
HAL Id: hal-00534896
https://hal.science/hal-00534896v1

Preprint submitted on 10 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Quantitative Robustness Analysis of Flat Timed
Automata

Remi Jaubert, Pierre-Alain Reynier

To cite this version:
Remi Jaubert, Pierre-Alain Reynier. Quantitative Robustness Analysis of Flat Timed Automata.
2010. �hal-00534896�

https://hal.science/hal-00534896v1
https://hal.archives-ouvertes.fr


Quantitative Robustness Analysis

of Flat Timed Automata

Rémi Jaubert✍, Pierre-Alain Reynier

LIF, Université Aix-Marseille & CNRS, France

{remi.jaubert,pierre-alain.reynier}@lif.univ-mrs.fr

Abstract. Whereas formal verification of timed systems has become a very ac-

tive field of research, the idealized mathematical semantics of timed automata

cannot be faithfully implemented. Recently, several works have studied a para-

metric semantics of timed automata related to implementability: if the specifica-

tion is met for some positive value of the parameter, then there exists a correct

implementation. In addition, the value of the parameter gives lower bounds on

sufficient resources for the implementation. In this work, we present a symbolic

algorithm for the computation of the parametric reachability set under this se-

mantics for flat timed automata. As a consequence, we can compute the largest

value of the parameter for a timed automaton to be safe.

1 Introduction

Verification of real-time systems. In the last thirty years, formal verification of reactive,

critical, or embedded systems has become a very active field of research in computer

science. It aims at checking that (the model of) a system satisfies (a formula expressing)

its specifications. The importance of taking real-time constraints into account in verifi-

cation has quickly been understood, and the model of timed automata [AD94] has be-

come one of the most established models for real-time systems, with a well studied un-

derlying theory, the development of mature model-checking tools (UPPAAL [BDL04],

KRONOS [BDM�98], ...), and numerous success stories.

Implementation of real-time systems. Implementing mathematical models on physical

machines is an important step for applying theoretical results on practical examples.

This step is well-understood for many untimed models that have been studied (e.g.,

finite automata, pushdown automata). In the timed setting, while timed automata are

widely-accepted as a framework for modelling real-time aspects of systems, it is known

that they cannot be faithfully implemented on finite-speed CPUs [CHR02]. Studying the

“implementability” of timed automata is thus a challenging issue of obvious theoretical

and practical interest.

A semantical approach. Timed automata are governed by a mathematical, idealized

semantics, which does not fit with the digital, imprecise nature of the hardware on

which they will possibly be implemented. An implementation semantics has been de-

fined in [DDR05] in order to take the hardware into account: that semantics models a

✍ Funded by a doctoral grant of “Conseil Régional Provence-Alpes-Côte d’Azur”.



digital CPU which, every δP time units (at most), reads the value of the digital clock

(updated every δL time units), computes the values of the guards, and fires one of the

available transitions. A timed automaton is then said to be implementable if there exist

positive values for those parameters (δP and δL) for which, under this new semantics,

the behaviours of the automaton satisfy its specification. In order to study it efficiently,

this semantics is over-approximated by the AASAP semantics, which consists in “en-

larging” the constraints on the clocks by some parameter δ. For instance, “x P ra, bs” is

transformed into “x P ra✁ δ, b� δs”. Moreover, a formal link is drawn in [DDR05] be-

tween these two semantics: as soon as δ → 4δP �3δL, the AASAP semantics simulates

the semantics of the implementation. As a consequence, implementability can be en-

sured by establishing the existence of some positive δ for which the AASAP semantics

meets the specification.

Robustness problems. We call the above problem (existence of some positive δ) the

qualitative problem of robustness. This problem was proven decidable for different kind

of properties: the problem is PSPACE-complete for safety properties [Pur00,DDMR08]

and LTL formula [BMR06]. It is EXPTIME-complete for a fragment of the timed logic

MTL [BMR08]. In addition, for safety properties, it is proven in [Pur00,DDMR08] that

if there exists a safe positive value of δ, then the system is also safe for a specific value

of the form 1④2⑤A⑤. While this allows to deduce a correct value for the parameter δ,

computing the largest value of δ for which the AASAP semantics meets the specifica-

tion was still an open problem. We are interested here in this last problem, which we

call the quantitative problem of robustness for safety properties.

Our contributions. In this paper, we prove that the quantitative robustness problem for

safety properties is decidable for flat timed automata (i.e. where each location belongs

to at most one cycle). In addition, we show that the maximal safe value of δ is a ra-

tional number. To this end, we solve a more general problem: we prove that it is pos-

sible to compute the parametric reachability set for flat timed automata, and present a

forward algorithm based on parametric zones (constraints on clocks). As a parametric

forward analysis does not terminate for (flat) timed automata, we need some accelera-

tion techniques. To solve the qualitative robustness problem, different algorithms have

been proposed in [Pur00,DDMR08,DK06] which compute an enlarged reachability set

corresponding to states reachable for any positive perturbation, and include an acceler-

ation of cycles. The algorithm we propose can be understood as a parametric version

of the symbolic algorithm proposed in [DK06] for flat timed automata. We then tackle

two issues: the termination of our procedure and its correction. For the first aspect, as

we are in a parametric setting, we need completely new arguments of termination (the

number of parametric zones we compute cannot be bounded as it is the case for zones).

Considering a graph representation of zones introduced in [CJ99a], we obtain proofs of

termination depending only on the number of clocks, and not on the constants appear-

ing in the automaton. Up to our knowledge, this constitutes an original approach in the

context of timed automata. Regarding correctness, we identify under which conditions

the enlarged reachability set coincides with the standard reachability set, and propose a

modification of the algorithm to obtain the computation of the parametric reachability

set (and not of the parametric enlarged reachability set).



Related work. Since its definition in [Pur00,DDR05], the approach based on the AASAP

semantics has received much attention, and other kind of perturbations, like the drift of

clocks, have been studied [DDMR08,ALM05,Dim07]. In the case of safety proper-

ties and under some natural assumptions, this perturbation is equivalent to constraint

enlargement and relies on similar techniques, as proved in [DDMR08]. Also, several

works have considered variants of the robustness problem. In [SF07,SFK08], the case

of systems with bounded life-time or regular resynchronization of clocks is considered,

while in [Dim07], a symbolic algorithm is proposed to handle strict constraints.

Many other notions of “robustness” have been proposed in the literature in order to

relax the mathematical idealization of the semantics of timed automata [GHJ97,OW03,BBB�07].

Those approaches are different from ours, since they roughly consist in dropping “iso-

lated” or “unlikely” executions, and are thus more related to language theoretical issues

than to implementability issues.

Finally, our work is somewhat related to parametric timed automata. It is proven

in [WT99] that emptiness is already undecidable for timed automata with three clocks

and one parameter. In our setting, decidability results follow from strong restrictions

on the use of the parameter. They correspond to the notion of upper parameter intro-

duced in [HRSV02], but the problems we consider are different. In addition, to obtain

termination, we introduce acceleration techniques based on [CJ99a]. Two recent works

[BIL06,BIK10] also rely on [CJ99a] to propose acceleration techniques, but these con-

cern parametric flat counter automata, and their parameter takes its values in natural

numbers.

Organisation of the paper. In Section 2, we introduce standard definitions. We present

in Section 3 the definition of the enlarged reachability set, and a modification of the

algorithm of [DK06] for its computation. In Section 4, we first recall the graph repre-

sentation of constraints, then present how we use it to obtain a new acceleration tech-

nique, and finally we present our parametric algorithm and its proof of termination and

of correction.

2 Definitions

2.1 Timed Automata, Zones

Let X ✏ tx1, . . . , xn✉ be a finite set of clock variables. We extend it with a fictive clock

x0, whose value will always be 0, and denote X the set X ❨ tx0✉. An atomic (clock)

constraint on X is of the form x ✁ y↕k, where x ✘ y P X and k P Q. Note that we

only consider non-strict inequalities. This makes sense as we will later enlarge these

constraints. We say that the constraint is non-diagonal if the comparison involves the

clock x0. We denote by G♣X q (resp. Gnd♣X q) the set of (clock) constraints (resp. non-

diagonal constraints) defined as conjunctions of atomic constraints (resp. non-diagonal

atomic constraints).

