
HAL Id: hal-00534924
https://hal.science/hal-00534924

Submitted on 11 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Verification and falsification of programs with loops
using predicate abstraction

Daniel Kroening, Georg Weissenbacher

To cite this version:
Daniel Kroening, Georg Weissenbacher. Verification and falsification of programs with loops using
predicate abstraction. Formal Aspects of Computing, 2009, 22 (2), pp.105-128. �10.1007/s00165-009-
0110-2�. �hal-00534924�

https://hal.science/hal-00534924
https://hal.archives-ouvertes.fr


DOI 10.1007/s00165-009-0110-2
BCS © 2009
Formal Aspects of Computing (2010) 22: 105–128

Formal Aspects
of Computing

Verification and falsification of programs
with loops using predicate abstraction
Daniel Kroening1 and Georg Weissenbacher1,2

1 Computing Laboratory, Oxford University, Wolfson Building, Parks Road, Oxford OX1 3QD, UK. E-mail: georg@weissenbacher.name
2 Computer Systems Institute, ETH Zurich, Zurich, Switzerland

Abstract. Predicate abstraction is a major abstraction technique for the verification of software. Data is abstracted
by means of Boolean variables, which keep track of predicates over the data. In many cases, predicate abstraction
suffers from the need for at least one predicate for each iteration of a loop construct in the program. We propose
to extract looping counterexamples from the abstract model, and to parametrise the simulation instance in the
number of loop iterations. We present a novel technique that speeds up the detection of long counterexamples as
well as the verification of programs with loops.

1. Introduction

Software Model Checking [CGP99] provides automated support to discover flaws in computer programs. Despite
its promise, software model checking is difficult to apply in practice, as the respective verification tools either lack
scalability due to the state-space explosion problem, or trade precision for efficiency.

Abstraction techniques map the original, concrete set of states to a smaller set of states resulting in a (conser-
vative) approximation of the system with respect to the property of interest [CC77]. Predicate abstraction is one
of the most popular and widely applied methods for systematic state-space reduction of programs [GS97]. This
technique is promoted by the success of the Slam project [BR02b, BCLR04]. Slam is used to show lightweight
properties of Windows device drivers. Predicate abstraction enables Slam to scale to large instances.

In predicate abstraction, a finite set of predicates keeps track of certain facts about the program variables.
This set of predicates determines the precision of the abstraction. The resulting abstract model is an over-approx-
imation of the original program and preserves all feasible paths of the original program. Unfortunately, given an
insufficient set of predicates, the abstraction step introduces spurious counterexamples, leading to false alarms. In
order to overcome this problem, predicate abstraction has been paired with counterexample-guided abstraction
refinement (CEGAR) [CGJ+00, Kur95]. In CEGAR, spurious counterexamples are automatically analysed in
order to obtain additional predicates that inhibit the undesired behaviour. The current refinement algorithms
based on predicate transformers [BR02a] or interpolation [HJMM04] eliminate spurious counterexamples one
by one, not taking control flow constructs like loops into account. This approach may result in an enumeration
of infeasible paths. In the case of loops, the refinement algorithm often adds one predicate in order to extend the
spurious counterexample by one additional iteration in each refinement cycle, resulting in increasingly longer,
but still spurious, counterexamples. This process only terminates if there is a number of loop iterations that yields

Correspondence and offprint requests to: G. Weissenbacher, E-mail: georg@weissenbacher.name
Supported by Microsoft Research through its European PhD scholarship programme and by the EU FP7 STREP MOGENTES (project ID
ICT-216679). This paper is an extension of [KW06]. The work was mainly carried out at ETH Zurich.



106 D. Kroening, G. Weissenbacher

a feasible counterexample. If that is not the case, the refinement algorithm may generate a diverging sequence of
predicates and the verification process fails to terminate [JM06].

The information about loop structures is actually available in the abstract model. Model checkers for the
abstract model, however, never report paths with loops, as they aim at counterexamples that are as short as possi-
ble. We use this additional information to bypass the expensive, repetitive refinement steps that may occur when
dealing with loops. We have to distinguish two cases: If there exists a path that traverses the loop and violates
the specification, then we would like to compute the appropriate number of iterations that constitutes a feasible
counterexample. If, on the other hand, no such counterexample exists, we would like to be able to deduce a set
of predicates that eliminates a whole class of spurious counterexamples that traverse this loop.

Contribution and outline We proposed an approach to accelerate the detection of counterexamples with loops
in [KW06]. After introducing the required preliminaries in Sect. 2, we provide a detailed discussion of this
approach in Sect. 3. Based on the technique presented in Sect. 3, we propose a novel refinement algorithm that
is (in some cases) able to remove a family of spurious counterexamples with a single refinement by constructing
an invariant for each loop traversed by these paths (see Sect. 4). In Sect. 5, we illustrate the potential of our
algorithm by means of several examples. In Sect. 6, we define the class of programs that our algorithm can prove
to be safe. Section 7 provides an experimental evaluation of our technique based on a number of buffer overflow
benchmarks.

2. Background

In this section, we introduce the formalism we use to present programs, and we provide a brief introduction to
predicate abstraction (based on [Bal05]).

2.1. Programs and assertions

We use control flow automata (CFA) [HJM+02] to represent programs. A CFA comprises a finite number of
nodes and a set of edges. Each CFA contains one designated entry node , which has no predecessors, and
one designated exit node , which has no successors. Each edge connects two nodes and is annotated with an
instruction. Let C be the domain of valuations to the program variables. An instruction is either a test, i.e., a
total map from the concrete domain C to the Boolean domain B, or an assignment mapping C into C [CC79].
Furthermore, since we are concerned with the safety of programs, we assume that programs are annotated with
assertions. We conclude that a program is safe if none of the assertions can be violated. We use [p] to denote
tests, x:= e to denote assignments, and assert(p) to represent assertions, where x is a program variable, e a
quantifier-free expression, and p a quantifier-free Boolean predicate, both e and p being well-formed members of
some quantifier-free first-order language L. We consider only expressions and predicates that have a well-defined
meaning in the context of the program.

Figure 1a shows an example of a CFA. The CFA determines the paths that may be traversed during the
execution of the program. Each path corresponds to a sequence of instructions (see, for instance, the path in
Fig. 1b).

2.2. Semantics of programs

We define the semantics of programs by regarding instructions as binary relations on predicates. Each instruction
instr relates state s ∈ C to outcome s ′ ∈ C if s ′ is a possible result of executing instr in state s . Thus, an
instruction relates a set of input states S ⊆ C to a set of (potential) successors S ′ ⊆ C. Since a failing test has
no successor states, the relation corresponding to an instruction may be non-total. Each set of states S can be
characterised using a predicate p which maps a state s to true (denoted by p(s) � true) iff s ∈ S. We use the
Hoare triple formalism of Floyd–Hoare logic [Flo67, Hoa69] to assign a formal meaning to each instruction.

Definition 1 (Hoare Triple) The Hoare Triple {p} instr {q} means that for all states s and s ′, if instr relates s
to s ′, then p(s) implies q(s ′) [Nel89]. We refer to p as the pre-condition and to q as the post-condition of the Hoare
Triple.



Verification and falsification of programs with loops using predicate abstraction 107

(a) A control flow automaton

(b) A path reaching the assertion

Fig. 1. A control flow automaton and a corresponding path

Fig. 2. Hoare logic rules for loop-free paths of finite length

Figure 2 shows a set of rules that relate the predicates and the instructions accordingly. A brief explanation
of these rules, which we use to reason about the safety of finite paths, is in order (for a more elaborate discussion
we refer the reader to Nelson’s excellent paper on Hoare’s logic and Dijkstra’s calculus [Nel89]).

1. Assignments. Let the term p[x/e] denote the predicate p with all occurrences of x replaced by the expres-
sion e. The assignment rule states that what the pre-condition says about the expression e holds for the
variable x after the assignment. Given a post-condition p, the respective pre-condition for an assignment can
be efficiently computed by means of substitution.

2. Tests. Tests, by virtue of being partial statements, require more consideration. A succeeding test [p] dis-
charges the guarding condition p in the pre-condition p ⇒ q and establishes the post-condition q . In case
of a failing test, however, the pre-condition p ⇒ q evaluates to true irrespective of the post-condition q : if
p(s) is false, then [p] does not relate s to any successor state s ′, and therefore, q(s ′) holds vacuously (see
Definition 1). In the case that [p] does not have any successor states at all, any arbitrary post-condition
holds. In particular, {true} [false] {p} holds for any p (even for false).
Dijkstra ruled out this oddity by introducing the law of the excluded miracle � {false} instr {false}, stating
that no instruction can establish the post-condition false [Dij75]. Nelson considers this law too restrictive,
since it effectively prevents partial instructions [Nel89].
In our setting, we do allow partial instructions. Since, however, we are interested in the feasibility of unsafe
paths, we use the law of the excluded miracle to check whether a test fails or succeeds. Given a test [p] and
the post-condition false, we obtain the pre-condition p ⇒ false using the test rule (Fig. 2). By the law of
the excluded miracle, this pre-condition has to be false if [p] is not supposed to terminate in “no state.” It
follows from setting (p ⇒ false) (or equivalently, ¬p) to false that the instruction [p] can be treated as a
total relation if its pre-condition implies p. In that case, {p ∧ q} [p] {q} holds.

3. Composition. The composition rule naturally extends the semantics for single instructions to finite execution
paths (i.e., sequences of instructions). It propagates the post-condition q of the first instruction to the second
instruction, for which q then acts as the pre-condition. Thus, we can compute Hoare triples for finite paths
π :� π1;π2 by iteratively applying the composition rule to sub-paths π1 and π2.

4. Consequence. The consequence rule states that pre-conditions of Hoare triples may be strengthened and
post-conditions may be weakened. This rule enables the composition of sub-paths even if the post- and pre-
conditions of two adjacent sub-paths do not match exactly. It will prove to be essential when we restrict the
language L used to express the predicates (as explained in Sect. 2.3).



