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Received: date / Accepted: date

Abstract In this paper, we discuss the optimization of atom interferometers for ro-

tation and gravitational wave detection. We consider various diffraction processes and

we focus our analysis on Bragg diffraction by a laser standing wave. We show that high

order diffraction should be feasible with moderate laser power.
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1 Introduction

Matter wave interferometers have a high sensitivity to inertial effects [1–4] as first

illustrated by the observation of the effect of gravity on a neutron interferometer in 1975

[5]. Atom interferometers do not need a complex source as neutron interferometers and

they are far more sensitive than neutron interferometers thanks to their considerably

larger signal: several groups have thus obtained very impressive results quoted below.

It is thus very natural to consider the use of atom interferometers as detectors of

gravitational waves.

In an atom interferometer, there are two very important choices, namely the choice

of the atom and the choice of the diffraction process. The atom used to build an atom

interferometer is mostly chosen for practical reasons: the productions of an atomic

beam or a cold sample must be easy; laser excitation and detection of the chosen atom

must be feasible with convenient single frequency lasers.
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To build gyros, several experiments have used thermal atoms such as calcium [6],

sodium [7] and caesium [8–10] but most atom interferometers devoted to inertial mea-

surements have used cold atomic samples. Gyrometers have used caesium [11] or ru-

bidium [12]; accelerometers devoted to the measurement of g have used sodium [13,14],

caesium [15,16] or rubidium [17] and a test of the equivalence principle has been made

with rubidium [18]; gravity gradiometers have used caesium [19,20] or rubidium [21]

and these gradiometers have been used to measure the Newtonian constant of gravity

[21–23]. To save space, we will not quote here the inertial measurements done with

Bloch oscillations.

In a very large fraction of these atom interferometers, the atom diffraction process

is Raman diffraction first used in [13]. Several other diffraction processes are available:

diffraction on material gratings first used by D. Pritchard and co-workers [24] and

various types of laser diffraction processes as discussed by C. J. Bordé [4,25]. Among

the other laser diffraction processes, we will focus here on Bragg diffraction by a laser

standing wave, first observed by D. Pritchard and co-workers [26] and applied to atom

interferometry by D. M. Giltner et al. [27].

These experiments have been extremely successful. As far as we know, the choice

of the atom and the choice of the diffraction were made for practical reasons ant these

two choices could not be the best ones. The goal of the present paper is to discuss these

two choices from first principles.

2 General considerations on atom interferometers

An atom interferometer is formed of a very bright atom source (atomic beam, cold

atom cloud released from a trap, atom laser emitted by a Bose-Einstein condensate)

from which an atomic beam is extracted with a defined velocity and a high collimation.

The simplest interferometer design is the Mach-Zehnder type and we will center the

present discussion on this type of interferometer but other types of interferometers

such as the Ramsey-Bordé interferometer are also frequently used and very interesting.

In the Mach-Zehnder interferometer, the atomic beam is diffracted three times, in

order to split, reflect and recombine the atomic wave, as illustrated in figure 1. In the

discussion, we will assume that the interferometer is a spatial interferometer: in such an

interferometer, the laser standing waves are always present and the interaction time is

fixed by the spatial width of these laser standing waves and the atom velocity. From the

theoretical point of view, there are some subtle differences between spatial and temporal

interferometers, in particular because the atom energy is strictly conserved in spatial

interferometers and not in temporal ones. Although interesting from a fundamental

point of view, these differences are not so important and we think that our discussion

could be easily extended to the case of temporal interferometers. However, the physical

arrangements for these two types of interferometers are quite different and we will

consider here only the case of spatial interferometers. Figure 1 defines the axis used in

the discussion of Bragg diffraction.

This type of interferometer produces two output beams with complementary signals

given by:

Ii = I0i [1 + Vi cos ϕ] (1)

where I0i is the mean intensity and Vi the fringe visibility of the output beam i (if

we use the same phase ϕ for the two output beams, the visibility of one of the two
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Fig. 1 Schematic drawing of a Mach-Zehnder atom interferometer using laser diffraction in
the Bragg regime. The three laser standing waves are produced by reflecting the laser beams
on the mirrors Mi. The thick lines represent the atomic beam paths and the output beams are
labelled 1 and 2. The axis used in the discussion are defined.

output beams is negative). The intensities are expressed as the number of detected

particles per unit time. ϕ is the phase of the fringe signal which can be swept by

various techniques depending on the diffraction process. For an ideal interferometer (i.e.

without any loss process), the complementary character of the output beams imposes

that I01V1 + I02V2 = 0 .