A (clock) valuation v for X is an element of RX
➙0. A valuation v P RX

➙0 is extended

to RX
➙0 by v♣x0q ✏ 0. If v P RX

➙0 and t P R➙0, we write v�t for the valuation assigning

v♣xq � t to every clock x P X . If r ❸ X , vrr Ð 0s denotes the valuation assigning 0 to

every clock in r and v♣xq to every clock in X ③r. Whether a valuation v P RX
➙0 satisfies



a constraint g P G♣X q, written v ⑤ù g, is defined inductively as follows: the conjunction

is handled naturally, and v ⑤ù x✁ y↕k iff v♣xq ✁ v♣yq↕k (recall that v♣x0q ✏ 0). The

set of valuations satisfying a constraint g is denoted JgK.

A zone Z over X is a convex subset of RX
➙0 which can be defined as the set of

valuations satisfying a clock constraint, i.e. there exists g P G♣X q such that Z ✏ JgK.

We note Zones♣X q the set of zones on X . The zone RX
➙0 is denoted ❏.

Definition 1 (Timed Automaton). A TA is a tuple A ✏ ♣L, ℓ0,X , Σ, T q where L is

a finite set of locations, ℓ0 P L is an initial location, X is a finite set of clocks, Σ is a

finite set of actions, and T ❸ L✂ Gnd♣X q ✂Σ ✂ 2X ✂ L is a finite set of transitions.

We define the semantics of A as a timed transition system JAK ✏ ①S, S0, Σ,Ñ②.
The set S of states of JAK is L ✂ RX

➙0 and S0 ✏ t♣ℓ0, v0q ⑤ v0♣xq ✏ v0♣yq, ❅x, y P

X ✉. A transition in JAK is composed either of a delay move ♣ℓ, vq
d
ÝÑ ♣ℓ, v � dq,

with d P R➙0, or of a discrete move ♣ℓ, vq
σ
ÝÑ ♣ℓ✶, v✶q when there exists a transition

♣ℓ, g, σ, r, ℓ✶q P T with v ⑤ù g, and v✶ ✏ vrr Ð 0s. The graph JAK is thus an infinite

transition system. A run of JAK is a finite or infinite sequence ♣ℓ0, v0q
σ1ÝÑ ♣ℓ1, v1q

d1ÝÑ

♣ℓ1, v1 � d1q
σ2ÝÑ ♣ℓ2, v2q . . . where for each i ➙ 1, di P R➙0, and ♣ℓ0, v0q P S0. A

state ♣ℓ, vq is reachable in JAK iff there exists a run from an initial state ♣ℓ0, v0q P S0 to

♣ℓ, vq; the set of reachable states is denoted Reach♣Aq.
Note that standard definitions of timed automata also allow invariants on locations

which restrict time elapsing. For the sake of simplicity, we do not consider this technical

addition here, however all our results hold in presence of invariants.

A cycle of A is a finite sequence of transitions corresponding to a cycle of the

underlying finite state automaton. We say that a timed automaton is flat if each location

belongs to at most one cycle. A progress cycle is a cycle where each clock is reset at

least once. We say A is progressive if it only contains progress cycles.

Assumptions. As our results rely on previous works on robustness in TA [Pur00,DDMR08],

we assume that our TA are progressive, and that all the clocks are always bounded by

some constant M . In addition, as the algorithm we propose in based on [DK06], we

also require our timed automata to be flat.

ℓ0 ℓ1 ℓ2 Bad
x1✏1✟∆

x2:✏0

x1 ↕ 2�∆

x1:✏0

x2 ➙ 2✁∆

x2:✏0

x1 ↕ 0�∆

x2 ➙ α✁∆ with α✏2, A♣δq avoids Bad iff δ↕0.

with α✏3, A♣δq avoids Bad iff δ➔1④3.

Fig. 1: A timed automaton A, with its parametric semantics.

2.2 Parametric objects

We define the parametric semantics introduced in [Pur00] that enlarges the set of runs

of timed automata. This semantics can be defined in terms of timed automata extended

with one parameter, denoted ∆, with syntactic constraints on the use of this parameter.



We denote by PG♣X q the set of parametric (clock) constraints generated by the

grammar 1 g ::✏ g ❫ g ⑤ x ✁ y↕k � b∆, where x ✘ y P X , k P Q and b P N. Given

a parametric constraint g and δ P Q➙0, we denote by g♣δq the constraint obtained

by evaluating the parameter ∆ in δ. As the parameter helps in “relaxing” the clock

constraint, we have that δ ↕ δ✶ implies Jg♣δqK ❸ Jg♣δ✶qK.

Definition 2 (Parametric Zone). A parametric zone Z over X is a partial mapping

from Q➙0 to zones over X , which satisfies the following properties: ♣iq its domain

dom♣Zq is an interval with rational bounds, and ♣iiq it can be defined as the parametric

satisfiability set of a parametric clock constraint, i.e. there exists g P PG♣X q such that

for all δ P dom♣Zq,Z♣δq ✏ Jg♣δqK. We denote by PZones♣X q the set of parametric

zones on X . 2

By default the considered domain for a parametric zone is Q➙0. Given a rational

interval I , we denote Z⑤I the parametric zone whose domain is restricted to I i.e.,

dom♣Z⑤Iq ✏ dom♣Zq ❳ I , and which coincides with Z on dom♣Z⑤Iq. Given Z,Z ✶ P
PZones♣X q, we define Z ❸ Z ✶ if, and only if, we have dom♣Zq ❸ dom♣Z ✶q, and for

any δ P dom♣Zq, Z♣δq ❸ Z ✶♣δq. We say that a parametric zone Z is non-empty if there

exists δ P dom♣Zq such that Z♣δq ✘ ∅. Let Z be a non-empty parametric zone. As

the mapping represented by Z is monotone, we define δ✥∅♣Zq ✏ inftδ➙0 ⑤ Z♣δq ✘
∅✉ the minimal value of the parameter for the zone it denotes to be nonempty. As Z

only involves non-strict linear inequalities, δ✥∅♣Zq is a rational number and we have

Z♣δ✥∅♣Zqq ✘ ∅ (provided that δ✥∅♣Zq P dom♣Zq).

Definition 3 (Parametric Semantics [Pur00,DDMR08]). Let A ✏ ♣L, ℓ0, X , Σ, T q
be a TA. The parametric semantics of A consists in replacing each constraint g P
Gnd♣X q appearing in some transition of A by the parametric constraint obtained by en-

larging it with the parameter ∆. Formally, each atomic constraint of the form x✁ y↕k

is replaced by the parametric constraint x✁ y↕k �∆.

Given δ P Q➙0, the instantiation of all constraints of A in δ leads to a timed automa-

ton that we denote by A♣δq. The semantics used implies the following monotonicity

property: δ ↕ δ✶ ñ Reach♣A♣δqq ❸ Reach♣A♣δ✶qq. An example of timed automaton is

shown in Figure 1.

2.3 Symbolic computations using (parametric) zones

A symbolic state is a pair ♣ℓ, Zq P L✂Zones♣X q. Consider a transition t ✏ ♣ℓ, g, σ, r, ℓ✶q P
T of a TA A. We define the operator Post

t computing the symbolic successors over t

starting from the zone Z, with Z P Zones♣X q, by Post
t♣Zq ✏ tv✷ P RX

➙0 ⑤ ❉v P

Z, ❉d P R➙0 : ♣ℓ, vq
σ
ÝÑ ♣ℓ✶, v✶q

d
ÝÑ ♣ℓ✶, v✶ � dq and v✷ ✏ v✶ � d✉. It is well known that

Post
t♣Zq is still a zone. We define similarly the operator Pre

t for the set of predecessors

by t. Given a sequence of transitions ̺, we define the operators Post
̺ and Pre

̺ as the

compositions of these operators for each transition of ̺. We define the set of successors

1 Compared with L/U TA introduced in [HRSV02], our parameter is “upper”.
2 In the sequel, Z and Y denote a zone, while Z and Y denote a parametric zone.



from a symbolic state by Succ♣ℓ, Zq ✏ t♣ℓ✶, Z ✶q P L✂Zones♣X q ⑤ ❉t ✏ ♣ℓ, g, σ, r, ℓ✶q P
T s.t. Z ✶ ✏ Post

t♣Zq✉.

