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We reconsider the spinfoam dynamics that has been recently introduced, in the generalized
Kamiński-Kisielowski-Lewandowski (KKL) version where the foam is not dual to a triangulation.
We study the Euclidean as well as the Lorentzian case. We show that this theory can still be ob-
tained as a constrained BF theory satisfying the simplicity constraint, now discretized on a general
oriented 2-cell complex. This constraint implies that boundary states admit a (quantum) geomet-
rical interpretation in terms of polyhedra, generalizing the tetrahedral geometry of the simplicial
case. We also point out that the general solution to this constraint (imposed weakly) depends on a
quantum number rf in addition to those of loop quantum gravity. We compute the vertex amplitude
and recover the KKL amplitude in the Euclidean theory when rf =0. We comment on the eventual
physical relevance of rf , and the formal way to eliminate it.

I. INTRODUCTION

The spinfoam formalism [1–3] offers a formulation of the
dynamics of quantum gravity strictly related to loop
quantum gravity (LQG)[4–6]. The precise relation be-
tween the two approaches is well-understood in 3 dimen-
sions [7], and under study in 4 dimensions [8].

The spinfoam theory introduced in [9, 10] can be de-
rived starting from the Plebanski formulation of GR [11]
(including the Barbero-Immirzi parameter γ), and de-
fined as a BF theory discretized on a simplicial cellu-
lar complex and constrained by the so called simplic-
ity constraint. The constraint can be imposed using
the master-constraint technique [9, 12], or, more simply,
using the Gupta–Bleuler procedure, namely asking the
matrix elements of the constraint to vanish on physical
states [13]. The resulting model has remarkable proper-
ties: (i) the boundary states have a geometrical interpre-
tation in terms of quantum tetrahedral geometry [3, 14];
(ii) there are strong indications that the semiclassical be-
havior of the theory matches classical general relativity
[15–18], thus correcting difficulties of earlier models [19];
and (iii) the boundary kinematics is strictly related to
that of LQG [9, 13].

The relation with LQG, however, is limited by the fact
that the simplicial-spinfoam boundary states include only
four-valent spin networks. This is a drastic reduction of
the LQG state space. In [20], Kamiński, Kisielowski,
and Lewandowski (KKL) have considered a generaliza-
tion of the spinfoam formalism to spin networks of arbi-
trary valence, and have constructed a corresponding ver-
tex amplitude. This generalization provides truncated
transition amplitudes between any two LQG states [1],
thus correcting the limitation of the relation between the
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model and LQG. This generalization, on the other hand,
gives rise to several questions. The KKL vertex is ob-
tained via a “natural” mathematical generalization of the
simplicial Euclidean vertex amplitude. Is the resulting
vertex amplitude still related to constrained BF theory
(and therefore to GR)? In particular, do KKL states sat-
isfy the simplicity constraint? Can we associate to these
states a geometrical interpretation similar to the one of
the simplicial case? Can the construction be extended to
the physically relevant Lorentzian case?

Here we answer several of these questions. We show
that it is possible to start form a discretization of BF
theory on a general 2-cell complex, and impose the same
boundary constraints that one impose in the simplicial
case (simplicity and closure). Remarkably, on the one
hand, they reduce the BF vertex amplitude to a (gener-
alization of) the KKL vertex amplitude, in the Euclidean
case studied by KKL. On the other hand, a theorem by
Minkowski [21] garantees that these constraints are pre-
cisely those needed to equip the classical limit of each
truncation of the boundary state space to a finite graph,
with a geometrical interpretation, which turns out to be
in terms of polyedra [22].

These results reinforce the overall coherence of the gen-
eralized spinfoam formalism.

Surprisingly, however, the state space defined by im-
posing the simplicity constraint weakly is larger than
the one of quantum gravity. It includes one additional
degree of freedom, described by a new quantum num-
ber rf .1 The quantum number rf affects non-trivially
both the face amplitude and the vertex amplitude of the
model. The quantum number rf is frozen if in addition to
the weak imposition of the (linear) simplicity constraint,

1 The enlargement is not an effect from the generalization to ar-
bitrary 2-cell complexes. The Hilbert space is enlarged also in
the simplicial case, compared with the state space defined in
[9]. This additional quantum number was first noticed by Sergei
Alexandrov [26].
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we also impose strongly a diagonal quadratic constraint.
With a suitable operator ordering of this constraint, the
state space can be reduced back down to the LQG state
space.

Does the rf quantum number have physical relevance?
If we take the principle that the quantum theory we are
seeking has the same number of degrees of freedom as
the classical theory, then the answer is negative. This
principle indicates that the appropriate way of imposing
the constraints is the one that gets rids of the extra states.
However, we think it is nevertheless interesting to keep
in mind the existence of these additional solutions to the
weak simplicity constraints. We comment more on this
in the conclusion.

An outline for the article is as follows. In Section II,
we review the spinfoam representation of the BF parti-
tion function on a general complex, and we discuss the
structure of the boundary Hilbert space of BF theory. In
Section III, we implement the geometric constraint to the
BF boundary Hilbert space. After solving the constraint
weakly, two new boundary Hilbert space are constructed
for both the Euclidean and the Lorentzian theory. We
also show that the new boundary Hilbert space carries
a representation of quantum polyhedral geometry. In
Section IV, we derive the new spinfoam vertex ampli-
tude and face amplitude from the new boundary Hilbert
space. In Section VI, we conclude and point out the open
issues. We assume that the Barbero-Immirzi parameter
γ is positive.