The performance of an interferometer is measured by its phase sensitivity i.e. by the

minimum phase-shift ∆ϕmin which can be detected in a unit time. Assuming that the

noise is limited by Poisson noise, a reasonable assumption for ordinary atom sources,

the minimum detectable phase-shift ∆ϕmin is given by:

∆ϕmin =
1√

I0iVi
(2)

Obviously, to get the optimum phase sensitivity, the quantity I0iV2
i must be maximized.

The sensitivity to a rotation with an angular velocity Ωrot is due to Sagnac effect and

the associated phase-shift ∆ϕSagnac is given by:

∆ϕSagnac = 2pkGΩrotvT 2 (3)

where p is the diffraction order, kG is the grating of wavevector (kG = 2π/a where a is

the grating period), v is the atom velocity and T is the time between two consecutive

diffraction events. Written in this form, the formula is valid for any type of wave (light

wave or matter wave) and the large gain of sensitivity associated to matter waves

appears if one introduces the distance L = vT , which is the size of the interferometer.

The quantity vT 2 is equal to LT = L2/v and for a given size L, the sensitivity scales

as 1/v. Finally, the Sagnac phase shift is proportional to the diffraction order p and

an interesting gain of sensitivity is expected if one can use a high value of p, with no

degradation of the phase sensitivity.
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It is common to write the Sagnac phase shift as a function of the area Aat. enclosed

by an atom interferometer and one gets:

∆ϕSagnac,at. = 2
m

h̄
Aat.Ωrot (4)

The sensitivity of a light interferometer operating with photons of energy h̄ω is given

by:

∆ϕSagnac,phot. = 2
ω

c2
Aphot.Ωrot (5)

Under the assumption of equal areas, the ratio of sensitivity is given by:

∆ϕSagnac,at.

∆ϕSagnac,phot.
=

mc2

h̄ω
(6)

which is very large, of the order of 1011 for a heavy atom and a 1− 2 eV photon. Even

if the assumption of equal areas is not realistic, the very large sensitivity ratio pre-

dicted by equation 6 explains the interest for atomic interferometers for measurement

of rotations.

The sensitivity to gravitational waves has been studied by many authors and we

quote only some papers [28–33] but we will not reproduce the results of their calcula-

tions. In the simplest case, the phase shift is given by an equation similar to equation 4,

with Ωrot replaced by an average of the perturbation of the metric tensor over the time

spent by the atoms in the interferometer. The large gain of sensitivity associated to the

use of an atom interferometer rather than a light interferometer predicted by equation

6 for the detection of rotation does not exist for the detection of gravitational waves.

After some controversy, this point seems strongly established now. However, it remains

interesting to estimate the parameters which optimize the sensitivity of atom inter-

ferometers for gravitational wave detection and this is equivalent to the optimization

of the sensitivity to rotation given by equations 3 and 4. As shown by the discussion

following equation 3, the use of slow atoms and of a large interferometer is necessary

to maximize the quantity L2/v but this maximization will be practically limited on

Earth by gravity.

We are going to discuss first the choice of the diffraction process and this study

will be used to make the choice of the atom. We consider successively diffraction by a

material grating and laser diffraction processes.

3 Atom diffraction by material gratings

Material gratings present the interest of having very small periods, as small as 100

nm, and the gratings presently achieved are of high quality. These gratings produce

several diffracted beams and their presence complicates the interferometer and reduces

its transmission, which, for an optimized Mach-Zehnder interferometer, is calculated

to be close to 1%. Finally, because of the Van der Waals atom-surface interaction, the

diffracted waves receive a phase shift which depends on the shape and dimensions of

the grating wires, on the diffraction order and on the atom velocity [34,35]. When

the atom velocity decreases, these phase shifts increase and the effective slit width

diminishes [36].
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Material gratings have been extensively used in a sodium atom interferometer with

atom at thermal velocities near 1000 m/s [24]. A helium atom Mach-Zehnder interfer-

ometer was operated by J. P. Toennies and co-workers, with lower velocities near 300

m/s. Because of the Van der Waals atom-surface interaction, we think that diffraction

by material gratings cannot be easily used with very slow atoms, with velocities of the

order a few m/s, and, as far as we know, no such interferometer has been operated.