108 D. Kroening, G. Weissenbacher

Notably, Fig. 2 does not list a rule for assertions. In our setting, no such rule is required. We are merely
interested in assertions that do not hold when reached via a path π . Given a path π ; assert(p), an execution along
that path cannot violate the assertion p if {true} π {p} holds. Whenever we encounter an assertion assert(p)
that is not violated, we treat it as a succeeding test [p]. As elaborated in case 2 above, � {p ∧ q} assert(p) {q}
holds in this setting.

Hoare triples for an instruction can be computed using predicate transformers like the weakest pre-condition
and the strongest post-condition. The weakest pre-condition wp(instr, q) is the weakest predicate p (with respect
to the implication ordering) that guarantees that q holds after the execution of instr [Dij75]. The strongest
post-condition sp(instr, p) is the strongest fact q that is guaranteed to hold if p holds before the execution of
instr [Gri87].

Example 1 We demonstrate the use of the rules in Fig. 2 by analysing the path in Fig. 1b. Our intention is to
show that (j < 10) holds when the assertion is reached. We achieve this by performing a backwards analysis,
starting with the predicate (j < 10). According to the assignment axiom, we obtain the pre-conditions for the
last two assignment instructions in the path by replacing all occurrences of the assigned variables i and j in the
respective post-conditions with i+1 and j+1, respectively. We derive

{j + 1 < 10} j :� j + 1 {j < 10}. (1)

Since i does not occur in the predicate j+1 < 10, we obtain

{j + 1 < 10} i :� i + 1 {j + 1 < 10}. (2)

By applying the composition rule to (1) and (2) we obtain

{j + 1 < 10} i :� i + 1; j :� j + 1 {j < 10}. (3)

According to the test axiom,

{(i < 10) ⇒ (j + 1 < 10)} [i < 10] {j + 1 < 10} (4)

holds. As in the previous steps, deriving the pre-condition from the post-condition is a syntactic transforma-
tion. The path in Fig. 1b does not reach the assertion if the test [i< 10] fails. We restrict our analysis to the
case in which the test succeeds, and strengthen (i < 10) ⇒ (j + 1 < 10) to (i < 10) ∧ (j + 1 < 10). Applying the
assignment axiom to j:=0, we obtain (after simplifying the pre-condition)

{i < 10} j :� 0 {(i < 10) ∧ (j + 1 < 10)}. (5)

Similarly, we use the assignment axiom to derive

{true} i :� 0 {i < 10}. (6)

Combining (3) to (6) using the composition rule, we conclude

{true} i :� 0; j :� 0; [i < 10]; i :� i + 1; j :� j + 1 {j < 10},
i.e., the path cannot violate the assertion (j < 10).

A program is safe if and only if it contains no path that violates an assertion. Since control flow automata
may contain cycles (i.e., loops), a program may comprise infinitely many paths. The question whether a program
is safe or not is undecidable in general.

2.3. Predicate abstraction and refinement

Predicate abstraction [GS97] is a technique that restricts the pre- and post-conditions that are tracked at each
location of a path to Boolean combinations of a finite set P of predetermined predicates (we defer the discussion
of how we obtain this set of predicates P to the end of Sect. 2.3). There are only finitely many logically non-equiv-
alent propositional combinations of the predicates P . This restriction limits the expressiveness of the language
L used to represent the predicates of the Hoare triples. For instance, there is no Boolean combination of the
predicates (i � 0) and (j � 0) that allows us to express (j < 10). Under this restriction, it may be impossible to
prove the safety of a path, even if the path does not violate an assertion.



Verification and falsification of programs with loops using predicate abstraction 109

Example 2 We attempt to prove the safety of the path in Fig. 1b using only Boolean combinations of the predicates
(i � 0) and (j � 0) to keep track of the pre- and post-conditions at each location of the path. We already noticed
that (j < 10) cannot be expressed in terms of (i � 0) and (j � 0). Unless we can establish that (j � 0) holds at
the end of the path, we cannot guarantee the safety of the path. A brief informal inspection of the path shows us
that this attempt must fail.

In the remaining part of the example, we show how Hoare logic can be used to reason over a restricted set
of predicates P . As previously mentioned, the consequence rule plays an important role in this setting. At any
point in the path, we try to find the strongest predicate that holds.

Since we do not make any assumptions about the initial state of the program, true is the strongest assertion
that holds at the beginning of the path. By the assignment axiom

{true} i :� 0 {i � 0}. (7)

By simply considering all possible (logically non-equivalent) propositional combinations of the predicates (i � 0)
and (j � 0), we can see that it is impossible to derive a post-condition stronger than (i � 0). Using this result as
a pre-condition for the next instruction, we obtain

{i � 0} j :� 0 {(j � 0) ∧ (i � 0)} (8)

by a similar argument.
The condition of the test [i< 10] following the instruction j :� 0 introduces a predicate that cannot be

expressed as a Boolean combination of (i � 0) and (j � 0). According to the test rule

{(i < 10) ⇒ (i � 0) ∧ (j � 0)} [i < 10] {(i � 0) ∧ (j � 0)} (9)

holds. The pre-condition of (9) contains the predicate i< 10, which is not an element of P . The consequence
rule, however, allows us to strengthen the pre-condition, since it is implied by (i � 0) ∧ (j � 0):

{(i � 0) ∧ (j � 0)} [i < 10] {(i � 0) ∧ (j � 0)} (10)

In general, strengthening requires first-order logic reasoning and an exhaustive examination of the propositional
combinations of P in order to find the best approximation of a pre-condition not expressible in terms of a Boolean
formula over the atoms P .

Using the assignment axiom, we obtain

{(i � 0) ∧ (j � 0)} i :� i + 1 {(i � 1) ∧ (j � 0)}. (11)

Again, the predicate (i � 1) is not in P , nor can it be expressed as a propositional formula over the predicates in
P . The post-condition (i � 1) ∧ (j � 0) implies ¬(i � 0) ∧ (j � 0), though, and therefore

{(i � 0) ∧ (j � 0)} i :� i + 1 {¬(i � 0) ∧ (j � 0)} (12)

holds according to the consequence rule. Analogously, we derive

{¬(i � 0) ∧ (j � 0)} j :� j + 1 {¬(i � 0) ∧ ¬(j � 0)} (13)

using the assignment axiom and the consequence rule. For each of the instructions considered so far, the pre-
and post-conditions we derived are Boolean combinations of the given set of predicates. Using the composition
rule, we combine (7), (8), (10), (12), and (13):

{true} i :� 0; j :� 0; [i < 10]; i :� i + 1; j :� j + 1 {¬(i � 0) ∧ ¬(j � 0)}. (14)

The choice of the propositional combinations of the predicates in P to express the pre- and post-conditions in
this example may seem ad hoc. A more systematic and formal treatment of this issue follows after the example
(see, in particular, Definition 2).

As mentioned above, the post-condition of (14) is not strong enough to imply the safety of the path. The
sequence of instructions in the Hoare triple (14), however, does not result in a violation of the assertion, i.e.,
the path is safe. A safe path that cannot be proved safe using the given set of predicates P is called a spurious
counterexample.



110 D. Kroening, G. Weissenbacher

Each pre- or post-condition corresponds to a set of valuations of the predicates in P . Given a set P � {p1, . . . ,
pn} of n predicates, we introduce n Boolean variables x1, . . . , xn , each of which corresponds to one of the
predicates. The states induced by these Boolean variables define a finite abstract domain [GS97, CC77]. Each
abstract state s ∈ B

n is a valuation of the variables x1, . . . , xn and corresponds to a condition CP (s):

CP (s) :�
∧

pi∈P

{
pi if xi � true in state s
¬pi if xi � false in state s

Each predicate q that is a Boolean combination of the predicates in P maps to the set of abstract states
{s | CP (s) ⇒ q}. The post-condition of (14), for instance, constrains the negations of (i � 0) and (j � 0),
and therefore maps to {(x1 � false, x2 � false)}. The pre-condition {true} allows these predicates (and there-
fore the corresponding Boolean variables) to take arbitrary Boolean values, and therefore maps to {(x1 � false,
x2 � false), (x1 � false, x2 � true), (x1 � true, x2 � false), (x1 � true, x2 � true)}.

In the context of the original program, the predicate q characterises the set of (not necessarily reachable)
concrete states in which q evaluates to true. The post-condition ¬((i � 0) ∧ (j � 0)), for instance, denotes the set
of states {(i, j) | i �� 0 ∨ j �� 0} in which i or j differs from zero. Thus, the set of concrete states that correspond
to an abstract state s is defined by the predicate CP (s).

Given the abstract domain induced by the Boolean variables x1, . . ., xn , existential abstraction [CGL92] is a
technique to compute a corresponding abstract transition relation Rinstr ⊆ B

n × B
n .

Definition 2 (Existential abstraction) The existential abstraction of an instruction instr with respect to a set P
of n predicates is a total relation Rinstr ⊆ B

n × B
n defined as

Rinstr(s1, s2) :�
{

false if {CP (s1)} instr {¬CP (s2)} holds,
true otherwise.

Intuitively, whenever CP (s1) contains a concrete state from which a concrete state in CP (s2) can be reached
by executing instr, then the abstract transition relation Rinstr enables the transition between the corresponding
abstract states s1 and s2.

By means of existential abstraction, we obtain an abstract finite state transition system that reflects all Hoare
triples {p} π {q} that cannot be ruled out using only Boolean combinations of the predicates P . Note that if
{p} instr {¬q} holds, then the concrete states represented by q cannot be reached from the set of concrete states
that correspond to p via instr. Given the original CFA, we replace each instruction instr with a corresponding
abstract transition relation Rinstr ⊆ B

n × B
n over the state space induced by the variables x1, . . . , xn .

This approach preserves all paths that violate safety properties: No path that violates an assertion can be
proved safe. Safe paths, however, may be reported unsafe, as shown in Example 2. Existential abstraction is com-
putationally expensive, since all combinations of the states s1 and s2 have to be considered, i.e., in the worst case,
computing the exact relation Rinstr requires an exhaustive examination of all pairs of logically non-equivalent
propositional combinations of the predicates P , as indicated in Example 2.