In order to perform parametric computations, we will use parametric zones. Our

parametric constraints are less expressive 3 than those considered in [AAB00]. In par-

ticular, we can perform the operations of intersection, time elapsing, clock reset, inclu-

sion checking... and extend operators Post
̺ and Pre

̺ to a parametric setting. We denote

these extensions by PPost
̺ and PPre

̺.We also define the operator Succ♣ℓ,Zq, where

Z P PZones♣X q, using the PPost operator.

3 The enlarged reachability set Reach
✝♣Aq

Definition of Reach
✝♣Aq. We are interested here in the quantitative problem of ro-

bustness for safety properties: given a set of states Bad to be avoided, compute the

maximal value of δ for the system to be safe, i.e. the value δmax ✏ suptδ ➙ 0 ⑤
Reach♣A♣δqq ❳ Bad ✏ ∅✉ (recall the monotonicity of Reach♣A♣δqq w.r.t. δ). Note that

the value δmax may be safe or not (see Examples in Appendix B.4).

In this paper, we propose an algorithm that computes a representation of the para-

metric reachability set of a flat timed automaton. It is then easy to derive the optimal

value δmax. A standard forward parametric analysis does not terminate in general for

timed automata. Such a phenomenon is due to cycles: it can be the case that a state

♣ℓ, vq is reachable for any δ → 0, but the length of paths allowing to reach ♣ℓ, vq in A♣δq
diverges when δ converges to 0.

Example 1. Consider the timed automaton represented on Figure 1. State ♣ℓ2, vq with

v♣x1q ✏ 0 and v♣x2q ✏ 2 is reachable in JA♣δqK for any δ → 0. Let denote by t1 (resp.

t2) the transition from ℓ1 to ℓ2 (resp. from ℓ2 to ℓ1), and let ̺ ✏ t1t2. In JA♣δqK, this

state is reachable only after r 1
2δ

s iterations of the cycle ̺ (see Figure 2).

after one iteration of Post
̺:

0

x1

x2

1

1

2

2

1✁δ

1�2δ

ℓ2

ℓ1

after two iterations:

0

x1

x2

1

1

2

2

1✁3δ

1�4δ

ℓ2

ℓ1

after three iterations:

0

x1

x2

1

1

2

2

1✁5δ

1�6δ

ℓ2

ℓ1

Fig. 2: Reachable states during the parametric forward analysis of A♣δq.

3 Note that in our setting, one can define a data structure more specific than parametric DBMs

considered in [AAB00]. Indeed, we do not need to split DBMs as the constraints only involve

conjunctions. Moreover, we can perform basic operations (future, reset, intersection with an

atomic constraint) in quadratic time, as for DBMs, see [Jau09].



This difficulty has first been identified by Puri in [Pur00] when studying the qual-

itative robustness problem, and solved by computing the enlarged reachability set de-

fined as Reach
✝♣Aq

def
✏
➇

δPQ→0
Reach♣A♣δqq. It is the set of states of the automaton

reachable by an arbitrarily small value of the parameter. While [Pur00] proposed an

algorithm based on the region graph, we use an algorithm proposed in [DK06] which

relies on zones, as it is better suited for a parametric setting. The drawback of [DK06]

is that it requires the timed automaton to be flat.

Algorithm 1 Computation of Reach
✝♣Aq.

Require: a progressive flat timed automaton A with bounded clocks.

Ensure: the set Reach
✝♣Aq.

1: Compute νY.Pre
̺♣Y q, νY.Post

̺♣Y q, for each cycle ̺ in A.

2: Wait ✏ t♣ℓ0, Z0q✉ ; // Initial states

3: Passed ✏ ∅ ;

4: while Wait ✘ ∅ do

5: - pop ♣ℓ, Zq from Wait ;

6: - if ❅♣ℓ, Z ✶q P Passed, Z ❺ Z ✶ then

7: - - if there exists a cycle ̺ around location ℓ then

8: - - - if Z ❳ νY.Pre
̺♣Y q ✘ ∅ then

9: - - - - Wait ✏ Wait ❨ Succ♣ℓ, νY.Post
̺♣Y qq;

10: - - - - Passed ✏ Passed ❨ t♣ℓ, νY.Post
̺♣Y qq✉;

11: - - Wait ✏ Wait ❨ Succ♣ℓ, Zq ;

12: - - Passed ✏ Passed ❨ t♣ℓ, Zq✉ ;

13: return Passed ;

A new procedure for the computation of Reach
✝

. We present Algorithm 1 which is a

modification of the algorithm proposed in [DK06] to compute Reach
✝. This modifica-

tion allows us in the next section to prove the termination of a parametric version of this

algorithm.

The original algorithm proposed in [DK06] (see Appendix A) relies on the notion

of stable zone of a cycle ̺. This zone represents states having infinitely many prede-

cessors and successors by ̺, and is defined as the intersection of two greatest fixpoints:

W̺ ✏ νY.Post
̺♣Y q ❳ νY.Pre

̺♣Y q. Then, the algorithm is obtained by the following

modifications of the standard forward analysis of the timed automaton: for each new

symbolic state ♣ℓ, Zq considered, if there exists a cycle ̺ around location ℓ, and if Z

intersects the stable zone W̺, then the stable zone is marked as reachable. The cor-

rection of this algorithm relies on the following property of the stable zone: given two

valuations v, v✶ P W̺, for any δ → 0, there exists a path in JA♣δqK from state ♣ℓ, vq to

state ♣ℓ, v✶q (while such a path may not exist in JAK). The addition of the stable zone

can be viewed as the acceleration of cycle ̺.

Our new algorithm is obtained as follows: ♣iq at line 8, we test the intersection of Z

with νY.Pre
̺♣Y q instead of W̺, and ♣iiq at line 9 and 10, instead of declaring W̺ as

reachable, we declare νY.Post
̺♣Y q reachable. We state below that this modification is

correct.



Theorem 1. Algorithm 1 is sound and complete.

Proof. We show that Algorithm 1 is equivalent to that of [DK06]. As W̺ is included

in both greatest fixpoints, the completeness of the algorithm is trivial. To prove the

soundness, let us consider the region graph construction (see for instance [AD94]). We

do not recall this standard construction as it will only be used in this proof. As there are

finitely many regions, it is easy to verify that if a region is included in νY.Pre
̺♣Y q, it has

infinitely many successors by ̺ and then one of them is included in W̺. In other terms,

the test of line 8 of intersection with νY.Pre
̺♣Y q instead of W̺ simply anticipates

the acceleration of the cycle ̺. Similarly, any region included in νY.Post
̺♣Y q is the

successor of a region included in W̺. Thus, our modification can be understood as a

speed-up of the original algorithm of [DK06]. ❬❭
We also state the following Lemma whose proof follows from a similar reasoning:

Lemma 1. Let ̺ be a cycle of a TA A. Then we have:

νY.Pre
̺♣Y q ✘ ∅ ô νY.Pre

̺♣Y q ❳ νY.Post
̺♣Y q ✘ ∅ ô νY.Post

̺♣Y q ✘ ∅

4 Parametric computation of Reach♣A♣δqq

4.1 Representing constraints as a graph

In the sequel, we will use a representation of clock constraints as a weighted directed

graph introduced in [CJ99a,CJ99b]. Due to lack of space, we recall here only succintly

its definition. Intuitively, the value of a clock can be recovered from its date of reset and

the current time. The vertices of the graph represent these values, with one duplicate for

each fired transition. Constraints on clock values are expressed as weights on arcs.

More formally, we introduce a new variable τ representing the total elapsed time.

