction in BMD at one or more than one site, after
allowing for other factors that affect BMD [143, 192]. In
COPD patients, triamcinolone 600 μg twice daily was
associated with a greater reduction in BMD over 3 years
than those allocated to placebo and with a reduction in
femoral neck BMD by 2% over a 4-year period [149].
However, in a similar study with budesonide (800 μg/day),
there was no difference observed against placebo [148],
perhaps reflecting the differences between triamcinolone
and budesonide. In a study of patients aged 20–40 years old
with 80% taking beclomethasone, a relationship between
BMD measurements and total life cumulative doses of ICS
has been reported [190]. In this study, it was calculated that
a patient taking 1,000 μg/day ICSs for 14 years would
expect a reduction in BMD of one SD over that time as a
result of ICS. Another study in postmenopausal women
performed cross-sectionally did not show any effect of ICS
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on BMD [193]. Cumulative ICS use was associated with a
small decrease in bone mineral accretion in boys but not
girls but no increased risk for osteopenia [194]. There are
no data as to whether any particular ICS is more likely to be
associated with a reduction in BMD.

The risk of hip fracture is associated with the use of ICS
(84% were taking BDP) with an overall odds ratio of 1.19
after adjustment for the use of oral steroids, with a dose
response such that for those taking more than 1,600 μg ICS
per day, the odds ratio increased to 1.84 [195]. In a
Canadian case-control study, there was a dose-response
relationship between ICS use and fractures, but there were
concurrent contributions by both oral CS exposure and
inhaled bronchodilators [196]. In COPD patients, an
increase in fracture risk is reported amongst those taking
700 μg ICS or more daily [197]. A meta-analysis of 13
studies reported no association between use of ICS and
fractures in older adults, although a slight increase in risk
was seen in those on high-dose ICS [198].

In all the reported studies, it is difficult to disentangle the
potential contribution of confounding factors such as oral
steroid use, cigarette smoking, sedentariness and dietary
factors. It is likely that at doses under 800 μg of BDP daily or
equivalent, the risk of reduced BMD or of fracture is probably
not increased but above 1,000μg/day, there is an increased risk.

Risks of LABAs

There has been a growing concern with the use of LABAs
in the treatment of asthma particularly with the enhanced
risk of death from asthma. This issue was raised following a
study to test the safety of the LABA salmeterol. In this trial,
patients with asthma who were not otherwise taking a
LABA were randomly assigned to a LABA or placebo for
28 weeks with continuation of usual treatments. The trial
was prematurely terminated because of adverse outcomes.
In this study, the salmeterol-treated group had a 4.37
increased risk for the secondary end-point of asthma-related
death [199]. This study has reinforced the generally
accepted view that LABAs should not be used as mono-
therapy for patients with asthma, and that whenever
LABAs are introduced for the management of asthma, it
should be in combination (or together) with ICS given the
therapeutic benefit of the combination therapy with regards
to improved lung function and reduction in exacerbation
rates. Indeed, LABAs should be added when ICS alone do
not provide adequate asthma control. A meta-analysis of
controlled trials of the use of LABAs—comparing LABA
without ICS with non-LABA therapy—for asthma involv-
ing 60,954 patients showed that there was a statistically
significant rate of 3.63 per 1,000 subjects of the composite
end point of asthma-related death, intubation or hospital-

isation, whereas this was 0.25 per 1,000 subjects in trials
comparing LABAs plus ICS with ICS alone [200].
Although these data are reassuring for the use of combina-
tion ICS and LABA, only large prospective studies in
relevant cohorts of patients with asthma treated according
to guidelines will provide the final answer about the real
risk of the addition of LABA to ICS therapy.

Future developments in inhaled corticosteroid therapy

The currently available combination of ICS and LABAs is
usually used on a twice-daily basis, although for mild
disease a once-daily use may be sufficient. The develop-
ment of LABAs that have a once-daily usage and of more
potent ICS may pave the way for a once-daily combination
therapy for the treatment of asthma of a whole range of
severities. More potent ICS may be developed by finding
molecules that have even higher affinity for the glucocor-
ticoid receptor with a greater retention in lung tissue, such
as the development of fluticasone furoate [101]. A once-
daily ICS or a combination of ICS and LABA may lead to
improved patient compliance, but it would remain to be
seen whether this could also be used as rescue medication
in the same way as the combination of formoterol and
budesonide, a twice-daily preparation, can be used.