In practice, more efficient (but less accurate) abstraction techniques like Cartesian abstraction [BPR01] or
symbolic techniques [KS06] are applied. In the former approach, the relation Rinstr is computed for each predicate
of P separately: Given a predicate q ∈ P , the respective pre-condition p for q with respect to instr is constructed
using the rules in Fig. 2 (such that {p} instr {q} holds). If p is not expressible as a Boolean combination of the
predicates P , a heuristic is used to compute a propositional formula p ′ over P such that {p ′} instr {q} holds.
The same technique is used to obtain an approximation p ′′ of the pre-condition of ¬q with respect to instr. The

Fig. 3. Abstract transition system for the program in Fig. 1a. The Boolean variables x1 and x2 correspond to the predicate (i � 0) and
(j � 0), respectively



Verification and falsification of programs with loops using predicate abstraction 111

abstract transition relation Rinstr(s1, s2) is constructed such that the variable x that corresponds to p is true in s2
if CP (s1) implies p ′, false if CP (s1) implies p ′′. Otherwise, the value of x in s2 is arbitrary.

The abstraction step preserves the control flow structure of the program. Figure 3 shows the finite state
transition system that corresponds to the program in Fig. 1a. The variables x1 and x2 correspond to the predi-
cates (i � 0) and (j � 0), respectively. We represent the abstract transition relation using a C-like syntax. The
assignment x1:� x1?false:* should be read as follows: If x1 is true before the assignment, then it must be false
afterwards. Otherwise, if x1 is false, it is assigned non-deterministically (indicated by *).

The former case derives from the fact that

{¬(i + 1 � 0)} i :� i + 1 {¬(i � 0)} and therefore {(i � 0)} i :� i + 1 {¬(i � 0)}
holds. On the other hand, we derive

{(i + 1 � 0)} i :� i + 1 {(i � 0)}
using the assignment rule, but the pre-condition (i + 1 � 0) is not implied by either (i � 0) or its negation. The
resulting loss of information is represented by the non-deterministic assignment of x1.

The assumption [i < 10] is approximated by [true], since neither the pre-condition (i � 0) nor (i �� 0) rules
out the transition. The condition of the assertion (j<10) is replaced by the weakest combination of predicates
that guarantees that it holds, which is (j � 0) in our case.

Based on Rinstr, we define the reachability relation for a path π (where π � instr1; . . . ; instrn−1):

Rπ (s1, sn ) :�
n−1∧

i�1

Rinstri (si , si+1) (15)

This relation denotes whether the abstract state sn is reachable from s1 via the path π . To prove the safety of
a program, we have to show that the abstract transition system allows no path π for which all of the following
conditions hold:

• π starts at ,
• the instruction following the last instruction of π is assert(r), and
• there exists an initial state s1 such that Rπ (s1, sn ) holds and CP (sn ) does not imply r .

There are several efficient model checking tools [BR00, EHRS00, CKS05, McM92] that are able to exhaus-
tively examine finite state transition systems for paths that reach a given unsafe state or location. If there are
paths reaching the unsafe state in question (i.e., an abstract state that corresponds to a potential violation of an
assertion), these tools report the shortest of these paths as a counterexample. As explained in Example 2, this
counterexample may be spurious, since the abstraction over-approximates the set of feasible execution traces of
the original program. An alternative view is that the finite state transition system represents an under-approxi-
mation of the facts that can be proved about the original program (i.e., there may be paths that are not feasible
in the original program, but cannot be ruled out in the abstraction).

The spurious counterexample π can be eliminated from the abstract transition system by means of counterex-
ample-guided abstraction refinement [CGJ+00]. Consider the Hoare logic proof in Example 1, which establishes
the safety of the spurious counterexample π of Example 2. Adding the pre- and post-conditions that occur in
this proof to P is sufficient to eliminate π from the abstract transition system [BR02a]. For instance, if we are
allowed to use the predicate (j < 10), we can strengthen the Hoare triple (13) in Example 2 to

{¬(i � 0) ∧ (j � 0)} j :� j + 1 {¬(i � 0) ∧ ¬(j � 0) ∧ (j < 10)},
thus establishing the safety of the spurious counterexample. The corresponding refined abstract transition system
is shown in Fig. 5, where x3 corresponds to the predicate (j < 10). Note that if we treated j as an unbounded
integer variable, the abstraction of j:=j+1 in Fig. 5 could be strengthened by considering the value of x3. If we
take arithmetic overflow on bit-vector variables into account, though, it is as accurate as possible.

We summarise the verification technique presented in this chapter in Fig. 4. Starting with an empty set of
predicates P � ∅, the algorithm uses predicate abstraction to compute a coarse abstraction (Abstract). The
resulting finite-state transition system is analysed by a model checking tool (ModelCheck). If the abstraction
is safe, we can conclude that the original program is safe, too. Otherwise, the model checking tool provides an
abstract counterexample. The corresponding path is mapped back into the original program, where its feasibility
is analysed by means of Hoare logic (Simulate). Genuine counterexamples are reported. If the counterexample



112 D. Kroening, G. Weissenbacher

Fig. 4. Counterexample-guided Abstraction Refinement (CEGAR)

Fig. 5. A refined version of the transition system in Fig. 3. The variable x3 corresponds to the predicate (j < 10)

turns out to be spurious, the predicates encountered in the simulation step are added to P (Refine), and the
abstraction-refinement cycle is repeated.

3. Counterexamples with loops

The technique presented in Sect. 2 does not work very well if the assertion that is violated can only be reached
via a path with a large number of loop iterations. We demonstrate and discuss this problem in Sect. 3.1. In
Sects. 3.2 and 3.3 we describe a heuristic to accelerate the detection of counterexamples that contain many loop
iterations [KW06].

3.1. How predicate abstraction handles loops

In order to detect a counterexample that contains several loop iterations, predicate abstraction may require at least
one predicate for each iteration of the loop.1 Consider the abstract transition system in Fig. 5, which rules out the
spurious counterexample of Example 2. Unfortunately, this refined transition system does not exclude the path
that iterates the instructions of the loop in the control flow automaton twice. Figure 6 shows the corresponding
counterexample.

Again, adding a refinement predicate (namely j + 1 < 10) to P eliminates the spurious counterexample that
iterates the loop twice. This predicate, however, fails to eliminate the spurious counterexample that executes the
loop three times. In order to find the only unsafe path, which iterates the loop ten times, it is necessary to add all
predicates from (j + 1 < 10) up to (j + 9 < 10). To achieve this, at least ten refinement steps are required.

1 Technically, log2(n) predicates are sufficient to enforce n iterations through a loop in the abstract program. However, we are not aware of
any predicate abstraction-based tool that generates a binary encoding of the loop counter.



Verification and falsification of programs with loops using predicate abstraction 113

Fig. 6. A concrete path with two loop iterations

Fig. 7. Detecting potential loops in abstract paths

3.2. Detecting loops in abstract counterexamples

The abstract transition system in Fig. 5 contains not only a single counterexample, but a family of similar
counterexamples:

Example 3 Consider the path π in Fig. 6. We examine the abstract states of the corresponding abstract path,
which we obtain by mapping π to a path of the abstract transition system in Fig. 5. Starting with an arbitrary
state, we reach an abstract state x1 � true, x2 � true, and x3 � true after two transitions. The first iteration of the
loop changes this state to x1 � false, x2 � false, and x3 � true (the first state in Fig. 7). Once we reach the transition
x3 :� x2?true : ∗; x2 :� x2?false : ∗, the non-deterministic transition function allows us to make a choice: Either
we change x3 to false, which results in a violation of the assertion in the subsequent transition, or we do not
change x3 and iterate the loop once more (see Fig. 7). Alternatively, the program may terminate without violating
the assertion. The transition system in Fig. 5 allows to iterate the loop arbitrarily often before the assertion is
finally violated.

This suggests that there is a potential loop in the original program (as indicated by the repetition signs ||:
and :|| in Fig. 8). The model checking tool, though, reports only a finite path π , but does not provide information
on potential loops that are traversed by this path.

The missing information can be added using a post-processing step: The algorithm presented in Fig. 9 searches
for loops in abstract counterexamples. A loop has to contain a back-edge that allows us to jump back to an earlier
location in the path π . We construct a propositional formula (in step ➁) that enables us to efficiently search for
back-edges Rinstr in the abstract transition system. Intuitively, step ➁ corresponds to a model checking run that
checks for each location i in π whether there is a path that leads back to i visiting only locations occurring in π .
An example for such a back-edge is the transition labelled assert(x3) in Fig. 7 (as explained in Example 3).

Fig. 8. The path from Fig. 6 annotated with loop information



114 D. Kroening, G. Weissenbacher

Fig. 9. Algorithm to detect loops in abstract counterexamples

Fig. 10. The path from Fig. 8 converted to Single Static Assignment form

This idea is formalised in Fig. 9. The conjunction of abstract transition relations in step ➀ and ➁ can be
encoded as a propositional formula, for which satisfiability (SAT) is usually efficiently decidable [ES04]. The
formula S(s1, . . . , sn ) is a symbolic representation of the abstract counterexample π . The algorithm tries to find
back-edges in the abstract transition system for each sub-path instri; . . .,instrj of π , resulting in a quadratic
number of SAT-instances. Our experiments show that the overhead for detecting loops is negligible compared to
the time the model checking tool spends searching for counterexamples. Note that the algorithm is also able to
detect nested loop structures.

3.3. Checking the safety of counterexamples with loops

The existence one or more loops in the abstract counterexample does not imply that there is a corresponding
path that violates the assertion at the end of the counterexample π . The question whether a counterexample with
loops is safe is undecidable in general. It is, however, possible to obtain a loop-free instance of the annotated
counterexample by unrolling the loops a certain number of times. Using forward symbolic simulation (which is
equivalent to computing the strongest post-condition of the path), we can then determine whether this instance
violates the assertion or not (as outlined in Example 1). Consider, for instance, the counterexample π9 obtained
by unrolling the loop in Fig. 6 nine times. Let π be the prefix of π9 that does not contain the last assertion of π9.
Then, we can show that {true} π {j ≥10} holds, i.e., the path π9 is not safe.

