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Triplet-singlet conversion in ultracold Cs,; and production of ground state molecules

Nadia Bouloufa!, Marin Pichler?, Mireille Aymar!, and Olivier Dulieu!
! Laboratoire Aimé Cotton, CNRS, Université Paris-Sud, Bdt. 505, 91405 Orsay, France and
2 Physics Department, Goucher College, Baltimore MD, 21204
(Dated: November 10, 2010)

We propose a process to convert ultracold metastable Cse molecules in their lowest triplet state
into (singlet) ground state molecules in their lowest vibrational levels. Molecules are first pumped
into an excited triplet state, and the triplet-singlet conversion is facilitated by a two-step spontaneous
decay through the coupled A'X} ~ b3IL, states. Using spectroscopic data and accurate quantum
chemistry calculations for Csz potential curves and transition dipole moments, we show that this
process has a high rate and competes favorably with the single-photon decay back to the lowest
triplet state. In addition, we demonstrate that this conversion process represents a loss channel
for vibrational cooling of metastable triplet molecules, preventing an efficient optical pumping cycle

down to low vibrational levels.

PACS numbers: 32.80.Pj, 33.20.-t, 34.20.-b

I. INTRODUCTION

Research on cold and ultracold molecules currently at-
tracts considerable interest due to their features and ap-
plications in fundamental science [f[], from the control of
low-energy quantum dynamics of few-body systems, to
the intrinsic many-body nature of quantum degenerate
gases [E], as well as due to the prospects in applied areas
such as quantum computing [B], precision measurements
[, B], and ultracold controlled chemistry [[f. Therefore
work on creating samples of cold molecules has rapidly
progressed, and recent reviews outline the experimental
methods, theoretical issues and applications for neutral
[ﬂ, ﬂ, E] and charged species [E] Except in remark-
able cases [[L9, [L]], the rich internal structure of molecules
prevent them to be directly cooled down by lasers.

Among the main challenges is the formation of ultra-
cold molecules in a well-defined internal quantum state,
which would open the way for the full control of its evolu-
tion under various interactions. Therefore work on creat-
ing samples of ultracold molecules has rapidly progressed
in two main directions: either molecules are created by
association of ultracold atom pairs induced by a pho-
ton (photoassociation, or PA) or by a magnetic field
(magnetoassociation, or MA) [[Lf, [Lf], or by direct cool-
ing applied to pre-existing molecules, such as buffer gas
cooling [[7 or Stark deceleration [[§. The former ap-
proach yields molecular samples with temperatures in
the micro- or nanokelvin range, but most often with high
internal vibrational energy. In contrast the latter ap-
proach produces molecules in their lowest energy levels,
but their translational motion is characterized by a tem-
perature larger than 1 millikelvin in most cases. The
ultimate goal to produce ultracold molecules in micro-
or nano-Kelvin range with no vibrational or rotational
excitation, or in a well-defined internal quantum state
still poses a difficult challenge. Using stimulated Raman
adiabatic passage (STIRAP) technique, the population
of high-lying bound levels of molecules created by MA of
ultracold atoms in a degenerate or near-degenerate quan-

tum gas has been transferred down to the lowest molec-
ular bound level through a single STIRAP step in KRb
[L9 and through a double STIRAP step in Cs, [Rd, R1]
These results pave the path towards the achievement of
a degenerate gas of molecules with no internal energy.
Additionally, ultracold alkali-metal diatomic molecules
produced by PA have been transferred into their lowest
vibrational level v = 0 by stimulated emission pump-
ing for RbCs [@] and LiCs [@] and by optical pumping
for Csy [24]. However the relatively small fraction (a few
thousands) of ground state molecules in the ultracold gas
could be a limitation for further studies.