In addition, for each clock xi P X we let variable Xi denote Xi ✏ τ ✁ xi. Note that

for xi P X , Xi thus represents last date of reset of clock xi. For the special case of

x0, we have X0 ✏ τ (as x0 always has value 0). We denote
ÝÑ
V the vector defined as

♣τ,X1, . . . , Xnq. For a transition t ✏ ♣ℓ, g, σ, r, ℓ✶q, we define the formula T t♣
ÝÑ
V ,
ÝÑ
V ✶q

which expresses the relationship between values of the variables before (represented by
ÝÑ
V ) and after the firing of the transition (represented by

ÝÑ
V ✶ ✏ ♣τ ✶, X ✶

1, . . . , X
✶
nq):

T t♣
ÝÑ
V ,
ÝÑ
V ✶q :✏

n➞
i✏1

♣Xi ↕ τ ❫X ✶
i ↕ τ ✶q ❫ τ ↕ τ ✶

❫
➞
xiPr

τ ✏ X ✶
i ❫
➞
xi❘r

Xi ✏ X ✶
i ❫ g

where g is the constraint g where for any i, clock xi is replaced by τ ✁Xi.

Let ̺ ✏ t1 . . . tm be a sequence of transitions. For j P t0, . . . ,m✉, we denote by
ÝÑ
V j the vector ♣τ j , X

j
1 , . . . , Xj

nq. Then we define formula T ̺♣
ÝÑ
V 0,

ÝÝÑ
V mq expressing the

constraints between variables before and after the firing of the sequence ̺ as follows:

T ̺♣
ÝÑ
V 0,

ÝÝÑ
V mq ✏ ❉

ÝÑ
V 1, . . . ,

ÝÝÝÑ
V m✁1.

m✁1➞
j✏0

T ̺♣
ÝÑ
V j ,

ÝÝÝÑ
V j�1q



Definition 4 (Graph G❏
̺ ). Let ̺ ✏ t1 . . . tm be a sequence of transitions. The weighted

directed graph G❏
̺ has a set of vertices S ✏

➈m
j✏0 V j (where V j is the set associated

with the vector
ÝÑ
V j). Given two vertices v, v✶ P S and a weight c P Q, there is an

arc from v to v✶ labelled by c if and only if constraint v ✁ v✶↕c appears in formula

T ̺♣
ÝÑ
V 0,

ÝÝÑ
V mq.

For any path p, we write w♣pq the total weight of the path. Suppose now that there

is no cycle of negative weight in graph G❏
̺ . Let P

̺
beg (resp. P

̺
end) denote the set of

minimal weighted paths between vertices in V 0 (resp. in V ⑤̺⑤). We define the following

mapping which interprets these shortest paths as clock constraints:

Let α ✏ 0. ❅p P P
̺
beg, C♣pq ✏ xl ✁ xi ↕ w♣pq if p starts in Xα

i and ends in Xα
l .

Mapping C is defined similarly on P
̺
end, using α ✏ ⑤̺⑤.

From Propositions 12 and 13 of [CJ99b], we have the following properties:

Proposition 1. Let ̺ be a sequence of transitions. Then we have:

– there exists a cycle γ with w♣γq ➔ 0 in G❏
̺ ô Post

̺♣❏q ✏ ∅ ô Pre
̺♣❏q ✏ ∅

– if there is no cycle of negative weight, then:

J
➍

pPP
̺

beg
C♣pqK ✏ Post

̺♣❏q and J
➍

pPP
̺

end
C♣pqK ✏ Pre

̺♣❏q

More generally, given a zone Z, we define the graph denoted GZ
̺ by adding the con-

straints of Z on the vertices in V 0. Mapping C applied on paths in P
̺
beg then defines the

zone Post
̺♣Zq. Similarly, the zone Pre

̺♣Zq can be represented by adding constraints

of Z on vertices in V ⑤̺⑤.

It is easy to verify that this construction extends to a parametric setting: consider-

ing parametric constraints on arcs, we obtain a graph representation of the parametric

computation of symbolic successors or predecessors. Note that a path p in this context

will have a weight of the form k � b∆, where b P N represents the number of atomic

constraints of the TA used in p. In particular, while the value of a path depends on the

value of ∆, its existence does not.

1

✁1

X0

2

τ0

X0

1

2

X1

2

τ1

X1

1

✁2

X2

2

τ2

X2

1

Example 2. Consider the sequence of transitions ̺ ✏
t1t2 in the TA of Figure 1 defined in Example 1. The

graph depicted on the left-side figure with plain arcs rep-

resents G❏
̺ (arcs without label have weight 0). For in-

stance, the arc from vertex X2
2 to vertex τ2, labelled

by ✁2, represents the lower bound for the clock x2

in t2 which means: x2 ➙ 2. Consider now the zone

Z ✏ Jx1 ✁ x2 ✏ 1K (it corresponds to the set of reach-

able valuations after firing transition ℓ0 Ñ ℓ1), then ad-

ditional dotted arcs allow to represent GZ
̺ .

Given a zone defined as the result of the firing of a sequence of transitions, this

representation allows to recover how the constraints are obtained. Thus, the graph stores

the complete history of the constraints.



In the sequel, we use this construction in the particular case of the iteration of a cycle

̺, given as a sequence of transitions of a TA. Let Zinit be a zone. We consider two se-

quences of zones ♣Z❏k qk➙0 (resp. ♣Zinit
k qk➙0) defined by Z❏0 ✏ ❏ (resp. Zinit

0 ✏ Zinit)

and Z✝k�1 ✏ Post
̺♣Z✝k q (where ✝ denotes either ❏ or init). Note that by monotonicity of

Post
̺, the sequence ♣Z❏k qk➙0 is decreasing and converges towards Z❏✽ ✏ νY.Post

̺♣Y q.
According to previous definitions, G❏

̺k (resp. Ginit
̺k ) denotes the graph associated with

the zone Z❏k (resp. Zinit
k ). As the cycle ̺ will be clear from the context, we will omit

to mention it in the subscript, and use notations G❏
k and Ginit

k respectively.

Moreover, we will only be interested in vertices at the frontier between the different

copies of the graph of ̺. Then, given a clock xi P X and an index j ↕ k, vertex X
j
i

now denotes the date of reset of clock xi after the j-th execution of ̺ (this notation is a

shorthand for the notation X
j✂⑤̺⑤
i , as this last notation will never be used anymore).

Definition 5. Let N ✏ ⑤X ⑤2. A return path is a pair r ✏ ♣p1, p2q of paths in the graph

G❏
N such that there exist two clocks xu, xv P X and two indices 0 ↕ i ➔ j ↕ N

verifying:

– p1 and p2 are included in the subgraph associated with i-th to j-th copies of ̺,

– p1 is a shortest path from vertex Xj
u to vertex Xi

u,

– p2 is a shortest path from vertex Xi
v to vertex Xj

v .

The weight of r is defined as w♣rq ✏ w♣p1q � w♣p2q. The set of return paths is finite

and is denoted R.

4.2 Accelerating computations of greatest fixpoints

Let ̺ be a cycle. In this subsection, we only consider the operator Post
̺, but all our

results also apply to the operator Pre
̺. We consider the decreasing sequence ♣Z❏k qk➙0

converging towards Z❏✽ ✏ νY.Post
̺♣Y q ✏

➇
k➙0 Z❏k . We prove the following lemma

which provides a bound for termination only dependant on the number of clocks. Note

that this result does not require the cycle ̺ to be progressive neither the clocks to be

bounded.

Lemma 2. Let N ✏ ⑤X ⑤2, and k ➙ N . If Z❏k�1 ❼ Z❏k , then we have Z❏✽ ✏ ∅.