In general, we do not know how many times we need to unroll the loops to obtain an unsafe path (it might
even be that there is no such path). Therefore, we use a heuristic to find promising candidates.

The first step is to convert the counterexample π into static single assignment form (SSA) [CFR+91]. The SSA
form is a representation in which each variable of a program is assigned exactly once. For this purpose, we replace



Verification and falsification of programs with loops using predicate abstraction 115

Fig. 11. A pattern derived by unrolling the loop in Fig. 10

Fig. 12. Constraints derived from the parametrised loop

each existing variable occurrence by an indexed version of this variable (see Fig. 10, for example). Whenever we
reach an assignment, the version number is increased by one.2

As we unroll the loop, a pattern emerges: In each iteration, the variables in and jn depend on in−1 and jn−1,
respectively (see Fig. 11). Since the counterexample is in SSA form, it is easy to identify variants of the loop by
means of a simple syntactic analysis. We obtain a recurrence equation for each variable that is changed in the loop:

i0 � 0, i1 � i0 + 1 in � in−1 + 1 (16)
j0 � 0, j1 � j0 + 1 jn � jn−1 + 1 (17)

We proceed by computing the closed form of these recurrence equations. Computing the closed form of an
arbitrary recurrence equation is a non-trivial problem. In fact, in some cases such a closed form may not even ex-
ist [vEBG04]. In many real-world programs, however, the recurrence equations that occur in a loop are relatively
simple. In our implementation, we consider only recurrence equations of the form

i0 � α, in � in−1 + β + γ · n
(where n > 0 and α, β, and γ are numeric constants or loop-invariant symbolic expressions and i is the variant).
According to [GKP89], the corresponding closed form is

in � α + βn + γ
n · (n + 1)

2
.

It follows that the closed form of the recurrence equations (16) and (17) is in � n and jn � n, respectively.
This translates to in+1 � i1 + n and jn+1 � j1 + n in our example (see Figs. 10 and 11). The variable n cor-
responds to the number of loop iterations. If we replace the right-hand sides of the assignments in the loop in
Fig. 10 by their corresponding closed forms, we obtain a counterexample that is parametrised with the number
of loop iterations n. The instructions of the parametrised counterexample constrain the indexed variables that
occur in the path as well as the variable n. Figure 12 shows the parametrised loop and the formula Fπ (n) derived
from the counterexample. Note that the condition contributed by the last assertion is negated. Using a constraint
solver, we try to compute the smallest value of n that occurs in a satisfying assignment of the formula Fπ (n).

The smallest value of n that is part of a satisfying assignment to the formula in Fig. 12 is 9. This value is an
educated guess for the number of iterations necessary to violate the assertion. We unwind the loop of the coun-
terexample according to the pattern in Fig. 11 such that the last assignment is j10 :� 10 and the last assertion is
assert(j10 < 10). As explained above, there exists a Hoare logic proof that this path is not safe.

Figure 13 shows the algorithm we use to compute candidates for the number of iterations of the loops in a
counterexample. Note that the algorithm is able to handle more than one loop, and even nested loops. If the
algorithm encounters a recurrence equation for which it fails to compute its closed form,3 then the corresponding

2 The result of this process is similar to what we obtain by computing the strongest post-condition and eliminating the existential quantifiers
using Skolemisation.
3 While it would certainly be feasible to support a larger class of recurrence equations (see for instance [vEBG04]), it turns out that our
approach is sufficient to cover the most common cases like linear counters. We do not need to support cases in which the loop counter
increases exponentially: These cases can be handled efficiently by traditional unwinding if the bounded range of the program variables is
taken into account.



116 D. Kroening, G. Weissenbacher

Fig. 13. Computing the number of iterations for a counterexample with loops

Fig. 14. A safe program

variable is assigned non-deterministically, i.e., the assignment does not contribute a constraint to the formula.
Even though this may result in wrong guesses for the number of iterations, the soundness of the approach is
guaranteed by checking the safety of the unwound counterexample by means of forward symbolic simulation.

In general, the parametrised formula is not necessarily satisfiable. If the formula Fπ (n) is unsatisfiable, then
all counterexamples that can be obtained by unwinding the loop of π are spurious. On the other hand, the
satisfiability of the formula Fπ (n) does not imply that unwinding the loop gives us a counterexample that violates
the assertion. In Sect. 4, we discuss how to refine the abstract transition system if our heuristic fails.

4. Refinement in the presence of loops

The heuristic presented in Sect. 3.3 may fail to determine the number of iterations necessary to obtain an unsafe
path. We distinguish two causes of failure: Either there is no valuation to the parameters {n1,n2, . . .} that sat-
isfies the constraints of the path, or the heuristic suggests values for the parameters that result in an unwound
counterexample that does not violate the assertion. We discuss the former cause in Sect. 4.1, and the latter cause
in Sect. 4.2.

4.1. Refinement using closed recurrence equations

Figure 14 shows a safe program. The traditional predicate abstraction approach described in Sect. 2 requires ten
refinement steps to introduce all predicates necessary to show the safety of the program. After two abstraction
refinement cycles, the FindLoops algorithm (Fig. 9) detects a loop in the abstract transition relation. The suffix
of the corresponding annotated concrete path is shown in Fig. 15.



Verification and falsification of programs with loops using predicate abstraction 117

Fig. 15. A loop detected in the abstraction of the program in Fig. 14

Fig. 16. Hoare logic rule for loops

GuessIterations in Fig. 13 fails to compute a valuation for the parameter n, since the formula

. . . ∧ (i1 < 10) ∧ (i2 � n) ∧ (j2 � n) ∧ (i2 ≥ 10) ∧ (j2 < 10) (18)

is unsatisfiable. The formula derived from the parametrised path may have more satisfying assignments than the
formula corresponding to the loop-free path. This stems from the potentially introduced non-determinism and
from the fact that it encodes an arbitrary number of iterations of the loop. Therefore, its unsatisfiability implies
the infeasibility of the original counterexample. Therefore, it is of course possible to fall back to the traditional
refinement approach and use a proof of safety (generated using the rules in Fig. 2, as demonstrated in Example 1)
for the counterexample without loops to refine the abstract transition relation. This approach, however, does not
exploit the knowledge we have about the loop in the abstract program. Instead, we take advantage of this infor-
mation by using a Hoare logic rule that allows us to reason about loops: Fig. 16 shows the rule for while-loops. It
states that, given p is an invariant of the loop body π1, the execution the entire loop also maintains this invariant.
This rule is not as easy to apply as the rules in Fig. 2: There is no general technique to automatically infer a loop
invariant p that is strong enough to show the safety of a path with loops.

In our example, we already have a sufficiently strong loop invariant at hand: The conjunction of the closed
forms of the recurrence equations (i � 1 + n) and (j � 1 + n) implies that (i � j) is an invariant of the loop in
Fig. 15. This predicate is sufficient to show that (i ≥ 10) ∧ (j < 10) can not hold. Therefore, we can apply the
rule in Fig. 16 to show the safety of the program and of the path in Fig. 15. By applying the loop rule to the loop
in Fig. 14, we infer

{(i � j)} ||: [i < 10]; i :� i + 1; j :� j + 1 :|| [i ≥ 10] {(i ≥ 10) ∧ (i � j)}. (19)

The prefix i :� 0; j :� 0 establishes the pre-condition. Since the post-condition of (19) implies (j ≥ 10), the
assertion cannot be violated.

Obviously, the closed forms of the recurrence equations are always loop invariants for their corresponding
parametrised counterexamples. Adding these loop invariants to the set of predicates P can result in a significantly
smaller number of refinement iterations. Note that these predicates refer to the parameters {n1,n2, . . .} introduced
by GuessIterations (see Fig. 13). Instead of trying to eliminate these parameters from the predicates, we instru-
ment the original program with corresponding induction variables (see Fig. 17). For each loop, we introduce an
induction variable ni , which is initialised before the loop is entered, and increased at the end of the loop body.
This modification has no impact on the safety of the current counterexample or the program. The advantage of
this approach is that it is not necessary to modify the abstraction algorithm (see Sect. 2): In order to make sure
that the information about the loop invariant is preserved, we add three versions of the recurrence predicate p to
P , namely p[n/0], p, and p[n/n + 1]. Then, the resulting abstraction is strong enough to show that p is preserved
when the loop is traversed along the path of the spurious counterexample:

Fig. 17. The program of Fig. 14 augmented with an induction variable n



118 D. Kroening, G. Weissenbacher

Fig. 18. A safe program

Fig. 19. A parametrised path with a loop for the program in Fig. 18

1. First, {p[n/0]} n:� 0 {p} establishes p upon entrance to the loop.
2. Let stmt be the statement that modifies the induction variable. Then {p} stmt {p[n/n + 1]} holds.
3. Finally, by the assignment rule, {p[n/n + 1]} n:�n + 1 {p} holds upon exit from the loop.

Intuitively, we avoid the universal quantification over n by an induction over the parameter n. In our example
in Fig. 17, the predicates (i � 0), (i � n), (i � n + 1), (j � 0), (j � n), and (j � n + 1) are sufficient to prove
the loop invariant (i � n) ∧ (j � n). In combination with the predicates (i ≥ 10) and (j ≥ 10), this invariant
is strong enough to show the safety of all unwindings of the counterexample in Fig. 15.

The loop invariant given by the conjunction of the recurrence predicates is not always strong enough to elim-
inate the spurious counterexample. The reason is that the approach presented above ignores all statements in the
loop body except the ones that contribute a recurrence equation. We observe that the original counterexample is
also infeasible, since the parametrised path is more general than the original path. Therefore, adding the predi-
cates that we can extract from the non-parametrised path is sufficient to eliminate the original counterexample.
In addition, we add the recurrence predicates, hoping that they eliminate other potential counterexamples that
contain more than one loop iteration from the model.