In all the cases above, coupling between excited elec-
tronic state mediating the population transfer plays a
crucial role, as it has been previously demonstrated in
several PA experiments [@«@], and some other possi-
bilities are still to be discovered @] Typically, samples
of ultracold molecules are initially created in their low-
est metastable triplet electronic state, and are converted
into ground state molecules via a transfer mechanism re-
lying on a triplet-singlet coupling in excited electronic
states induced by spin-orbit interaction. In the present
paper, we propose a triplet-singlet conversion mechanism
in Csy which takes advantage of the large formation rate
of triplet molecules that are indeed produced by PA of
ultracold cesium atoms [B0], Bl]. A one-photon transition
excites molecules in the lowest a3X] state into a well-
defined level of the excited 23I1,(6s + 5d) state which
relaxes down into low vibrational levels of the ground
state in two steps via the 0f (A1XF ~ b°I1,) coupled
states (Flgm) We show that the probability for accumu-
lating molecules in their ground )(123;r state is compa-
rable to the one for accumulating of molecules back into
the a®>3} state. Besides the triplet-singlet conversion of
cold molecules, this mechanism allows for u— g symmetry
conversion, which cannot be achieved via a two-photon
process in homonuclear molecules, in contrast with het-
eronuclear molecules. As a further result, this conversion
process suggests a likely explanation for the suppression
of vibrational cooling of a®*%;" molecules down to low vi-
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FIG. 1. (Color on line) Scheme of the proposed process. (a)
the T v = 17 level is initially populated by PA. (c) It can
be efficiently excited (thick vertical arrow) to the (2)*II, v =
12 level. (b) the A*X7 (65 + 6p) and b°I1,(6s + 6p) potential
curves, and the resulting 07 curves (dot-dashed lines) after
diagonalization of the potential matrix of the A and b curves
coupled by the spin-orbit coupling function of ref.[@]. The
(2)%M, level can decay either directly to the a state (arrow
I), or to the X state via the 07 states (arrow II and III).
Probability densities are reported with an arbitrary scale. For
the 0 coupled wave function, the component on the b state
(upper red trace) and on the A state (lower black trace) of
the wave function are both represented on the same scale. (d)
R-dependent dipole moment for the transitions a®%-(2)311,
(D(2)—a), b°ILu=(2)°Iy (D2y—s), and X' SF-A'SE (Da—x).

brational levels as reported in ref.[BJ).

The proposed model is described in Section ﬂ and the
transfer efficiency is evaluated in Section . The compe-
tition with other possible decay channels is discussed in
Section @ where prospects for experimental realization
of the proposed scheme are considered.

II. THE PROPOSED TRIPLET-SINGLET
CONVERSION SCHEME

We investigate the efficiency of the process depicted
in Fig.. Our model is based on accurate spectroscopic

information recently obtained on Css electronic states.
The Xlz; ground state potential curve is taken from
ref.[B4], while the lowest %3 potential curve comes
from the recent analysis of Li Li’s group [@] The triplet-
singlet conversion is mediated by the A1X [ (6s+ 6p) and
b3IL, (65 + 6p) states (hereafter referred to as the A and
b states, respectively) coupled by a spin-orbit (SO) in-
teraction, which depends on the internuclear distance R
[. According to Hund’s case ¢ labeling, these coupled
states result in a pair of 0 states dissociating into the
6251/2 + 62P1/213/2 limits. In the following we will refer
to the 0F (A ~ b) pair of states (see dotted lines in Figl).
The potentials curves for the A and b states are calcu-
lated by ab initio methods described in ref.[Bd], which
were adjusted empirically to reproduce the spectroscopic
data of references [Bg and [Bg]. The SO coupling function
is taken from the ab initio determination of ref.[33. The
(2)3I1, potential curve as well as the R-dependent transi-
tion dipole moments are also evaluated according to the
method of ref.[B7] (Fig.ld). The (2)3I1, potential curve is
found with an harmonic constant w, = 17.1 cm~! in good
agreement with the measurement or ref.[Bd]; it is shifted
downwards by 112 cm ™! to match its minimum with the
value reported in ref.[Bg for the (2)3I1,(1,) state. The vi-
brational energies and wave functions for all these molec-
ular states are computed with the Mapped Fourier Grid
Representation (MFGR) method [d].

We assume that Csy molecules are initially created by
PA of cold Cs atoms into the so-called giant G1 or G3
resonances (at 11 720 and 11 715 cm™1!) characterized
in ref.[], i of the double-well 0, (6°S + 6Py 5) state.
These photoassociated molecules are stabilized by spon-
taneous emission in a distribution of vibrational levels of
the a3X (65 + 6s) (hereafter referred to as the a state)
located around the v = 17 level, as discussed in ref.[i].
These molecules are efficiently excited towards low-lying
vibrational levels of the 23I1,(6s + 5d) state. Starting
from one of the most populated (v, = 17) level of the a
state, the strongest transition is found towards the v = 12
level of the (2)3I1, state at 710 nm or 14084.6 cm™'. This
is illustrated in Fig. Ea where the squared matrix element
[(a®SF, va = 17|D(2)_4[(2)I1y,v)|? is shown. Then two
electronic relaxations are open: either a direct transi-
tion back to the a state, or a two-step transition down
to the X state via the A — b coupled states. The ar-
rows illustrating these transitions in Fig.m suggest that
the classical turning points of the potentials match well
enough to ensure that these two ways compete together,
as confirmed in the next sections.