Proof. First, we prove that Z❏k�1 ❼ Z❏k implies that there exists r P R used in some

shortest path of Z❏k�1 witness of the disequality. Indeed, as Z❏k�1 ❼ Z❏k , there exists

a bound b ✏ ”xp ✁ xq ↕ ☎” with 0 ↕ p ✘ q ↕ n, whose constraint is strictly

smaller in Z❏k�1 than in Z❏k . In Z❏k�1, the constraint on b is obtained as a shortest

path between vertices Xk�1
p and Xk�1

q in the graph G❏
k�1. Let c be such a path. By

definition of G❏
k and G❏

k�1, the path c must use arcs in G❏
1 (otherwise c would also

exist in G❏
k ). The graph G❏

k�1 is the concatenation of k�1 copies of the graph of ̺. For

each occurrence of ̺, c goes through a pair of vertices when it enters/leaves it. Finally,

as k � 1 → N ✏ ⑤X ⑤2, there exists a pair that occurs twice, we denote these two clocks

xu and xv . Thus c contains a return path r P R (see Figure 3 representing the graph

G❏
k�1 and the return path r in the shortest path c).



Second, as Z❏k�1 ❼ Z❏k , we have w♣rq ➔ 0. By contradiction, if w♣rq → 0 then c

would not be a shortest path and if w♣rq ✏ 0 then c would also exist in G❏k .

Finally, the existence of a return path r P R such that w♣rq ➔ 0 implies that

Z❏✽ ✏ ∅ ♣✏ νY.Post
̺♣Y qq. When k grows, one can build new paths by repeating this

return path. As its weight is negative, the weights of the paths we build diverge towards

✁✽. In particular, the constraint of the zone Z❏✽ on the clock difference xp✁xq cannot

be finite (as it is the limit of a sequence diverging towards ✁✽), and thus we obtain

Z❏✽ ✏ ∅. ❬❭

0 i j k�1→⑤X ⑤2

̺ ̺ ̺ ̺ ̺ ̺

Xi
u

Xi
v

Xj
u

Xj
v

Xk�1

q

Xk�1

p

Fig. 3: Pumping lemma : a path from Xk�1
q to Xk�1

p using arcs in G❏1 exhibits a return

path between pairs of vertices ♣Xi
u, Xi

vq and ♣Xj
u, Xj

vq.

We can now compute, in the parametric setting, the greatest fixpoint of PPost
̺ for every

cycle ̺ of the automaton. We first evaluate the parametric zones Z ✏ PPost
̺N

♣❏q and

Z ✶ ✏ PPost
̺♣Zq. Then, we determine the minimal value δ0 ✏ mintδ ➙ 0 ⑤ Z♣δq ✏

Z ✶♣δq✉. This definition is correct as Z ✶ ❸ Z and there exists δ for which the greatest

fixpoint is not empty. Finally the greatest fixpoint can be represented by Z⑤rδ0;�✽r as

Lemma 2 ensures that the fixpoint is empty for all δ ➔ δ0.

4.3 Parametric Forward analysis with acceleration

We present Algorithm 2 for the parametric computation of Reach♣A♣δqq. It can be

understood as an adaptation in a parametric setting of Algorithm 1. First, at line 1 we

perform parametric computation of greatest fixpoints using the procedure proposed in

Section 4.2. Second, the test of intersection between the current zone and the greatest

fixpoint of Pre
̺ is realized in a parametric setting by the computation at line 8 of δmin ✏

δ✥∅♣Z ❳ νY.PPre
̺♣Yqq. Finally, we split the domain of the current parametric zone

into intervals I1 and I2. In interval I1, no acceleration is done for cycles and thus the set

Reach♣A♣δqq is computed. Acceleration techniques are used only for interval I2, and

for these values the algorithm computes the set Reach
✝♣A♣δqq. We prove below that in

this case, the equality Reach♣A♣δqq ✏ Reach
✝♣A♣δqq holds. Note that the test at line

9 allows to handle differently the particular case of value δmin which does not always

require to apply acceleration.

Theorem 2. Algorithm 2 terminates and is correct.

In the sequel, we denote N ✏ ⑤X ⑤2 and δ
̺
✥∅ ✏ δ✥∅♣νY.PPre

̺♣Yqq ✏ δ✥∅♣νY.PPost
̺♣Yqq

(by Lemma 1). Before turning to the proof, we state the following Lemma whose proof



Algorithm 2 Parametric Computation of the Reachability Set.

Require: a progressive flat timed automaton A with bounded clocks.

Ensure: the set Reach♣A♣δqq for all δ P R➙0.

1: Compute νY.PPre
̺♣Yq and νY.PPost

̺♣Yq for each cycle ̺ of A.

2: Wait ✏ t♣ℓ0,Z0q✉ ; // Initial States

3: Passed ✏ ∅ ;

4: while Wait ✘ ∅ do

5: — pop ♣ℓ,Zq from Wait ;

6: — if ❅♣ℓ,Z ✶q P Passed, Z ❺ Z ✶ then

7: — — if there exists a cycle ̺ around location ℓ then

8: — — — δmin ✏ δ✥∅♣Z ❳ νY.PPre
̺♣Yqq ;

9: — — — if δmin ✏ δ✥∅♣νY.PPre
̺♣Yqq then

10: — — — — I1 ✏ r0; δmins ; I2 ✏sδmin;�✽r ;

11: — — — else

12: — — — — I1 ✏ r0; δminr ; I2 ✏ rδmin;�✽r ;

13: — — — Wait ✏ Wait ❨ Succ♣ℓ,Z⑤I1q ❨ Succ♣ℓ,Z⑤I2q ❨ Succ♣ℓ, νY.PPost
̺♣Yq⑤I2q ;

14: — — — Passed ✏ Passed ❨ ♣ℓ,Z⑤I1q ❨ ♣ℓ,Z⑤I2q ❨ ♣ℓ, νY.PPost
̺♣Yq⑤I2q ;

15: — — else

16: — — — Wait ✏ Wait ❨ Succ♣ℓ,Zq ;

17: — — — Passed ✏ Passed ❨ ♣ℓ,Zq ;

18: return Passed ;

is given in Appendix B.2. Intuitively, it establishes that when all return paths have a pos-

itive weight, then either ♣iq the starting zone has finitely many successors and then it

converges to the empty set after at most N steps, or ♣iiq it has infinitely many successors

and then it converges towards νY.Post
̺♣Y q. In this last case, the enlarged reachability

set corresponds to the standard reachability set. Its proof relies on pumping techniques

presented in Section 4.2. To illustrate property ♣iiq, let consider the timed automaton of

Figure 1, for which the enlarged reachability set strictly contains the standard reacha-

bility set. One can verify that there exists a return path associated with ̺ ✏ t1t2 which

has weight 0.

Lemma 3. Let ̺ be such that for any return path r P R, we have w♣rq → 0. Then we

have:

♣iq If Zinit ❳ νY.Pre
̺♣Y q ✏ ∅, then Zinit

N ✏ ∅.

♣iiq If Zinit ❳ νY.Pre
̺♣Y q ✘ ∅, then Zinit

✽ ✏ Z❏✽♣✏ νY.Post
̺♣Y qq.

Unlike Lemma 2, we use the progess cycle assumption to prove this lemma (see the

proof of Lemma 4 in Appendix B.1).

Recall that the TA we consider are flat. As a consequence, in the following proofs

of termination and correctness, we will only consider a simple cycle ̺.

Termination. Consider a parametric symbolic state ♣ℓ,Zq and a cycle ̺ starting in ℓ.

We have to prove that all the elements added to the Wait list have a finite number of suc-

cessors. This is trivial for the successors of ♣ℓ, νY.PPost
̺♣Yq⑤I2

q as νY.PPost
̺♣Yq⑤I2

is by definition a fixpoint of PPost
̺. We now focus on the successors of ♣ℓ,Z⑤I1

q and

♣ℓ,Z⑤I2
q. Note that we have δmin ➙ δ

̺
✥∅.



– Case of ♣ℓ,Z⑤I2
q: We prove property ♣✝q PPost

̺N

♣Z⑤I2
q ❸ νY.PPost

̺♣Yq⑤I2
.

Then the computation is stopped by the test of line 6 as the greatest fixpoint has

been added to the Passed list. To prove ♣✝q, we prove it holds for any δ P I2.