Predicate abstraction is able to establish disjunctive invariants that can be expressed in terms of the predi-
cates [BMMR01]. Therefore, our technique is also able to establish the safety of programs with disjunctive loop
invariants. In Sect. 5, we will give an example for such a program.

4.2. Refinement using unwound spurious counterexamples

The scheme we use to solve recurrence equations matches only the cases specified in step ➁.➋ of Fig. 13. It fails to
solve recurrences as simple as jn � 2·jn−1. Therefore, the approach described in Sect. 3.3 yields the parametrised
path in Fig. 19 for the program in Fig. 18. The resulting formula does not constrain the variable j2:

. . . ∧ (i1 < 10) ∧ (i2 � n) ∧ (i2 ≥ 10) ∧ (j2 �� k · 1024) (20)

GuessIterations determines that 10 is the smallest value for n such that Formula (20) is satisfiable. The corre-
sponding unwound path, however, is safe. Even though the predicate (i � n) is a loop invariant, it is not strong
enough to show the safety of the program.

In that case, we fall back on the traditional refinement approach. To eliminate all spurious counterexamples
represented by the path with loops, it is necessary to add the refinement predicates from the proof of safety for the
unwound counterexample. In our example, this approach yields the predicates (j � 2 · k), (j � 4 · k), (j � 8 · k),
. . ., (j � 1024 ·k) and (i < 10), (i+ 1 < 10), . . . , (i+ 9 < 10), which are sufficient to show the safety of the path.

An obvious disadvantage of this approach is that it generates a large number of predicates. The traditional
refinement technique, however, yields the same set of predicates, but needs at least ten refinement steps, while
our technique shows the safety of the program in only three abstraction refinement cycles. In Sect. 7, we present
benchmarks for which this eager refinement approach performs better than traditional iterative refinement.

Integrating our technique into CEGAR. Figure 20 shows how our loop detection algorithm and the improved
refinement technique are integrated into the traditional abstraction refinement cycle (see Fig. 4 in Sect. 2). The
analyses presented in Sect. 3 (Figs. 9 and 13) are introduced between the model checking step and the simulation



Verification and falsification of programs with loops using predicate abstraction 119

Fig. 20. Integrating loop detection into the abstraction refinement cycle

phase. Depending on the result r of the GuessIterations heuristic, the potential loops in the counterexample π
may be unrolled accordingly (indicated by Unroll(π, r )), yielding a loop-free counterexample π ′. As explained
in Sect. 4, the recurrence predicates are added to the set of predicates P in the refinement step (indicated by the
dashed arrow in Fig. 20). Notably, our approach does not require any major modifications of the original steps
of the CEGAR algorithm.

5. Examples

Figure 21 shows three programs which are slightly more sophisticated than the examples discussed so far. We
discuss how these programs are verified using the approach presented in the previous sections.

Alternating branches. The program in Fig. 21a is not safe: The assertion can be violated by iterating the loop 40
times. Note that the branches of the conditional statement in the loop body are alternating. Initially, our approach
detects a potential loop that repeatedly executes the same branch (for instance, the branch in which i and j are
increased). The corresponding parametrised counterexample is infeasible, since x is initialised to 0 in the prefix
of the path and never modified when traversing the loop. The predicates (i < 20), (x < 20), and ¬b, which
are determined using the traditional refinement approach, eliminate this spurious counterexample and force the
execution of both branches of the conditional statement in the correct order. The model checker is now forced
to unwind the loop twice and reports a corresponding abstract counterexample. Again, this counterexample
contains a potential loop, namely

. . . ||: [(i < 20) ∨ (x < 20)]; [b]; x :� x + 1; y :� y + 1; b :�¬b;
[(i < 20) ∨ (x < 20)]; [¬b]; i :� i + 1; j :� j + 1; b :�¬b :|| . . . .

The body of this loop is an unwinding of the cycle in the control flow graph in Fig. 21a. GuessIterations (see
Fig. 13) yields 20 as a promising candidate for the number of iterations of this loop. Finally, the forward simu-
lation of the corresponding unwound counterexample confirms that it is indeed a feasible path that violates the
assertion.

In the setting described above, adding the recurrence predicates x �n, y �n, i �n, and j �n fails to provide
any benefit. If, however, we change the assertion in Fig. 21a to assert((j≥ 20) ∧ (y≥ 20)), the resulting loop
invariant (x � y) ∧ (i � j) is sufficient to show the safety of the modified program.



120 D. Kroening, G. Weissenbacher

(a) Loop body with alternating branches

(b) A program presented by Jhala and McMillan in [JM06]

(c) A loop with a disjunctive invariant

Fig. 21. A panopticon of programs that can be handled using the approach presented in this paper

Diverging sequence of predicates. Figure 21b shows a program presented by Jhala and McMillan [JM06]. For this
example, the traditional refinement heuristic4 yields a diverging sequence of predicates insufficient to represent
the loop invariant (i � j) ⇒ (x � y). Our approach is capable of detecting the loop and inferring the recurrence
predicates x � i− n and y � j− n. In combination with the conditions (i � j) and (x � 0), the resulting loop
invariant (x � i − n) ∧ (y � j − n) is sufficient to establish the safety of the program.

Disjunctive and non-linear invariants. The program in Fig. 21c has two interesting aspects: The loop invariant is
non-linear; moreover, it is disjunctive. Similar to Fig. 21a, the loop contains a conditional statement with two
branches. In the program in Fig. 21c, however, only one of the two branches can be executed. The non-determinis-
tic assignment b :�∗ determines which branch is selected. Depending on this choice, either the assertion (i� 2·j)
or the assertion (2·i>j2) holds. Therefore, the invariant of the whole loop is the disjunction (i� 2·j)∨ (2·i> j2)
Our approach detects the two parts of the invariant separately and leaves the task to merge this information into
a disjunction to the predicate abstraction framework. Our algorithm detects two alternative loops, namely

||: [j < 10]; j :� j + 1; [¬b]; i :� i + 2; assert((i � 2 · j) ∨ (2 · i > j2)) :|| and

||: [j < 10]; j :� j + 1; [b]; i :� i + j; assert((i � 2 · j) ∨ (2 · i > j2)) :||.

4 Jhala and McMillan refer to what we call the traditional refinement heuristic as “typical predicate heuristic”.



Verification and falsification of programs with loops using predicate abstraction 121

The recurrence predicates (j �n) and (i � 2 · n) are sufficient to show the safety of the first loop. The latter
case is more complicated, since the two assignments are interdependent. We resolve this dependency by process-
ing the recurrence equations in topological order. First, we determine the closed form j �n for the assignment
j:�j+1. Using this closed form, we eliminate j from the assignment i:�i+j and obtain the instruction i:�i+n.
For the corresponding recurrence equation, in :�in−1+n, we compute the closed form

in � i0 +
n · (n + 1)

2

(as explained in Fig. 13). Since i0 is 0, the resulting recurrence predicate is i �n ·(n+1)
2 . This predicate, in combi-

nation with j �n, implies 2 · i > j2. Therefore, the recurrence predicates generated by the algorithm proposed
in Sect. 4.1 are (in theory) sufficient to prove the safety of the program. In practice, unfortunately, it turns out
that most predicate-abstraction-based model checking tools do not support non-linear arithmetic operations at
all. Even though our verification tool SatAbs [CKSY05] is able to handle non-linear arithmetic by converting
the operations to propositional formulas, the SAT instances generated during the verification of the program in
Fig. 21 c turn out to be too complex for the underlying SAT solver.

This negative result, however, must not be mistaken as evidence that our approach does not scale in the pres-
ence of non-linear arithmetic in general. For the following counterexample, for instance, our implementation is
able to determine 20 as the number of iterations for which the assertion is violated. This takes only two refinement
cycles and less than one second:

i � 0; j � 0; ||: [∗]; j :� j + 1; i :� i + j; assert(i < 210) :||
(Here, [∗] denotes a condition that non-deterministically evaluates to either true or false in each iteration of the
loop.)

6. Conditions for completeness

The examples in the previous section raise the question of whether the class of programs for which our approach
is complete (i.e., able to prove safety) can be defined rigorously. Even though the traditional CEGAR approach
discussed in Sect. 2 may succeed to establish an invariant that is sufficiently strong to show the safety (this is the
case for the program in Fig. 14, for instance), it fails to do so in general: As discussed in Sect. 5, the traditional
refinement algorithm yields a sequence of diverging predicates for the program in Fig. 21b. Our algorithm is able
to find loop invariants for a larger class of programs than the traditional refinement approach and may avoid
divergence.

In order to define the class of programs for which our approach is complete, we start with a characterisation
of the paths for which our algorithm finds sufficiently strong loop invariants. Given a path π with a loop, where
π0, π1, and π2 are loop-free sub-paths, and

π :� π0; ||: [p]; π1 :|| [¬p]; π2; assert(q), (21)

a predicate r is a sufficiently strong loop invariant if all of the following conditions hold:

• r is an invariant of the loop, i.e., {p ∧ r} π1 {r} holds,
• there is a predicate q0 such that {true} π0 {q0} holds and q0 ⇒ r , i.e., the prefix π0 establishes the invariant r ,
• there is a predicate p2 such that {p2} π2 {q} holds and (¬p∧r ) ⇒ p2, i.e., the negated loop condition combined

with the invariant r implies the pre-condition of π2 with respect to the post-condition q .

These conditions follow immediately from the rule in Fig. 16. Under the implication order, the loop invariant r
is bounded from below by the strongest post-condition of π0 (denoted by sp(π0, true)), and bounded from above
by the weakest pre-condition for π2 terminating with q true (denoted by wp(π2, q)).5 Note that these bounds are
not necessarily loop invariants. Our algorithm is able to prove the path π safe if it manages to compute a loop
invariant that lies within these bounds, i.e., the predicates P , which determine the abstract domain, must contain
an exact representation of such an invariant.

5 Therefore, the set of invariants is a complete lattice. We refer the reader to [Cou00] for a detailed discussion of this issue.