Another way of increasing potency of ICS would be to
adapt the side chains of current ICS. For example, the addition
of an NO-donating group to prednisolone (Compound
NCX1015) or budesonide (Compound NCX1020) has
resulted in improved corticosteroid efficacy compared to the
parent compounds in animal models resulting from the
donation of the nitric oxide moiety to specific residues within
the glucocorticoid receptor ligand-binding domain [201, 202].

Increasing the potency of ICS may be accompanied by
an increased risk of side effects [203], due to greater
systemic side effects from the systemically absorbed
portion from the lungs. Several approaches have been
taken to reduce these problems including systemic or local
inactivation or administration of an inactive pro-drug that is
only converted to active drug in the airways. Ciclesonide is
one such recent example [204]; it is esterified only in the
lungs to produce the active form des-ciclesonide. There is
further scope for introducing even more potent ICS that
work by this mechanism of local lung activation. Another
approach is based on the concept of dissociated steroids,
also called selective glucocorticoid receptor agonists [205].
Many, but not all, of the side effects of corticosteroids are
due to the DNA-binding (GRE) effects of the drugs
whereas the anti-inflammatory effects may relate predom-
inantly to targeting of pro-inflammatory transcription
factors such as NF-κB and AP-1 [7, 206, 207]. The
development of dissociated corticosteroids that can interact
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with NF-κB, but not with GREs, thereby preserving
therapeutic anti-inflammatory effects with reduced side-
effect profiles has been undertaken by many companies
[203]. These dissociated corticosteroids may be just as
effective as conventional ICS but may have a better safety
profile [205]. One of the problems with conventional
corticosteroids is that the steroid backbone can also bind
to other nuclear hormone receptors such as MR and PR
which also cause side effects. The development of
dissociated corticosteroids with a non-steroidal backbone
such as AL-438 and ZK 216348 may further improve the
therapeutic index of these drugs [205, 208] and also extend
their duration of action to a once-a-day therapy.

Other nuclear hormone receptors, e.g. LXR, PPARγ and
RXR, have distinct anti-inflammatory patterns in murine
macrophages [209] which may be complementary to that
seen with corticosteroids. Combination of corticosteroids or
possibly more promiscuous drugs that bind to two or more
of these receptors may result in an enhanced anti-
inflammatory profile over that seen with current cortico-
steroids, particularly in patients with severe disease [210].
Several key signalling pathways are involved in the
inflammatory response [211, 212] and also in the modula-
tion of corticosteroid responsiveness in asthma and COPD
[11, 213-216].

A most attractive option is to reverse the cause of
corticosteroid insensitivity if molecular causes can be
identified. This might be possible for some patients with
p38 MAPK, JNK inhibitors and vitamin D3 in the future [6,
91, 217]. Selective activation of HDAC2 can be achieved
with theophylline, which restores HDAC2 activity in
COPD macrophages back to normal and reverses steroid
resistance [218]. The molecular mechanism of action of
theophylline in restoring HDAC2 may be via selective
inhibition of PI3Kδ, which is activated by oxidative stress
in COPD patients [219]. Since oxidative stress appears to
be an important mechanism in reducing HDAC2 and leads
to steroid resistance, antioxidants should also be effective.
Unfortunately currently available antioxidants are not very
effective and several more potent antioxidants are in
clinical development [220].

There may be other partners of ICS than LABAs that
may lead to greater efficacy of ICS. Thus, multi-
combination therapies involving corticosteroids and path-
way inhibitors and other nuclear hormone receptor ligands
as seen in other therapeutic areas such as rheumatoid
arthritis may be introduced [221]. The interactions between
ICS and other agents may not increase efficacy by additive
mechanisms, but some agents may improve the molecular
mechanisms of corticosteroids that may be defective in
airways disease. Therefore, ICS therapy may remain central
to the treatment of airways diseases but in combination with
one or more agents.
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