Fix some δ P I2 and define Zinit ✏ Z⑤I2
♣δq. We consider the two sequences

♣Z✝i qi➙0 w.r.t. cycle ̺ enlarged by δ. Note that as δ ➙ δmin ➙ δ
̺
✥∅, we have

νY.PPost
̺♣Yq♣δq ✘ ∅. By Lemma 2, this entails Z❏N ✏ νY.PPost

̺♣Yq♣δq. By

monotonicity of Post
̺, Zinit

N ❸ Z❏N holds. This yields the result.

– Case of ♣ℓ,Z⑤I1
q: We distinguish two cases whether δmin → δ

̺
✥∅ or not.

If δmin → δ
̺
✥∅: for any δ P rδ̺

✥∅, δminr, Lemma 3.♣iq can be applied on cycle ̺ en-

larged by δ. This implies that for any δ P rδ̺
✥∅, δminr, we have PPost

̺N

♣Z⑤I1
q♣δq ✏

∅. Then this property also holds for any δ P I1, by monotonicity of Z and

PPost
̺.

If δmin ✏ δ
̺
✥∅: the complete proof of this last case is more technical and is com-

pletely described in Appendix B.3. We only present here a sketch of proof.

First note that for any fixed value of δ ➔ δmin, as the zone does not intersect

the greatest fixpoint of Pre
̺, the zone has finitely many successors. However,

this argument cannot be lifted to a parametric setting as this number diverges

when δ converges towards δmin. By definition of δ
̺
✥∅, some return paths, which

we call optimal, have a weight equal to 0 in δ
̺
✥∅ (and are thus strictly negative

on r0, δ
̺
✥∅r). Our proof consists in first showing that there exists some integer k

for which after k steps, all shortest paths go through optimal return paths. Then,

considering q as the least common multiple of lengths of optimal return paths,

we can prove the following inclusion PPost
̺k�q

♣Z⑤I1
q ❸ PPost

̺k

♣Z⑤I1
q. The

algorithm stops by test of line 6.

Correctness. As explained before, the algorithm is a standard forward analysis which

may add some additional behaviours, according to test of line 8. We distinguish three

cases:

1. For δ P r0, δminr : For these values, the algorithm simply performs a forward

analysis. As a consequence, the correctness is trivial.

2. For δ Psδmin,�✽r: For all these values, the addition occurs, and then the algorithm

is equivalent to Algorithm 1. By correction of Algorithm 1, this implies that it

computes the set Reach
✝♣A♣δqq. We will prove that for all these values, we have

the equality Reach♣A♣δqq ✏ Reach
✝♣A♣δqq. Therefore we need to prove that what

has been added to obtain Reach
✝♣A♣δqq was already in Reach♣A♣δqq. Note that

the only addition is the greatest fixpoint of Post
̺. The property is then a direct

consequence of Lemma 3.♣iiq as it states that the greatest fixpoint is reachable

from the initial states. It is easy to verify that Lemma 3.♣iiq can indeed be applied.

3. For δ ✏ δmin: There are two cases, whether δmin ✏ δ
̺
✥∅ or not. If the equality

holds, then δmin P I1 and the reasoning developed at point 1. also applies. If δmin →
δ

̺
✥∅ holds, then δmin P I2 and we can apply reasoning of point 2. as Lemma 3.♣iiq

also applies because we have δmin → δ
̺
✥∅.



4.4 Quantitative safety

Once the reachable state space of the automaton is computed by Algorithm 2, it is easy

to compute the maximal value of the parameter such that the system avoids some set of

bad states. Simply compute the value δ✥∅ on each parametric zone associated with a

bad location and keep the lower one: δmax ✏ mintδ✥∅♣Zq ⑤ ❉ℓ P Bad such that ♣ℓ,Zq P
Passed✉. We thus obtain:

Theorem 3. The quantitative robustness problem for safety properties is decidable for

flat progressive timed automata with bounded clocks. In addition, the value δmax is a

rational number.

5 Conclusion

In this paper, we considered the quantitative robustness problem for safety properties,

which aims at computing the largest value of the parameter ∆ under which the TA is

safe. We proposed a symbolic forward algorithm for the computation of the parametric

reachability set for flat timed automata. We proved its termination by means of original

arguments using a representation of zones by graphs. As a consequence, it allows us to

compute the largest safe value of the parameter, and prove it is a rational number.

There are several extensions we want to investigate. First, we are implementing the

algorithm using a data structure specific to the parametric zones used in our setting.

Second, we want to study the complexity of our algorithm. The difficulty is due to

the argument of termination in the last case which leads to a large value and may be

improved.

We also aim at enlarging the class of TA for which we can solve the quantitative

robustness problem. For instance, if the parameter is not always introduced on guards

with coefficient 1, but with other coefficients in N→0, we believe that our algorithm can

also be applied. A challenging topic concerns the hypothesis of flatness: we plan to

investigate a parametric extension of the algorithm introduced in [Dim07] which can be

seen as an extension of that of [DK06] to non-flat TA.

Finally, we believe that it should be possible to solve the quantitative robustness

problem for flat TA for other specifications like for instance LTL properties.

References

AAB00. A. Annichini, E. Asarin, and A. Bouajjani. Symbolic techniques for parametric rea-

soning about counter and clock systems. In Proc. CAV’00, vol. 1855 of LNCS, pp.

419–434. Springer, 2000.

AD94. R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science,

126(2):183–235, 1994.

ALM05. R. Alur, S. La Torre, and P. Madhusudan. Perturbed timed automata. In Proc.

HSCC’05, vol. 3414 of LNCS, pp. 70–85. Springer, 2005.

BBB�07. C. Baier, N. Bertrand, P. Bouyer, Th. Brihaye, and M. Größer. Probabilistic and

topological semantics for timed automata. In Proc. FSTTCS’07, vol. 4855 of LNCS,

pp. 179–191. Springer, 2007.



BDL04. G. Behrmann, A. David, and K. G. Larsen. A tutorial on UPPAAL. In Proc. SFM-

04:RT, vol. 3185 of LNCS, pp. 200–236. Springer, 2004.

BDM�98. M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and S. Yovine. Kronos: a

model-checking tool for real-time systems. In Proc. CAV’98, vol. 1427 of LNCS, pp.

546–550. Springer, 1998.

BIK10. M. Bozga, R. Iosif, and F. Konecný. Fast acceleration of ultimately periodic relations.

In Proc. CAV’10, vol. 6174 of LNCS, pp. 227–242. Springer, 2010.

BIL06. M. Bozga, R. Iosif, and Y. Lakhnech. Flat parametric counter automata. In Proc.

ICALP’06, vol. 4052 of LNCS, pp. 577–588. Springer, 2006.

BMR06. P. Bouyer, N. Markey, and P.-A. Reynier. Robust model-checking of linear-time

properties in timed automata. In Proc. LATIN’06, vol. 3887 of LNCS, pp. 238–249.

Springer, 2006.

BMR08. P. Bouyer, N. Markey, and P.-A. Reynier. Robust analysis of timed automata via

channel machines. In Proc. FoSSaCS’08, vol. 4962 of LNCS, pp. 157–171. Springer,

2008.

CHR02. F. Cassez, Th. A. Henzinger, and J.-F. Raskin. A comparison of control problems

for timed and hybrid systems. In Proc. HSCC’02, vol. 2289 of LNCS, pp. 134–148.

Springer, 2002.

CJ99a. H. Comon and Y. Jurski. Timed automata and the theory of real numbers. In Proc.

CONCUR’99, vol. 1664 of LNCS, pp. 242–257. Springer, 1999.

CJ99b. H. Comon and Y. Jurski. Timed automata and the theory of real numbers. Research

Report LSV-99-6, Laboratoire Spécification et Vérification, ENS Cachan, France,

July 1999. 44 pages.

DDMR08. M. De Wulf, L. Doyen, N. Markey, and J.-F. Raskin. Robust safety of timed automata.

Formal Methods in System Design, 33(1-3):45–84, 2008.