122 D. Kroening, G. Weissenbacher

Our algorithm is “more complete” than the traditional CEGAR approach in the sense that it is able to
compute invariants not detected by a refinement approach that does not take the information about loops into
account. The class of loop invariants our heuristic is able to infer is restricted, though. Currently, we support
only invariants of the form

x � α + β · n + γ
n · (n + 1)

2
(22)

(where x and n are variables and α, β, and γ are expressions constant throughout the loop). Furthermore, an
invariant of this kind can only be constructed if the sub-paths π0 and π1 of the path π (as defined in (21)) match
the following pattern:

π0 � . . . ; x :� α0; . . . ; y :� α1; . . .
π1 � . . . ; x :� x + β0; . . . ; y :� y + β1 + x; . . .

(23)

As before, α0, α1, β0, and β1 are expressions not modified in the loop body, and x and y are arbitrary scalar
variables. The ellipses indicate arbitrary instructions that do not modify x and y, and the instructions y:� α1 and
y:� y+β1+ x are optional. Our implementation simplifies arithmetic expressions in order to increase the number
of matches. Furthermore, if the pattern matches more than one set of instructions, the algorithm constructs one
invariant for each matching combination of assignments. Since all these invariants hold by construction for the
detected loop, this does not lead to a combinatorial explosion.

A syntactic definition more restrictive than the pattern in (23) would be too strong: The invariant that is
required depends on the assertion that is checked, and a slice of the path may be sufficient to show the safety
of the path. Furthermore, we are not restricted to purely arithmetic invariants: If the instructions indicated by
the ellipses contain array accesses, pointer arithmetic, or non-linear operations, the resulting loop invariant may
use a combination of these theories. If necessary, the set of invariant templates can be increased by using more
sophisticated algorithms for solving recurrence equations (see, for instance [vEBG04]).

We conclude that our algorithm is complete for programs for which all paths with loops are of the form (23),
and the conditions listed above hold for the resulting invariants. If the sub-paths π0 and π2 (see (21)) also contain
loops, then the conditions have to be strengthened: The upper and lower bounds for the invariant are not deter-
mined by the strongest and weakest pre- and post-conditions of the paths, respectively, but by the strongest and
weakest predicates that the abstraction refinement algorithm can infer at the loop entry and loop exit locations.

The completeness of the traditional abstraction refinement algorithm is analysed and compared to a iterative
fixed point algorithm with oracle-guided widening in [BPR02]. The results presented there also apply to our
algorithm, since the invariants our algorithm detects are a superset of the invariants detected by the traditional
refinement technique.

7. Experimental results

We evaluate our approach using a set of programs that contain known buffer overflows. For this purpose, we
implemented the technique described in the previous sections into our predicate abstraction-based verification
tool SatAbs [CKSY04, CKSY05].6 SatAbs uses a SAT-solver [ES04] as decision procedure. SatAbs translates
arithmetic operations into propositional formulas representing the corresponding hardware implementation,
i.e., the bounded size and the bit-vector semantics of integers are modelled accurately. Thus, we rely on efficient
satisfiability checking algorithms to solve the constraint-satisfaction problem in step ➂ in Fig. 13. While the
SAT-solver may be a potential bottle-neck of the verification process (as indicated at the end of Sect. 5), modern
SAT-solvers tend to cope extremely well with problems that do not contain complicated arithmetic expressions.

Table 1 shows a comparison of the loop detection algorithm and a version of SatAbs in which the loop
detection feature is disabled. We measure the effect of the loop detection algorithm on the number of iterations,
the number of predicates generated, and the total runtime of the tool. The Aeon benchmark, also presented
in [KW06] and listed in the upper section of Table 1, demonstrates the potential of our approach: Aeon 0.02a is a
mail transfer agent that contains a buffer overflow, which can be triggered by means of an overly long environment
variable HOME. The content of this variable is obtained using the getenv POSIX API function and is copied (by
means of strcpy) to a buffer of fixed size without checking the length of the string.

6 Available at http://www.cprover.org/satabs/

http://www.cprover.org/satabs/


Verification and falsification of programs with loops using predicate abstraction 123

Table 1. Experimental results

W/o Loop Detection With Loop Detection Speedup

Application Bulletin Iterations Predicates Iterations Predicates

Aeon 0.02a CVS-2005-1019 >500 >500 2 3 –/15 s
Aeon 0.02a CVS-2005-1019 (buffer size 5) 10 54 2 3 6.6
Aeon 0.02a CVS-2005-1019 (buffer size 10) 23 119 2 3 431.4

OpenSER CVE-2006-6749 20 99 2 3 171.7
OpenSER CVE-2006-6749 patched 28 128 20 139 3.9
bind CVE-2001-0011 7 33 6 28 0.5
bind CVE-2001-0011 patched 7 45 8 54 0.6
sendmail CVE-2003-0681 5 33 2 9 3.3
sendmail CVE-1999-0047 3 8 1 1 1.7
MADWiFi CVE-2006-6332 5 33 3 27 1.8
apache CVE-2004-0940 10 55 11 60 1.0

Fig. 22. A model of the strcpy function

We replaced the getenv function by a model that returns a string of non-deterministic size and content.
Figure 22 shows the implementation of strcpy, augmented with an assertion7 that fails if i exceeds the upper
bound of the string dest. In the original program, the size of the dest buffer is 512 bytes. Our implementation
detects the relevant loop immediately and reports the buffer overflow within 15 s, half of which are spent sim-
ulating the unwound counterexample. Without loop detection, SatAbs is unable to provide an answer within
a reasonable amount of time. Therefore, we reduced the size of the buffer to 5 and 10 bytes, respectively. As
expected, the number of iterations necessary to detect the buffer overflow increases linearly with the size of the
buffer. As we report in [KW06], the runtime of traditional predicate abstraction tools grows exponentially with
the number of iterations of the loop, while our loop detection algorithm is not sensitive to the size of the buffer.
For a buffer size of 10, our loop detection algorithm is already 400 times faster than the version of SatAbs not
supporting the loop detection feature. A similar comparison (also based on Aeon) of our approach to Slam and
Blast can be found in [KW06], showing that our heuristic can prevent the exponential increase of the runtime
both Slam and Blast exhibit in the presence of loops.

We obtained the remaining entries in Table 1 by running our algorithm on problems selected from a buffer
overflow benchmark presented by Ku et al. [KHCL07]. These test-cases are simplified versions of a variety of
buffer overflow vulnerabilities in open source programs like OpenSER, bind, and apache. We used the unmodified,
publicly available benchmark to generate the entries in Table 1. The bounds of the loops in these programs are
very small, since the benchmark was designed to evaluate software model checking tools that are based on tradi-
tional predicate abstraction. If we increase the bounds to a realistic size, the runtime of the traditional algorithm
increases exponentially, while the runtime of the loop detection algorithm is mainly determined by the simulation
of the unwound counterexample and remains almost unchanged.

The benchmark comprises unsafe programs and their corresponding patched (and therefore safe) counter-
parts. Our experiments show that our approach works particularly well for unsafe programs, like the OpenSER
benchmark [KHCL07]. For the corresponding patched version of OpenSER, the speedup is less impressive but
still measurable: Once the loop is detected, our refinement algorithm adds the relevant predicates in a single iter-
ation. In the case of the bind benchmark [KHCL07], our algorithm has no positive impact on the performance.
Even though it detects the loop, the number of iterations is too small to result in a significant improvement in
runtime. The reason for the performance penalty is that our model checker for abstract programs, in which we
implemented the detection algorithm for abstract loops (see Fig. 9), is not as fast and optimised as the SMV
model checker [McM92], which SatAbs uses by default. Our algorithm fails to detect the loop in the patched

7 Our tool SatAbs automatically generates assertions for array bounds, division by zero, and pointer validity. For the Aeon program, which
has approximately 800 lines of code, SatAbs generates 576 such assertions.



124 D. Kroening, G. Weissenbacher

version of bind and in the apache benchmark [KHCL07]. In both cases, this has no significant impact on the
number of predicates and iterations.

Our experimental results confirm that the technique typically yields a significant performance improvement
if our heuristic manages to detect the loop. If, on the other hand, our algorithm fails to detect the crucial loop,
the performance impact is negligible.

8. Related work

The approach we present extends the loop detection algorithm in [KW06]. The algorithm presented in [KW06] is
covered in Sect. 3. The refinement technique based on adding recurrence predicates (see Sect. 4) is an improvement
of the traditional refinement algorithm [BR02a] applied in [KW06].

Beyer et al. [BHMR07b] propose to combine counterexample-guided abstraction refinement (CEGAR)
[CGJ+00] and invariant synthesis to prove the absence of counterexamples. Similar to our approach, the algorithm
aims at computing invariants of loops in counterexamples. The resulting path invariants contain universal quanti-
fiers. Unlike the recurrence predicates generated by our technique, universally quantified predicates are not readily
integrated into existing predicate abstraction-based software verification tools (e.g., Slam [BR02b, BCLR04],
Blast [HJMS02], Magic [CCG+04], F- Soft [IYG+05], and SatAbs [CKSY05]) and require special treatment in
the abstraction phase. Similar to our recurrence equation-based approach, the algorithm used to generate path
invariants is only complete for a certain class of invariant templates (specified in the language of linear arithmetic
with uninterpreted function symbols) [BHMR07a]. The class of invariants covered by our approach is discussed
in Sect. 6.

Daikon [EPG+07] is a tool that dynamically detects potential (“likely”) invariants of a program. It relies on
executing the program using a suite of test cases (e.g., regression tests). Daikon traces the values of variables at
appropriate points in the program (e.g., procedure entries and exits) by means of instrumenting the code. Using
the resulting data, Daikon evaluates a large number of potential invariants (applying pre-defined patterns includ-
ing linear relations over two or three variables, intervals, ordering of sequences, etc.) and reports the invariants
that it observes to hold for the recorded test runs. This approach suffers from the same problems as testing, since
it depends heavily on the test suite. A single additional test run may invalidate the reported invariants. Thus, the
results are not guaranteed to be invariants of the program, though the precision is claimed to be high [EPG+07].
The invariants generated by our approach are guaranteed to be invariants of the analysed paths and not just of a
concrete run of that path. Furthermore, Daikon generates a large number of potential invariants, which makes it
unsuitable in our setting, since the scalability of predicate abstraction decreases rapidly with an increasing num-
ber of predicates. Our technique generates only invariants that are promising candidates to eliminate a spurious
counterexample.