4 Common features of atom diffraction by laser

Laser diffraction covers a wide variety of different processes, as discussed by C. J. Bordé

[4,25]. Here we will discuss only two processes, namely Raman diffraction and Bragg

elastic diffraction. In all cases, the elementary diffraction process is the absorption of

a photon going in one direction followed by the stimulated emission of a photon going

in the opposite direction. The corresponding grating period is equal to half the laser

wavelength used for diffraction and, because the laser frequency must be chosen quasi-

resonant with the first resonance transition of the atom, the grating period is usually of

the order of 300−400 nanometers. This period is considerably larger than the period of

material gratings but laser diffraction, which has many interesting properties, is very

commonly used.

We are going to describe rapidly Raman diffraction, without going into details,

because it has been used in many experiments, and we will focus more time on Bragg

diffraction because it is less commonly used. Moreover, we think that Bragg diffraction

at high diffraction orders is very promising but it is still under development as shown

by recent important progresses [37,38].

5 Raman diffraction

Raman diffraction requires two single frequency laser contra-propagating beams with

a phase-locked frequency difference equal to the ground state hyperfine structure split-

ting. The diffraction process is illustrated by figures 2 and 3. The laser frequency must

be chosen very close to one component of the first resonance transition of the atom,

with a frequency detuning δ usually chosen of the order of a few GHz. Such a small

value of δ is necessary to keep the laser power density to an accessible value but a

non-zero detuning is absolutely needed to reduce the probability of photon absorption

followed by a spontaneous emission process which destroys the coherence of the atom

wave.

Raman diffraction presents a great advantage: the direct and diffracted beams are

in two different internal states and a state selective detection measures separately the

intensity carried by the two output beams of an atom interferometer. Raman diffraction

naturally operates only at first order: it is impossible to do p absorption-stimulated

emission because, after one cycle, the atom has changed its internal state and this

change cannot be repeated. A trick to circumvent this difficulty is to interchange the

direction of the two laser beams of frequencies ω1 and ω2 as done by Weiss and co-

workers for the measurement of h̄/mCs [39].
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Fig. 2 Principle of atom diffraction by laser using a Raman process: the atom absorbs a
photon of energy h̄ω1 and emits a photon of energy h̄ω2 by stimulated emission, thus making
a transition from state |g1〉 to state |g2〉. The case of elastic diffraction is deduced from the
Raman case by making |g1〉 = |g2〉 and h̄ω1 = h̄ω2. In this last case, diffraction of order p can
be observed, as the absorption-stimulated emission cycle may occur p times.
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Fig. 3 Momentum conservation in atom diffraction by laser: the atom receives a momentum
kick equal to h̄k1 due to the absorption of a photon of energy h̄ω1 going in one direction and
a second kick equal to h̄k2 in the same direction, due to the stimulated direction of a photon
of energy h̄ω2 going in the opposite direction. The conservation of the atom kinetic energy
requires the Bragg geometry, as illustrated in this figure. As in Fig. 2, elastic diffraction is
deduced from the Raman case by making h̄k1 = h̄k2.
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6 Bragg diffraction on a laser standing wave

6.1 General features

The process involves a standing wave, produced by a single frequency laser and it is very

similar to Raman diffraction illustrated by figures 2 and 3 but, now, the two photons

have the same frequency and the atom initial and final states are identical, exactly

as for diffraction by a material grating. Because of this last property, the direct and

diffracted beams are in the same internal state. This property is interesting for atom

interferometers, as in the two interferometer arms, the atom is in the same internal

state and an homogeneous magnetic or electric stray field does not create any phase

shift and a field gradient is necessary to create such a phase shift. In interferometers

using Raman diffraction, because the atom is not in the same internal state in both

arms, an homogeneous stray field is sufficient to create a phase shift of the fringe signal

and a better control of the stray fields is needed. However, for an atom interferometer

based on Bragg diffraction, the two output beams can be distinguished only by their

momenta. This is feasible only if the projection of the initial momentum on the laser

propagation axis is well defined, with a distribution width smaller than the recoil

momentum h̄kL (where kl is the laser wave vector). If this condition is fulfilled, Bragg

diffraction can be very selective if the interaction time with the laser standing wave is

long enough and only two diffracted beams are produced, corresponding to the order

0 (direct transmitted beam) and to the order p. Shorter interaction times can be also

used (Raman-Nath regime) with several diffraction orders being produced. As a very

narrow momentum distribution is not easy to achieve, the use of Bragg diffraction with

cold atoms has been restricted for a long period to experiments either with thermal

atoms (see below) or with Bose-Einstein condensates (for instance [40,41]).