DDR05. M. De Wulf, L. Doyen, and J.-F. Raskin. Almost ASAP semantics: from timed mod-

els to timed implementations. Formal Aspects of Computing, 17(3):319–341, 2005.

Dim07. C. Dima. Dynamical properties of timed automata revisited. In Proc. FORMATS’07,

vol. 4763 of LNCS, pp. 130–146. Springer, 2007.

DK06. C. Daws and P. Kordy. Symbolic robustness analysis of timed automata. In Proc.

FORMATS’06, vol. 4202 of LNCS, pp. 143–155. Springer, 2006.

GHJ97. V. Gupta, Th. A. Henzinger, and R. Jagadeesan. Robust timed automata. In Proc.

HART’97, vol. 1201 of LNCS, pp. 331–345. Springer, 1997.

HRSV02. T. Hune, J. Romijn, M. Stoelinga, and F. Vaandrager. Linear parametric model check-

ing of timed automata. Journal of Logic and Algebraic Programming, 2002.

Jau09. R. Jaubert. Aspects quantitatifs dans la réalisation de contrôleurs temps-réels ro-

bustes. Mémoire de Master Recherche, Master Informatique Fondamentale, Mar-

seille, 2009.

OW03. J. Ouaknine and J. B. Worrell. Revisiting digitization, robustness and decidability for

timed automata. In Proc. LICS’03. IEEE Computer Society Press, 2003.

Pur00. A. Puri. Dynamical properties of timed automata. Discrete Event Dynamic Systems,

10(1-2):87–113, 2000.

SF07. M. Swaminathan and M. Fränzle. A symbolic decision procedure for robust safety

of timed systems. In Proc. TIME’07, p. 192. IEEE Computer Society Press, 2007.

SFK08. M. Swaminathan, M. Fränzle, and J.-P. Katoen. The surprising robustness of (closed)

timed automata against clock-drift. In Proc. TCS’08, vol. 273 of IFIP, pp. 537–553.

Springer, 2008.

WT99. H. Wong-Toi. Analysis of slope-parametric rectangular automata. In Proc. Hybrid

Systems’97, vol. 1567 of LNCS, pp. 390–413. Springer, 1999.



A Algorithm of [DK06] for Reach
✝♣Aq

We present the algorithm proposed in [DK06] for the computation of the set Reach
✝♣Aq.

Algorithm 3 Algorithm of [DK06] for the computation of Reach
✝♣Aq

Require: a progressive flat timed automaton A with bounded clocks.

Ensure: the set Reach
✝♣Aq.

1: Compute W̺ ✏ νY.Pre
̺♣Y q ❳ νY.Post

̺♣Y q, for each cycle ̺ in A.

2: Wait ✏ t♣ℓ0, Z0q✉ ; // Initial States

3: Passed ✏ ∅ ;

4: while Wait ✘ ∅ do

5: - pop ♣ℓ, Zq from Wait ;

6: - if ❅♣ℓ, Z ✶q P Passed, Z ❺ Z ✶ then

7: - - if there exists a cycle ̺ around location ℓ then

8: - - - if Z ❳W̺ ✘ ∅ then

9: - - - - Wait ✏ Wait ❨ Succ♣ℓ, W̺q;
10: - - - - Passed ✏ Passed ❨ ♣ℓ, W̺q;
11: - - Wait ✏ Wait ❨ Succ♣ℓ, Zq ;

12: - - Passed ✏ Passed ❨ ♣ℓ, Zq ;

13: return Passed ;

B Complements on Section 4

B.1 Preliminaries

In the following proofs, we will need to consider the weighted directed graph associated

with a sequence of transitions in a parametric setting. The weight of an arc is then a

parametric constraint (only arcs representing transitions of the TA are enlarged with the

parameter). Given a path p in such a graph and a value δ ➙ 0, we denote by wδ♣pq the

weight obtained when evaluating the parameter ∆ in the value δ. Given a return path

r P R, the length of r, defined as j ✁ i (with respect to Definition 5) , is denoted ⑤r⑤.

There exists a standard data structure for representing zones which is called Differ-

ence Bound Matrix (DBM for short). We will not introduce its definition but assume

the reader is familiar with it. Given a bound b ✏ ”x✁ y ↕ ☎” and a non-empty zone Z,

we denote by Zrbs the value of the DBM in normal form associated with Z (which is

either �✽ or a relative number as all constraints are non-strict).

Finally, we prove the following lemma:

Lemma 4. Let ̺ be a progress cycle. We consider the sequences ♣Zinit
k qk➙0 and ♣Z❏k qk➙0.

Let k → N and b ✏ ”x✁ y ↕ ☎” be a bound. Then we have Zinit
k rbs ➔ �✽ if and only

if Z❏k rbs ➔ �✽.



Proof. The right to left implication is trivial as Zinit
k ❸ Z❏

k . For the direct implication,

the result follows from an examination of the form of the shortest paths. Assume that

there exists a shortest path p associated with b in the graph Ginit
k . Then if p does not

exist in G❏
k , this implies that p goes through arcs encoding Zinit. As ̺ is a progress

cycle, we can substitute to these constraints another path p✶ in the graph G❏
k by going

via clock τ . ❬❭

B.2 Proof of Lemma 3

Lemma 3. Let ̺ be such that for any return path r P R, we have w♣rq → 0. Then we

have:

♣iq If Zinit ❳ νY.Pre
̺♣Y q ✏ ∅, then Zinit

N ✏ ∅.

♣iiq If Zinit ❳ νY.Pre
̺♣Y q ✘ ∅, then Zinit

✽ ✏ Z❏
✽♣✏ νY.Post

̺♣Y qq.

Proof. We consider successively these two properties:

♣iq We prove the following property:

Zinit
N ✘ ∅ ñ Zinit

✽ ✘ ∅ (1)

This concludes the proof as Zinit only has a finite number of non empty succes-

sors by Post
̺ (because we assume Zinit ❳ νY.Pre

̺♣Y q ✏ ∅) and thus we must

have Zinit
✽ ✏ ∅. To prove ♣1q, we show that for any i ➙ N , and any bound b, we

have Zinit
i rbs ➙ minN

j✏0 Zinit
j rbs. Let i and b, and consider a shortest path p asso-

ciated with b in Zinit
i . Either p crosses less than N different copies of ̺, and then

p also exists in Zinit
N , yielding the result. Otherwise, as its length is larger than

N , as it is done in the proof of Lemma 2, we can prove it contains some return

path. We can iterate this reasoning until the resulting length is less or equal than

N . Finally, we obtain a decomposition of it, exhibiting some return paths ri P R

and a shorter path p✶ crossing less than N copies of ̺. By hypothesis, we have

w♣riq → 0 for any i. In particular, we obtain w♣pq ✏
➦

i w♣riq �w♣p✶q ➙ w♣p✶q.
Let denote by j ↕ N the number of copies of ̺ crossed by p✶. Then we have

Zinit
i rbs ✏ w♣pq ➙ w♣p✶q ➙ Zinit

j rbs, proving the property.

♣iiq We need to show that Zinit
k ÝÑ

kÑ✽
Z❏
✽. However, the sequence ♣Zinit

k qk is not

necessarily increasing. We will prove this result for each bound b ✏ ”x✁ y ↕ ☎”.

Let us fix a bound b, and an integer k ➙ N .

By Lemma 4, if coefficient Zinit
k rbs is infinite, then the result holds.

Consider now a finite coefficient Zinit
k rbs ➔ �✽. If a shortest path p associated

with b in graph Ginit
k does not enter the arcs representing the initial zone Zinit,

then this shortest path also exists in graph G❏
k and thus we obtain Zinit

k rbs ✏
Z❏

k rbs. By contradiction, assume thus that all shortest paths do enter these arcs.