The Daikon tool is highly extensible and allows the user to add new types of invariants. Our implementation
would certainly benefit from such a flexibility. We intend to investigate the feasibility of extending our approach
to more complex data-types such as those provided by the C++ template library (see Sect. 9).

Jain et al. propose to strengthen the transition relation of the original program using statically computed
linear invariants of the form ±x ± y ≤ c [JIG+06]. They observe that predicate abstraction generates a more
precise abstraction if the original transition relation is strengthened. Since using all generated invariants may
not be beneficial, they use a heuristic to filter out invariants not deemed important. In contrast, we compute
invariants on demand, and our technique detects a different class of invariants, including nonlinear ones.

Leino and Logozzo suggest to strengthen loop invariants on demand, as the need for stronger invariants
arises during the verification process [LL05]. The accuracy of the (numeric) domain used by the abstract inter-
preter is increased if the theorem prover fails to show the safety of a path. The technique combines invariants
generated by means of abstract interpretation with automatic theorem proving. In contrast, our technique and
the path invariants approach are based on predicate abstraction and model checking. Furthermore, neither path
invariants, nor Leino and Logozzo’s or Jain’s approach aim at accelerating the detection of counterexamples.

The incompleteness of traditional predicate-abstraction based CEGAR implementations (e.g., [BR02b,
BCLR04]) is a well known problem [Cou00]: If the program is safe, the abstraction refinement algorithm is
incomplete unless the refinement step introduces a predicate that represents a (sufficiently strong) invariant of the
program. Jhala and McMillan [JM06], to whom we owe the example in Fig. 21b, address this issue by avoiding
the generation of a diverging sequence of refinement predicates by restricting the search space of the interpo-
lation-based [HJMM04] refinement algorithm. Unlike our recurrence-based technique and the path invariant
approach, their refinement algorithm considers only loop-free counterexamples.



Verification and falsification of programs with loops using predicate abstraction 125

The existence of a counterexample with loops can also be shown by means of induction on the loop
bound [WGI07]. This approach has the advantage that it is not necessary to unwind the counterexample. The
approach, as presented in [WGI07], is restricted to non-nested loops with a single induction variable and a loop
condition that is monotonic with respect to the loop bound. Moreover, it is not suitable for showing the absence
of counterexamples.

Path Slicing is an approach that shortens counterexamples by dropping the statements that have no impact on
the reachability of the program location in question [JM05]. The statements and branches that can be bypassed
are eliminated by backward slicing: For each program location, the set of relevant variables whose valuations at
that point determine whether or not the error location is reachable is computed. The feasibility of a path slice
implies the feasibility of the original counterexample, but assumes termination of the omitted code sequences.
Path slicing eliminates loops during the symbolic simulation if and only if they do not contribute to the reach-
ability of the error location. Therefore, path slicing is orthogonal to our approach, since it prevents expensive
unrolling of loops that are not related to the error.

Ball et al. propose a technique based on identifying a sequence of must-transitions through loops in an abstract
transition system generated by predicate abstraction [BKS07]. In order for this approach to succeed, the concrete
transition system must adhere to a set of restrictions, for instance, the abstract state a at the loop entry must
represent a finite set of concrete states, and each concrete state represented by a must not have more than one
successor in a. This technique aims at proving the termination of loops in order to leap loops in the abstrac-
tion refinement process without the need for further refinement. In contrast, our approach does not impose any
restrictions on the concrete transition system. Furthermore, our goal is not proving loop termination, but to find
a single counterexample that traverses the loop and violates an assertion.

Linear programs have been proposed by Armando as an alternative, more fine-grained formalism for abstrac-
tions of sequential programs [ACM04]. Due to the higher expressiveness of linear programs (in comparison to
Boolean programs), this approach yields a smaller number of spurious execution traces. However, the abstraction
algorithm is restricted to a pointer-free subset of the C programming language that employs linear arithmetic
and arrays [ABM06, ABC+07].

Rybalchenko and Podelski present a complete method for detecting linear ranking functions of non-nested
program loops [PR04]. The inferred ranking function poses an upper bound for the iterations of the loop. This
bound is not necessarily tight. Combined with abstraction-refinement, this approach enables proofs of program
termination [CPR05]. A proof of termination is insufficient to show the feasibility of counterexamples with loops,
since the violation of the property usually depends on the number of iterations. Therefore, we utilise a method
that provides the exact number of loop iterations necessary to reach the error state.

Acceleration is a technique that aims at computing the repeated iteration of a sequence of transitions of a
symbolic transition system in one step [BFLP03, FL02]. It targets finite linear systems and counter automata.
The technique accelerates the computation of the reachable states of the system, but does not specifically target
the detection of counterexamples. Acceleration is also called exact widening [CC77]. Our heuristic GuessIter-
ations(π ) (see Fig. 13) may also be interpreted as a widening and acceleration step on the transition function
defined by the body of the detected loop.

9. Conclusion

This paper presents a novel program verification approach that makes two contributions: First, it enables pred-
icate abstraction to find bugs that emerge as a result of a high number of iterations of loops. We propose an
algorithm to detect loops in abstract models and explain how the traditional simulation and refinement algo-
rithms can be extended to cope with loops. Our algorithm is based on replacing the assignment statements in
the loop body into a closed-form representation that is parametrised by the number of loop iterations. We show
how this closed-form representation can be used to accelerate the detection of counterexamples. Second, we show
that the closed form representations, used as refinement predicates, can also be useful to prove the absence of
counterexamples. Our implementation outperforms the traditional abstraction-refinement approach based on
predicate abstraction on many typical buffer overflow examples.

Future work and outlook. Our idea is neither restricted to the simple invariants discussed in Sect. 6 nor to pred-
icate abstraction. We consider to extend our approach to invariants over more complicated data-types such as
those provided by the C++ template library. We intend to base this work on the verification technique presented
in [BGK07], which is based on an abstract model of the template library that preserves relevant facts such as



126 D. Kroening, G. Weissenbacher

the size of C++ containers (e.g., lists). Furthermore, our technique can (with slight modifications) be applied in
any setting in which an abstraction is subsequently refined in a counterexample-guided manner. We have plans
to integrate our approach into an interpolation-based model checking tool [McM06].

The idea of extracting invariants from paths is very promising and has recently been successfully applied in a
number of different ways (e.g., see [KW06, BHMR07b, EPG+07], discussed in Sect. 8). It is particularly powerful
in combination with a refinement-based static analysis technique, allowing it to derive non-trivial disjunctive
invariants. We expect to see extensions of our idea that enable the verification of a larger, more general class of
programs.

Acknowledgments

The second author would like to thank Prof. Peter Lucas for awakening his lasting interest in formal verification
by teaching Hoare logic in the introductory course on computer science at the Graz University of Technology.
Both authors thank Sir Tony Hoare, Vijay D’Silva and Mitra Purandare, for their helpful and inspiring com-
ments. Thomas Wahl deserves a special note of thanks for his thorough reading and his insightful comments on
this paper. We are particularly grateful to Joseph Ruskiewicz for the critical comments on an earlier version of
this paper and for sharing his extensive knowledge about Hoare logic.

References

[ABC+07] Armando A, Benerecetti M, Carotenuto D, Mantovani J, Spica P (2007) The EUREKA tool for software model checking.
In: Automated software engineering (ASE), pp 541–542. ACM Press, New York

[ABM06] Armando A, Benerecetti M, Mantovani J (2006) Model checking linear programs with arrays. In: Software model checking
(SoftMC). Electronic notes in theoretical computer science, vol 144. Elsevier, Amsterdam, pp 79–94

[ACM04] Armando A, Castellini C, Mantovani J (2004) Software model checking using linear constraints. In: International conference
on formal engineering methods (IFCEM). Lecture notes in computer science, vol 3308. Springer, Berlin, pp 209–223

[Bal05] Ball T (2005) Engineering theories of software intensive systems. NATO Science Series II: mathematics, physics and chemistry,
vol 195. Formalizing counterexample-driven refinement with weakest preconditions. Springer, Berlin, pp 121–139

[BCLR04] Ball T, Cook B, Levin V, Rajamani SK (2004) Slam and Static driver verifier: technology transfer of formal methods inside
Microsoft. In: Integrated formal verification (IFM). Lecture Notes in Computer Science, vol 2999. Springer, Berlin

[BFLP03] Bardin S, Finkel A, Leroux J, Petrucci L (2003) FAST: Fast acceleration of symbolic transition systems. In: Computer aided
verification (CAV). Lecture notes in computer science, vol 2752. Springer, Berlin, pp 118–121

[BGK07] Blanc N, Groce A, Kroening D (2007) Verifying C++ with STL containers via predicate abstraction. In: Automated software
engineering (ASE). IEEE, USA, pp 521–524

[BHMR07a] Beyer D, Henzinger TA, Majumdar R, Rybalchenko A (2007) Invariant synthesis for combined theories. In: Verification, model
checking and abstract interpretation (VMCAI). Lecture notes in computer science, vol 4349. Springer, Berlin, pp 378–394

[BHMR07b] Beyer D, Henzinger TA, Majumdar R, Rybalchenko A (2007) Path invariants. In: Programming language design and imple-
mentation (PLDI). ACM Press, New York, pp 300–309

[BKS07] Ball T, Kupferman O, Sagiv M (2007) Leaping loops in the presence of abstraction. In: Computer aided verification (CAV).
Lecture notes in computer science, vol 4590. Springer, Berlin, pp 491–503

[BMMR01] Ball T, Majumdar R, Millstein T, Rajamani SK (2001) Automatic predicate abstraction of C programs. In: Programming
language design and implementation (PLDI). ACM Press, New York, pp 203–213