A very interesting feature of Bragg diffraction is that it is possible to use high

values of the diffraction order p in order to increase simultaneously the interferometer

area Aat. and the inertial phase shifts. This order is chosen by adjusting the projec-

tion of the initial momentum h̄ki on the laser propagation axis taken as the x axis

so h̄kix = ±ph̄kL. The highest diffraction order achieved with Bragg diffraction has

steadily increased. After the observation of first order diffraction by P. J. Martin et al.

in 1988 [26], diffraction of order p = 6 was observed by Giltner et al. in 1995 [42], of

order p = 8 by A. E. A. Koolen et al. in 2002 [43] and of order p = 12 by H. Müller et

al. [38] in 2008.

The first atom interferometers using Bragg diffraction were Mach-Zehnder inter-

ferometers operated with thermal atoms: they were built in 1995 by D. M. Giltner et

al. [27], using metastable neon and laser diffraction of order p = 1, 2 and 3, and by E.

M. Rasel et al. [44] using metastable argon and laser diffraction of order p = 1 (in this

case, diffraction was in the Raman-Nath regime). In 2001, our group has built a lithium

atom similar interferometer [45,46], using laser Bragg diffraction of order p = 1, 2 and

3.

With ultra-cold atoms, the first interferometer was built by Torii et al. [41] in 2000:

it was a Mach-Zehnder interferometer using a free falling rubidium Bose-Einstein. In

2005, Y. J. Wang et al. [47] have built an atom Michelson interferometer on a chip using

a Bose-Einstein condensate and Raman-Nath diffraction. In 2006, O. Garcia et al. [48]

have built a Michelson interferometer using a rubidium Bose-Einstein condensate as

atom source and, in 2008, H. Müller et al. [38] have built Mach-Zehnder and Ramsey-

Bordé interferometers using cold cesium atoms and diffraction orders up to p = 12.
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We may remark that, for both diffraction processes (Raman and Bragg), a narrow

distribution of the projection h̄kix of the initial momentum on the laser propagation

axis is also needed to insure a constant diffraction amplitude. Diffraction can be de-

scribed as a Rabi oscillation between two motional states of the atom [50] and this

condition results from the fact that diffraction can reach a large probability only if the

Rabi oscillation is resonant. For the atoms with h̄kix differing noticeably from ±ph̄kL,

the diffraction amplitude differs strongly from the one for resonant atoms. In the case

of Raman diffraction, a broad distribution of h̄kix will dilute the atoms which are

diffracted in a large number of atoms for which the diffraction probability is low and

this dilution reduces at the same time the fringe visibility V and, following equation 2,

the interferometer phase sensitivity.

6.2 Theory of Bragg diffraction at high order

There is a large amount of papers concerning diffraction by a laser standing wave

and we refer the reader to three papers. A paper by C. Keller et al. [49] in 1999 and a

paper of our group [50] in 2001 have introduced the two main dimensionless parameters

characterizing this diffraction process. More recently, H. Müller et al. [37] have discussed

Bragg diffraction at high orders and the non-adiabatic effects due to the envelope of

the laser pulse. In our paper [50], we considered square laser pulses which lead to

analytic results but they are not realistic, in particular for spatial interferometers, and

not favorable for a selective Bragg diffraction. We will use the results of H. Müller et

al. [37] for Gaussian pulses but let us first recall the two dimensionless parameters for

atom diffraction by a laser standing wave [49,50]:

– for a square pulse of laser light of duration tint, the dimensionless duration is

τint = ωrectint, with ωrec = h̄k2
L/(2m) being the atom recoil frequency.