III. THE TWO-STEP SPONTANEOUS DECAY
OF THE 2°11, STATE

In this section, we demonstrate that the v = 12 level
of the 231, state can efficiently create ground state
molecules in their lowest vibrational level v’ = 0. We
consider the problem only from the point of view of the
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FIG. 2. Squared  matrix  element  u? =
[(@®SY, va|D2)—al(2)*Ilg,v)|*> (in atomic units) of the
transition dipole moment function D,_ (o) (see Figfld). (a):
v = 17; (b): ve = 56.

transitions between vibrational levels, where transition
strengths depend only on vibrational wave functions. We
left apart the contribution of the rotational state of the
molecules, which could be incorporated through Honl-
London factors, without significantly modifying the main
conclusions of the paper. The decay rate of a vibrational
level v; of an electronic state A towards all the vibra-
tional levels v; of an electronic state A’ is given by the
general expression for the Einstein coefficient A, (A—A")

(in s~ 1):

16773 ’
Ay (A=N)=>" m%ngUNDA—AJU? )o@

J

where hy;; is the energy difference between the v; and v;
levels, and Dp_x/(R) the R-dependent transition dipole
moment between the electronic states A and A’.

We first compute the relaxation rate of a given (2)3I1,
vibrational level down to the 0} (A ~ b) levels. This rate
obviously depends on the amount of b electronic charac-
ter for each of the bound levels of the 0f (A ~ b) cou-
pled states, and on the dipole moment function Dj_ (o)

Figfld) for the transition (2)%I1,-b°I1,. We see in Fig.
éa that (2)3II, v = 12 level has a relaxation rate of
9 x 105s~! over the entire 0} system. The population
of the 0] levels v’ after this relaxation is related to the
squared matrix elements [(0;, v/ D(2)_p|(2)*Ily, v = 12)]?
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FIG. 3. Relaxation rate A, (in s™') of the 23II, vibrational
levels (a) towards the levels of 0F (A — b) system, and (b)
towards the levels of the a®S] state.

displayed in Fig.@a. The envelope of this function reflects
the oscillatory structure of the v = 12 wave function. The
v’ = 71 level of the coupled system corresponds to a local
maximum in a range which is predicted below to decay
favorably down to the v” = 0 level of the X state. This
is also illustrated in Fig.m where it is shown that one of
the turning points of the v’ = 71 wavefunction indeed co-
incides with the minimum of the X potential curve. We
note that the double STIRAP scheme of ref.[P1] actually
used the 07 (v = 63)-X (v” = 0) for their final step of the
transfer.

Using an expression similar to Eq., we display in
Fig. Pla the decay rate of the 0F levels down to the
ground state. It depends on the squared matrix element
(X'EF0” |Da-x|0F,v')]?. Below v = 42, i.e. below the
crossing between the A and b potential curves, 0 levels
have mostly a b3II, character, so that their decay rate to-
wards X levels is very low. Above this region vibrational
levels acquire a significant A'} character whose ampli-
tude oscillates from one level to another (see for instance
ref.[36]). Such levels contribute to the dark background
of lines in Fig. pa. Among them, the levels which have
the largest overlap with X wave functions (like v” = 71)
are visible as lines with an amplitude about two times
larger than the one of the background, and 4 to 5 times
larger than that of the (2)3I,,v = 12-0 (A ~ b) decay
rate. Figure Eb shows that the squared matrix element
(X'E}F, 0" =0[Da_x|07,v" = 71)|? is one of the largest
one.