[BPR01] Ball T, Podelski A, Rajamani SK (2001) Boolean and Cartesian abstraction for model checking C programs. In: Tools and
algorithms for the construction and analysis of systems (TACAS). Lecture notes in computer science, vol 2031. Springer,
Berlin, pp 268–283

[BPR02] Ball T, Podelski A, Rajamani SK (2002) Relative completeness of abstraction refinement for software model checking. In:
Tools and algorithms for the construction and analysis of systems (TACAS). Lecture notes in computer science, vol 2280.
Springer, Berlin, pp 158–172

[BR00] Ball T, Rajamani SK (2000) Bebop: a symbolic model checker for Boolean programs. In: Model checking and software
verification (SPIN), Lecture notes in computer science, vol 1885. Springer, Berlin, pp 113–130

[BR02a] Ball T, Rajamani S (2002) Generating abstract explanations of spurious counterexamples in C Programs. Technical Report
MSR-TR-2002-09, Microsoft Research, Redmond

[BR02b] Ball T, Rajamani SK (2002) The slam project: debugging system software via static analysis. In: Principles of programming
languages (POPL). ACM Press, New York, pp 1–3

[CC77] Cousot P, Cousot R (1977) Abstract interpretation: a unified lattice model for static analysis of programs by construction or
approximation of fixpoints. In: Principles of programming languages (POPL). ACM Press, New York, pp 238–252

[CC79] Cousot P, Cousot R (1979) Systematic design of program analysis frameworks. In: Principles of programming languages
(POPL). ACM Press, New York, pp 269–282

[CCG+04] Chaki S, Clarke EM, Groce A, Jha S, Veith H (2004) Modular verification of software components in C. IEEE Trans Softw
Eng 30(6):388–402



Verification and falsification of programs with loops using predicate abstraction 127

[CFR+91] Cytron R, Ferrante J, Rosen BK, Wegman MN, Zadeck FK (1991) Efficiently computing static single assignment form and
the control dependence graph. ACM Trans Program Lang Syst 13(4):451–490

[CGJ+00] Clarke EM, Grumberg O, Jha S, Lu Y, Veith H (2000) Counterexample-guided abstraction refinement. In: Computer aided
verification (CAV). Lecture notes in computer science, vol 1855. Springer, Berlin, pp 154–169

[CGL92] Clarke E, Grumberg O, Long DE (1992) Model checking and abstraction. In: Principles of programming languages (POPL).
ACM Press, New York, pp 343–354

[CGP99] Clarke E, Grumberg O, Peled D (1999) Model checking. MIT Press, Cambridge
[CKS05] Cook B, Kroening D, Sharygina N (2005) Symbolic model checking for asynchronous Boolean programs. In: Model checking

and software verification (SPIN). Lecture notes in computer science, vol 3639. Springer, Berlin, pp 75–90
[CKSY04] Clarke E, Kroening D, Sharygina N, Yorav K (2004) Predicate abstraction of ANSI-C programs using SAT. Formal Methods

Syst Des (FMSD) 25:105–127
[CKSY05] Clarke EM, Kroening D, Sharygina N, Yorav K (2005) SATABS: SAT-based predicate abstraction for ANSI-C. In: Tools

and algorithms for the construction and analysis of systems (TACAS). Lecture notes in computer science, vol 3440. Springer,
Berlin, pp 570–574

[Cou00] Cousot P (2000) Partial completeness of abstract fixpoint checking. In: International symposium on abstraction, reformula-
tion, and approximation (SARA). Lecture notes in computer science, vol 1864. Springer, Berlin, pp 1–25.

[CPR05] Cook B, Podelski A, Rybalchenko A (2005) Abstraction-refinement for termination. In: Static analysis symposium (SAS).
Lecture notes in computer science, vol 3672. Springer, Berlin, pp 87–101

[Dij75] Dijkstra EW (1975) Guarded commands, nondeterminacy and formal derivation of programs. Commun ACM 18(8):453–457
[EHRS00] Esparza J, Hansel D, Rossmanith P, Schwoon S (2000) Efficient algorithms for model checking pushdown systems. In:

Computer aided verification (CAV). Lecture notes in computer science, vol 1855. Springer, Berlin, pp 232–247
[EPG+07] Ernst MD, Perkins JH, Guo PJ, McCamant S, Pacheco C, Tschantz MS, Xiao C (2007) The Daikon system for dynamic

detection of likely invariants. Sci Comput Program 69(1–3):35–45
[ES04] Eén N, Sörensson N (2004) An extensible SAT-solver. In: Theory and applications of satisfiability testing (SAT), vol 2919.

Springer, Berlin, pp 502–518
[FL02] Finkel A, Leroux J (2002) How to compose Presburger-accelerations: applications to broadcast protocols. In: Foundations

of software technology and theoretical computer science (FST TCS). Lecture notes in computer science. Springer, Berlin,
pp 145–156

[Flo67] Floyd RW (1967) Assigning meanings to programs. In: Symposium on applied mathematics. Mathematical aspects of computer
science, vol 19. American Mathematical Society, Providence, pp 19–32

[GKP89] Graham RL, Knuth DE, Patashnik O (1989) Concrete mathematics: a foundation for computer science. Addison-Wesley
Longman Publishing Co., Inc., Reading

[Gri87] Gries D (1987) The science of programming. Springer, Berlin
[GS97] Graf S, Saı̈di H (1997) Construction of abstract state graphs with PVS. In: Computer aided verification (CAV). Lecture notes

in computer science, vol 1254. Springer, Berlin, pp 72–83
[HJM+02] Henzinger TA, Jhala R, Majumdar R, Necula GC, Sutre G, Weimer W (2002) Temporal-safety proofs for systems code. In:

Computer aided verification (CAV). Lecture notes in computer science, vol 2404. Springer, Berlin, pp 526–538
[HJMM04] Henzinger TA, Jhala R, Majumdar R, McMillan KL (2004) Abstractions from proofs. In: Principles of programming

languages (POPL). ACM Press, New York, pp 232–244
[HJMS02] Henzinger TA, Jhala R, Majumdar R, Sutre G (2002) Lazy abstraction. In: Principles of programming languages (POPL).

ACM Press, New York, pp 58–70
[Hoa69] Hoare CAR (1969) An axiomatic basis for computer programming. Commun ACM 12(10):576–580
[IYG+05] Ivančić F, Yang Z, Ganai MK, Gupta A, Shlyakhter I, Ashar P (2005) F- Soft: Software verification platform. In: Computer

aided verification (CAV). Lecture notes in computer science, vol 3576. Springer, Berlin, pp 301–306
[JIG+06] Jain H, Ivancic F, Gupta A, Shlyakhter I, Wang C (2006) Using statically computed invariants inside the predicate abstraction

and refinement loop. In: Computer aided verification (CAV). Lecture notes in computer science, vol 4144. Springer, Berlin,
pp 137–151

[JM05] Jhala R, Majumdar R (2005) Path slicing. In: Programming language design and implementation (PLDI). ACM Press,
New York, pp 38–47

[JM06] Jhala R, McMillan KL (2006) A practical and complete approach to predicate refinement. In: Tools and algorithms for the
construction and analysis of systems (TACAS). Lecture notes in computer science, vol 3920. Springer, Berlin, pp 459–473

[KHCL07] Ku K, Hart TE, Chechik M, Lie D (2007) A buffer overflow benchmark for software model checkers. In: Automated software
engineering (ASE). ACM Press, New York, pp 389–392

[KS06] Kroening D, Sharygina N (2006) Approximating predicate images for bit-vector logic. In: Proceedings of TACAS 2006. Lecture
notes in computer science, vol 3920. Springer, Berlin, pp 242–256

[Kur95] Kurshan R (1995) Computer-aided verification of coordinating processes. Princeton University Press, Princeton
[KW06] Kroening D, Weissenbacher G (2006) Counterexamples with loops for predicate abstraction. In: Computer aided verification

(CAV). Lecture notes in computer science, vol 4144. Springer, Berlin, pp 152–165
[LL05] Leino KRM, Logozzo F (2005) Loop invariants on demand. In: Programming languages and systems (APLAS). Lecture

notes in computer science, vol 3780. Springer, Berlin, pp 119–134
[McM92] McMillan KL (1992) The SMV system. Technical Report CMU-CS-92-131, Carnegie Mellon University
[McM06] McMillan KL (2006) Lazy abstraction with interpolants. In: Computer aided verification (CAV). Lecture notes in computer

science, vol 4144. Springer, Berlin, pp 123–136
[Nel89] Nelson G (1989) A generalization of Dijkstra’s calculus. ACM Trans Program Lang Syst (TOPLAS) 11(4):517–561
[PR04] Podelski A, Rybalchenko A (2004) A complete method for the synthesis of linear ranking functions. In: Verification, model

checking and abstract interpretation (VMCAI). Lecture notes in computer science, vol 2937. Springer, Berlin, pp 239–25



128 D. Kroening, G. Weissenbacher

[vEBG04] van Engelen RA, Birch J, Gallivan KA (2004) Array data dependence testing with the chains of recurrences algebra. In:
Innovative architecture for future generation high-performance processors and systems (IWIA). IEEE, USA, pp 70–81

[WGI07] Wang C, Gupta A, Ivančić F (2007) Induction in CEGAR for detecting counterexamples. In: Formal methods in computer-
aided design (FMCAD). IEEE, USA, pp 77–84

Received 10 February 2008
Accepted in revised form 14 March 2009 by C.B. Jones and J.C.P. Woodcock
Published online 7 April 2009


	Verification and falsification of programs with loops using predicate abstraction
	Abstract
	1 Introduction
	2 Background
	2.1 Programs and assertions
	2.2 Semantics of programs
	2.3 Predicate abstraction and refinement

	3 Counterexamples with loops
	3.1 How predicate abstraction handles loops
	3.2 Detecting loops in abstract counterexamples
	3.3 Checking the safety of counterexamples with loops

	4 Refinement in the presence of loops
	4.1 Refinement using closed recurrence equations
	4.2 Refinement using unwound spurious counterexamples

	5 Examples
	6 Conditions for completeness
	7 Experimental results
	8 Related work
	9 Conclusion
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