– the laser standing wave creates a potential V (x) = Vmax cos2 (kLx) discussed be-

low. To measure the strength of this potential, a dimensionless parameter q =

Vmax/ (4h̄ωrec) was introduced. The quantum motion along the direction x is de-

scribed by Mathieu’s equation (chapter 20 of ref. [51]) and the present definition of

q coincides with the definition of the traditional q parameter of Mathieu’s equation.

– H. Müller et al. [37] do not use the same notations but they also use the recoil

frequency ωrec to scale the potential strength and the pulse duration.

In order to make the calculation clear, let us start from the beginning. First, we

refer the reader to the book Atom-photon interactions by C. Cohen-Tannoudji et al.

[54]. The electric field of the laser standing wave is given by:

E = E0(y, z) [cos (ωLt + kLx) + cos (ωLt− kLx)]

= 2E0(y, z) cos (ωLt) cos (kLx) (7)

where E0 is the electric field of one of the incident laser beam. To simplify the equations,

the polarization effects are omitted. It is important to relate the electric field to the laser

beam parameters. We assume a Gaussian beam, close to its waist, with a transverse

field dependence given by:

E0(y, z) = Em exp

[
− y2

w2
y
− z2

w2
z

]
(8)
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We have considered that the laser beam is characterized by different waist radius in

the y and z directions: a smaller value of the wz radius increases the electric field Em

while a large value of the wy radius is necessary to use a larger height of the atomic

beam in order to enhance the signal. The maximum electric field Em is related to the

power P transported by the incident laser beam by:

E2
m = 4µ0c

P

πwywz
(9)

The atom-laser coupling is described by the Rabi frequency Ω1 given by:

h̄Ω1 = −2degE0(y, z) cos (kLx) (10)

where deg is the transition dipole matrix element for the e − g transition, assumed

to be real. If the laser frequency detuning δ = ωL − ω is sufficiently large and the

electric field not too large, the atom remains mostly in its ground state where it feels

a potential V given by:

V =
(h̄Ω1)

2

4h̄δ
=

d2
egE2

0(y, z)

h̄δ
cos2 (kLx) (11)

However, the atom, which has a weak probability of being excited, emits fluorescence

photons with a rate:

dN

dt
=

γ

2
× Ω2

1

2δ2

= γ
d2

egE2
0(y, z) cos2 (kLx)

h̄2δ2

= γ
d2

egE2
0(y, z)

2h̄2δ2
(12)

In the last line, we have replaced the cos2 (kLx) term by its average 1/2. When an

atom of velocity v crosses a laser standing wave with the profile given by equation 8,

the total probability of spontaneous emission is given by:

Psp.e. =

∫
dN

dt

dz

v
=

√
π

2
× γwz

v
× d2

egE2
m

2h̄2δ2
(13)

where we have assumed that y = 0. It is important to keep Psp.e. ¿ 1 and this

condition will fix the minimum value of the detuning δ.

H. Müller et al. [37] have discussed the non-adiabatic effects assuming Gaussian

laser pulses and, from now on, we will follow their notations: their Ω cos2 (kLx) (we

have transformed their z axis into our x axis) is equal to our V/2h̄ and we may identify

their pulse (their equation 60):

Ω = Ω̄ exp

[
− t2

2σ2

]
(14)

to our equation 11, using the electric field given by equation 8 and assuming an atom

velocity v (i.e. z = vt) and maximum interaction (i.e. y = 0). By identification, we get

Ω̄ = d2
egE2

m/
(
2h̄2δ

)
and σ = wz/(2v).
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When using diffraction of order p, the Rabi oscillation of the atom couples two

motional states with opposite momenta h̄kx = ±ph̄kL. In perturbation theory, the

first non vanishing order term coupling these states appears at order p and is given by

Ωeff = Ωp/
[
(8ωrec)

p−1 [(p− 1)!]2
]

as first demonstrated by D. M. Giltner [42]. This

result suggests that high order diffraction will require very large laser power densities

because of the dependence in Ωp and of the small prefactor but this is not true because,

in the range of parameters of practical importance, this leading term is not sufficient

and higher order terms must be taken into account. Moreover, this coupling term

is equal to the difference (ap − bp) where these quantities are defined for Mathieu’s

equation [51] and the expansions of ap and bp in powers of q have a finite radius

of convergence ρ. For a0, this radius is q = 1.468 (see reference [51] and references

therein). For higher p values, the radius of convergence of a2n, a2n+1, b2n and b2n+1

have been calculated up to n = 9. The radius of convergence of the expansions of these

quantities in powers of q scale with n like 2.042n2 for the dominant in n term [52].