To summarize, this study shows that we can find an
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FIG. 4. Squared  matrix  element  p? =

[0, v"|D2y—3|(2)*Ig, v)|* (in atomic units) of the transition
dipole moment function Dy_() (see Fig.d). The level
v’ = 71 discussed in the text is indicated for clarity. (a)
v=12; (b) v =21.

efficient transfer of the triplet molecules initially created
by PA down to ground state molecules in their lowest
vibrational level v” = 0, relying on their excitation into
a specific level of the (2)3II, state. Our model involves
the v’ = 12 level, but this could slightly vary depending
on the availability of new spectroscopic investigations,
without changing the main conclusion of the proposal.
Then the two-step spontaneous decay down to the v” =
0 levels looks promisingly efficient, despite its apparent
complexity induced by the strong SO coupling in the Css
molecule.

IV. DISCUSSION

As shown in Fig ﬂ, the single-step decay of the (2)3I1,
levels back to a®¥; levels obviously competes with the
above conversion process. The rate depending on the
squared matrix element [(a®SF, va|D(2)_q4|(2)*Ily, v)|? is
evaluated according to Eq. [, and is represented in
Fig.lb. This rate is only twice as large as the (2)3I1,-0
rate, which confirms that both processes will indeed take
place. The v = 12 level (FigHa) then decays significantly
back to the v, = 17 level, which could probably be partly
repumped during the conversion process, depending on
the details of the experimental procedure. Also, we have
not considered in our model the 1, and 2, components
of the b fine structure manifold for the spontaneous de-
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FIG. 5. (a) Relaxation rates A,/ (in s™') of the vibrational
levels of the 0] coupled states towards the levels of the X
ground state. The v’ = 71 level is indicated for clarity. (b)
The squared matrix element [(X'Sfv” = 0]Da—x |0, v")[?,
indicating that the v’ = 71 0F level indeed decay efficiently
to v” = 0.

cay of the (2)%II, state used for the conversion. These
states represent a statistical weight of 80% within this
manifold, which may reduce the computed conversion ef-
ficiency. On the other hand, the only possible channel
for these states to decay is the X state, either through
their admixture of (1)1, state (for the 1, component),
or through weaker couplings (for the 2, state).

This conversion process is in principle valid even if we
start from high-lying vibrational levels of the a state,
obtained for instance when the PA laser is not exciting
the specific giant resonances of the 0, (62S+62 Py 5) state
of Csg, or when molecules are formed by MA. This is
illustrated in Figfb where a quite low level (v = 21) of
the (2)3I1, can be populated from the highest vibrational
v, = 54 level in the a state. However the transition
probability (proportional to the squared matrix element
represented in Fig.E) is about 100 times smaller than for
reaching the v = 12 level from low lying a levels, due to
the large radial extension of the v, = 54 wave function
with a weak amplitude in the short range. The other
steps of the process are comparable to the previous case.
Figure @b shows the distributions of the populated 0
levels, which again reflects the oscillatory structure of the
upper v = 21 function. The v' = 71 level is about twice
less populated than from the v = 12 level. As expected
finally, the one-step decay of the v = 21 level (Fig. E)
populates individual a levels with a probability about 5
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to 10 times smaller than the v = 12 decay , but generates
a broader distribution of a levels.

To minimize the effect of relaxation back to the ground
triplet a state, molecules can be optically pumped into
the 07 system by applying additional laser excitation to
the a3X] state. A setup employing a broadband laser

light (as in ref. [i)) can cover v, = 15 — 25 levels with
the most of the molecule population. This process would
transfer more molecules into the 0] system effectively in-
creasing the triplet-singlet conversion and accumulation
of molecules in the ground X state.

Additionally, the proposed triplet-singlet conversion
probably explains the suppression of vibrational cooling
of the a state BF. As the (2)°II, state was used for
the cooling transition, our work shows that a large frac-
tion of the excited molecules are most likely lost at every
absorption-emission cycle of the cooling process due to
the two-step decay to the X state.

The proposed conversion scheme is currently imple-
mented experimentally at Laboratoire Aimé Cotton. The
transitions involved in this conversion are within an easy
reach for laser light. Moreover, the outlined process re-
lies on spontaneous emission, but larger rates could be
obtained with coherent transfer such as STIRAP, while
molecules may be prepared in a well-defined internal
ground state. This kind of conversion process would ac-
tually create a molecular cold gas suitable for the study
of cold collisions between atoms and molecules, or among
molecules, prepared in a well-defined internal state. As
the number of cold molecules is quite large after the ini-
tial PA step [@], accumulating them in the v = 0 level
of the ground state would also provide an ideal starting
point for the study of cold atom-molecules photoassocia-
tion into cesium trimers.
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