As a consequence, these paths are “long”, as they cross k copies of ̺. We will

prove that in this case the values of the coefficient converge towards Z❏
✽rbs when

k diverges. Define η ✏ mintw♣rq
⑤r⑤ ⑤ r P R✉. It represents the minimal weight

that is accumulated through one iteration of ̺ using a return path. By hypotheses,



all return paths have a strictly postive weight and thus we have η → 0. Using a

reasonning similar to that of point ♣iq, we can prove the following inequality:

Zinit
k rbs ➙

✂
N

min
j✏0

Zinit
j rbs

✡
� ♣k ✁Nq ✂ η ÝÑ

kÑ✽
�✽ (2)

By Lemma 4, we have that Z❏k rbs is finite. In addition, by Lemma 2 and as k →
N , we know that Z❏k ✏ Z❏N ✏ Z❏✽. As a consequence, property (2) does not hold

for all k and thus for some finite value of k, we obtain Zinit
k rbs ✏ Z❏k rbs. This

can be proven for any bound b, yielding the result. Note that the smaller is η, the

slower is the convergence. This is precisely the setting of Figure 2.

❬❭

B.3 Complements on Termination of Algorithm 2

We give some complements on the proof of termination of Algorithm 2. Indeed, we

only sketched the proof for the following case:

Case of ♣ℓ,Z⑤I1
q, and δmin ✏ δ

̺
✥∅: Recall that we consider an initial parametric zone

Z and a cycle ̺. By Lemma 2.♣iiq, we know that for any δ ➙ δ
̺
✥∅, and any return

path r P R, we have wδ♣rq ➙ 0 (because the existence of a return path of negative

weight implies that greatest fixpoints of Post and Pre are empty). We define the set

of optimal return paths as follows: let Ropt ✏ tr P R ⑤ wδ
̺

✥∅

♣rq ✏ 0✉. Then for

any r P R③Ropt, we have wδ
̺

✥∅

♣rq → 0. Intuitively, once a shortest path associated

with a bound b goes through an optimal return path, the value of the bound b cannot

diverge towards �✽. We will show that eventually, all shortest paths go through an

optimal return path. Let δ2 ✏ maxtδ ➙ 0 ⑤ ❉r P R③Ropt wδ♣rq ✏ 0✉. As R is

finite and as the parametric weight of a return path is an affine function, one obtains

that δ2 is rational. We now define δ3 ✏ ♣δ2 � δ
̺
✥∅q④2, which is thus also a rational

number, and divide interval I1 into I ✶1 ✏ r0, δ3s and I✷1 ✏sδ3, δ
̺
✥∅r. As δ3 ➔ δ

̺
✥∅,

we have Z♣δ3q ❳ νY.PPre
̺♣Yq♣δ3q ✏ ∅. This implies that there exists an integer k

such that PPost
̺k

♣Zq♣δ3q ✏ ∅ (the value of k can be estimated for instance via the

region graph construction applicated to the TA A♣δ3q – this is possible because δ3 is a

rational number). By monotonicity of Z and PPost
̺, we obtain the same property for

any δ P I ✶1. We now consider the interval I✷1 . First, there exists a postive rational number

η → 0 such that the following property holds:

❅δ P I✷1 ,❅r P R③Ropt,
wδ♣rq

⑤r⑤
➙ η

Intuitively, this means that any non-optimal return path r will have weight at least

η ✂ ⑤r⑤. The existence of η follows from the definition of δ2 and the fact that ❅δ P

I✷1 , ⑤δ ✁ δ2⑤ ➙
1
2
⑤δ̺
✥∅ ✁ δ2⑤. We defined parametric zones Zinit

N ✏ PPost
̺N

♣Z⑤I✷
1
q

and Z❏N ✏ PPost
̺N

♣❏⑤I✷
1
q. Consider now a bound b ✏ ”x ✁ y ↕ ☎”. We can define

db ✏ maxt⑤Zinit
N ♣δqrbs ✁ Z❏N ♣δqrbs⑤ ⑤ δ P I✷1 ✉. This value is finite by Lemma 4. Then,

❅i → ib ✏ N � N ✂ db

η
, each shortest path associated with bound b must contain an



optimal return path r P Ropt. Otherwise we would obtain that Zinit
i ♣δqrbs → Z❏i ♣δqrbs,

which is a contradiction. Define now k✶ ✏ maxtib ⑤ b✉ ❨ tk✉, and let q be the least

common multiple of the set t⑤r⑤ ⑤ r P Ropt✉. Then we obtain Zinit
k✶�q♣δq ❸ Zinit

k✶ ♣δq
for any δ P I✷1 . This concludes this last case because, as k✶ ➙ k, we also have for any

δ P I ✶1, Zinit
k✶�q♣δq ✏ ∅.

B.4 Examples for safety of A♣δmaxq

We present here some additional examples to illustrate the fact that the TA A♣δmaxq
may be safe or not. These examples are slight variations of the TA depicted on Figure 1.

On Figures 4 and 5, in dark blue (resp. dark red) is depicted the reachable set

Reach♣A♣0qq in location ℓ1 (resp. ℓ2). Light colors represent the sets Reach
✝♣A♣0qq.

Note that for the TA of Figure 4, as δmin ✏ δ
̺
✥∅, we have that 0 P I1 (in Algorithm 2).

We thus obtain that 0 is a safe value for ∆.

On Figure 6, in dark blue (resp. dark red) is depicted the reachable set Reach♣A♣ 1
2
qq

in location ℓ1 (resp. ℓ2). Light colors represent the sets Reach
✝♣A♣ 1

2
qq. As in Figure 4,

we obtain δmin ✏ δ
̺
✥∅ and thus δmin P I1. Note that here we have δ✥∅ → 0.

On Figure 7, in light blue (resp. light red) is depicted the reachable set Reach♣A♣ 3
4
qq ✏

Reach
✝♣A♣ 3

4
qq in location ℓ1 (resp. ℓ2). Dark colors represents here the stable zone for

δ ✏ 3
4

. Note that here we have δmin ✘ δ
̺
✥∅ and thus we obtain δmin P I2.

On Figures 5 and 7, dotted lines represent the limits of the reachable state space

for the value δmax. Here we can see when the reachable space for location ℓ2 is able to

enter the Bad location. On Figure 7, this additional enlargement from δmin is equal to
1
12

and thus we have δmax ✏ δmin �
1
12

.

ℓ0 ℓ1 ℓ2 Bad
x✏1✟δ

y:✏0

x ↕ 2�δ

x:✏0

y ➙ 2✁δ

y:✏0

x ↕ 0�δ

y ➙ 2✁δ

0

x

y

1

1

2

2

3

3

ℓ1

ℓ2

Fig. 4: A♣δq is safe iff δ ✏ 0 (δmin ✏ δ
̺
✥∅ ✏ 0)



ℓ0 ℓ1 ℓ2 Bad
x✏1✟δ

y:✏0

x ↕ 2�δ

x:✏0

y ➙ 2✁δ

y:✏0

x ↕ 0�δ

y ➙ 3✁δ

0

x

y

1

1

2

2

3

3

ℓ1

ℓ2

Fig. 5: A♣δq is safe iff δ ➔ 1
3

(δmin ✏ δ
̺
✥∅ ✏ 0)

ℓ0 ℓ1 ℓ2 Bad
x✏1✟δ

y:✏0

x ↕ 3

2
�δ

x:✏0

y ➙ 5

2
✁δ

y:✏0

x ↕ 0�δ

y ➙ 3✁δ

0

x

y

1

1

2

2

3

3

3

2

5

2

ℓ1

ℓ2

Fig. 6: A♣δq is safe iff δ ↕ 1
2

(δmin ✏ δ
̺
✥∅ ✏ 1

2
)



ℓ0 ℓ1 ℓ2 Bad
x✏3✟δ

y:✏0

x ↕ 3

2
�δ

x:✏0

y ➙ 5

2
✁δ

y:✏0

x ↕ 0�δ

y ➙ 4✁δ

0 1

1

2

2

3

3

4

x

y

3

2

9

4

9

4

7

3

5

2

19

6

13

4

ℓ1

ℓ2

Fig. 7: A♣δq is safe iff δ ➔ 5
6

(δmin ✏
3
4

and δ
̺
✥∅ ✏ 1

2
)


	Quantitative Robustness Analysis of Flat Timed Automata
	Rémi Jaubert, Pierre-Alain Reynier