The asymptotic behavior when n goes to infinity of this radius of convergence ρ by

H. Volkmer [53] is shown to verify ρ > 2.0418n2. Power expansions for ap and bp are

known [55] and can be calculated by the Mathieu package of Maple software; when q

is equal to a few unity, these expansions appear to be slowly convergent. Obviously,

the power expansion of the difference (ap − bp) might be convergent even when the

expansions of ap and bp are divergent.

As discussed by H. Müller et al. [37], a low-loss Bragg diffraction process is possible,

even at a high order p, if the laser pulse used for Bragg diffraction has a width parameter

σ such that:

ωrecσ > A
p1/6

p− 1
(15)

with a prefactor A depending on how large losses are accepted (A = 0.38 for losses

below 10−2 and A = 1.5 for losses below 10−10). This result is counterintuitive and

very important as it proves that high order diffraction can be done with an interaction

time which decreases with increasing order p and that, for a given order, the interaction

time scales like 1/ωrec.

In figure 4 of their paper, H. Müller et al. [37] have plotted the parameters of

a Gaussian pulse corresponding to a π diffraction pulse as a function of the order p

from 4 to 9. We have measured on this figure the values of Ω̄π(p)/ωrec with a pulse

width σ such that ωrecσ = p1/6/(p − 1) which corresponds to a low-loss diffraction

process. In this range, 4 ≤ p ≤ 9, the values Ω̄π(p)/ωrec are well approximated by

Ω̄π/ωrec ≈ 20(p−3) (the plot presents a weak upward curvature which can be neglected

here). This result proves that high-order diffraction is feasible with a laser power density

which increases more or less linearly with the order p. The product Ω̄σ of the potential

strength Ω̄ by the interaction time scale σ is a slowly varying function of the diffraction

order p given by:

Ω̄σ ≈ A
20(p− 3)p1/6

p− 1
(16)

in the range 4 ≤ p ≤ 9. The Ω̄σ is given by:

Ω̄σ =
d2

eg

h̄δ
× µ0c

π
× P

wy
(17)
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It is important to note that wz has disappeared from this last equation and this explains

why the needed laser power P increases slowly with the diffraction order p.

Let us now discuss the choice of the detuning δ. A small δ value increases at the

same time the potential strength, like 1/δ, and the probability of spontaneous emission,

like 1/δ2. We may rewrite the probability Psp.e. of a spontaneous emission event after

crossing a laser standing wave:

Psp.e. =
γ

δ
Ω̄

√
π

2
× wz

v
(18)

If we combine this result with the value of σ = wz/(2v), we get :

Ω̄σ =
δ

γ
√

2π
Psp.e. (19)

For a fixed value of the spontaneous emission probability Psp.e., the product Ω̄σ de-

pends only on the ratio δ/γ and is independent of the other atom properties.

7 Choice of the atom

We will consider here only three alkali atoms, namely lithium, rubidium and caesium.

We will not consider any metastable atom, such as helium and rare gases, because the

available beam intensities are considerably smaller than with ground state atoms.

Because of the equivalence principle, the atom mass is absent from the equations

giving the sensitivity to acceleration or rotation and also to gravitational waves but

the atom mass plays an important role in the diffraction process through its recoil

frequency ωrec = h̄k2
L/(2m). The other important parameters are all linked to the

resonance transition used to diffract:

– the laser wavelength λ used to diffract the atoms defines the grating period kG =

4π/λ which is important in the interferometer sensitivity.

– the atom recoil frequency ωrec defines the time scale of the diffraction process.

– the resonance state natural width γ fixes the minimum value of the detuning needed

to insure a coherent diffraction process i.e. with a negligible spontaneous emission

probability.

– the resonance transition dipole moment deg which is necessary to calculate the

potential (deg, λ and γ are well known to be related).

Table 1 Main parameters for laser diffraction of lithium, rubidium and caesium: wavelength
λ of the D2 line; reduced matrix element of dipole moment of the 2S−2 P3/2 transition; decay

rate γ of the 2P3/2 state and recoil frequency ωrec.

Atom lithium 7 rubidium 87 caesium 133

λ (nm) 671 780 852
< g||d||e > (10−29 C.m) 3.98 3.58 3.80

γ (107 s−1) 3.69 3.81 3.29
ωrec (s−1) 3.965× 105 2.369× 104 1.298× 104
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We consider that the laser is quasi-resonant with the first resonance transition

because, in the alkali atoms, the oscillator strength of the transitions connecting the
2S ground to upper 2P states are considerably weaker than for the first resonance

line. Moreover, the wavelength of the first resonance line of the alkali atoms is in

a very convenient spectral region, where powerful continuous single frequency lasers

are available. We have collected in table 1 the value of these parameters for lithium,

rubidium and caesium.

This table proves clearly that the only parameter which varies much among these

three alkali atoms is the recoil frequency ωrec. Equation 15 gives the minimum accept-

able value of the product of the laser duration parameter σ by the recoil frequency

ωrec. Clearly, if one wants to use a high order diffraction and a short diffraction time,

the best choice is the atom with the largest recoil frequency ωr and lithium will be the

best choice. Bragg diffraction of a light atom can be made in a considerably shorter

time than with an heavy atom.

However, we have calculated the condition (equation 15) verified by the pulse length

σ in the case of lithium, with A = 1 and p = 9, and we find σ > 5× 10−7 s. This lower

limit is not easy to approach in a spatial interferometers with slow atoms (v ≈ 10 m/s),

because it corresponds a very small waist wz ≈ 5×10−6 m. Larger σ and wz values can

obviously be used but this may increase the needed laser power. A numerical model of

the diffraction process will be necessary for a full optimization of a high-order Bragg

Mach-Zehnder atom interferometer.

8 Conclusion

In this paper, we have compared the three diffraction processes which have been used

to build atom interferometers. We have focussed our discussion on Bragg diffraction by

a laser standing waves because this diffraction process can be used at high diffraction

orders with a good selectivity.

We have shown that the laser power density needed for Bragg diffraction at large

orders scales roughly like the order p. As the minimum interaction time needed to

preserve Bragg selectivity scales roughly like 1/p, we predict that the laser power

needed has only a slow dependence with the diffraction order p. In the same manner,

the laser power density scales with the atom recoil frequency ωrec but the interaction

time scales like 1/ωrec and we thus predict that the necessary laser power has no direct

dependence with the atom recoil frequency ωrec. This means that Bragg diffraction at

high order, which has been recently demonstrated with caesium by H. Müller et al.

[38], should also be feasible with lighter atoms, including lithium 7 for which the recoil

frequency is 30.6 times larger than for caesium.

High order Bragg diffraction is not the only way of increasing the separation of the

paths in atom interferometers and Large Momentum Transfer (LMT) beam splitters

have been developed, based on the principle of Bloch oscillations. In 2002, J. Hecker

Denschlag et al. [56] have thus demonstrated splittings of a Bose-Einstein condensate

with a momentum transfer up to 12h̄k. Very recently, two interferometers using this

type of LMT beam splitters have been operated by P. Cladé et al. [57] and by H.

Müller et al. [58]. These recent results, which may reveal very important to increase the

sensitivity of atom interferometry for rotation and gravitational wave measurements,

have not been discussed here.
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An important practical problem for the development of very high sensitivity inertial

sensors comes from the fact that the laboratory frame is not an inertial frame: vibra-

tions of the laboratory, which are detected by the interferometers, induce an important

phase noise and loss of fringe visibility [10,59]. Fortunately, this vibration induced

phase noise can be reduced by using an active suspension. Moreover, the rotation of

the Earth induces a large Sagnac phase shift which depends on the atom velocity and

the dispersion of this phase shift associated to the atom velocity distribution will also

induce a loss of fringe visibility.
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4. C. J. Bordé, Phys. Lett. A 140, 10 (1989)
5. R. Colella, A. W. Overhauser, S. A. Werner, Phys. Rev. Lett. 34, 1472 (1975)
6. F. Riehle, Th. Kisters, A. Witte, J. Helmcke and Ch. J. Bordé, Phys. Rev. Lett. 67, 177
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