FIG. 1: A generalized spinfoam vertex.

II. SPINFOAM REPRESENTATION OF BF
THEORY

We start with a brief review of the construction of the
BF spinfoam partition function and the structure of its
boundary Hilbert space [23], which is the starting point
of the definition of the theory. The BF partition function
is formally defined by the path integral

ZBF :=

∫
DA DB exp

(
i

∫
M

tr(B ∧ F [A])
)

(1)

where B is a 2-form field on the manifold M , with values
in the Lie algebra g of a group G and F is the curvature
of the G-connection A. Here we take the internal gauge
group G to be either G = Spin(4) (for the Euclidean
case) orG = SL(2,C) (for the Lorentzian case). A formal
integration over B gives

ZBF =

∫
DA

∏
x∈M

δ(F [A]) (2)

which is an integration over the flat connections. In or-
der to make sense of the formal path integral (2), we
discretize it. However, instead of discretizing the path
integral on an oriented 2-complex dual to a simplicial de-
composition of the manifold M as is usually done, we
introduce here an arbitrary oriented 2-complex K (as in
[20]) with or without boundary.

We take a combinatorial definition of an ori-
ented 2-complex. An oriented 2-complex K :=
(V (K), E(K), F (K) consists of sets of vertices v ∈ V (K),
edges e ∈ E(K) and faces f ∈ F (K), equipped with a
boundary relation ∂ associating an ordered pair of ver-
tices (s(e), t(e)) (“source” and “target”) to each edge e

and a finite sequence of edges {eεekfk }k=1,...,n to each face
f , with t(ek) = s(ek+1), t(en) = s(e1) and εef = ±1; here
we call e−1 the edge with reversed order of e. We let ∂f
denote the cyclically ordered set of edges that bound the
face f , or (if it is clear from the context) the cyclically
ordered set of vertices that bound the boundary edges of
f . We also write ∂v to indicate the set of edges bounded
by v, and of faces that have v in their boundary. Simi-
larly, we write ∂e to indicate the set of the faces bounded
by e. When e ∈ ∂f , we define εef = 1 if the orientation
of e is consistent with the one induced by the face f and
εef = −1 if it is not.

The boundary graph γ = ∂K is a 1-cell subcomplex of
K. An edge e ∈ E(K) is an edge of the boundary graph γ
if and only if it is contained in only one face, otherwise it
is an internal edge. A vertex v ∈ V (K) is a vertex of the
boundary graph γ if and only if it is contained in exactly
one internal edge of K, otherwise it is an internal vertex of
K. We assume boundary vertices and boundary edges to
form a graph, which is the boundary of the two-complex.

We introduce also the notion of the boundary graph
γv of a single vertex v. This is the graph whose nodes
are the edges e in ∂v and whose links are the faces f
in ∂v. The boundary relation defining the graph is the
relation e ∈ ∂f and the orientation of the links is the one
induced by the faces. The graph γv can be visualized
as the intersection between the two complex and a small
sphere surrounding the vertex.

We discretize the BF partition function on the oriented
2-cell complex K, by replacing the continuous field A
with the assignment of an element of G to each edge. By
convention, ge−1 := g−1e . Then equation (2) becomes

ZBF (K) =

∫
dge

∏
f

δ
(∏
e∈∂f

g
εef
e

)
, (3)
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FIG. 2: An oriented 2-cell complex K := (F (K), E(K), V (K)),
where F (K) = {f1, · · · , f6}, E(K) = {e1, · · · , e19}, V (K) =
{v1, · · · , v14}. v1 is internal vertex, and e1, e2, e3, e4 are in-
ternal edges, while all other edges and vertices belong to the
boundary graph γ = ∂K.

where dge is the product over all the edges of the Haar
measure, the product over f is over all the faces of K
and the product over e is the product over the edges
bounding the face f of the group element associated to
these edges, ordered by the orientation of the face. This
is the partition function of BF theory.

We now express this partition function as a sum over
representations and intertwiners. For this, it is conve-
nient to treat the Euclidean and Lorentzian cases sepa-
rately.

A. Spin(4) BF Theory

Consider the Euclidean case G = Spin(4). The delta
function on Spin(4) can be expanded in irreducible rep-
resentations

δ(U) =
∑
ρ

dim(ρ)χρ(U) (4)

where ρ = (j+, j−) labels the unitary irrep of Spin(4),
dim(ρ) = (2j+ + 1)(2j−+ 1) is the dimension of the rep-
resentation space, and χρ is the character of the repre-
sentation ρ. Irreducible representations can also be con-
veniently labelled with the two half integers k = j+ + j−

and p = j+ − j−.
Expanding the delta function in representations, (2)

becomes

ZBF (K) =

∫
dge

∏
f

(∑
ρ

dim(ρ) χρ(Uf )

)

=
∑
ρf

∫
dge

∏
f

dim(ρf ) χρf (Uf ). (5)

This is the expression for the spinfoam amplitude in the
group element basis. Let us now translate this into the
more common representations-intertwiners basis.

This can be obtained by performing the integrals, pre-
cisely as in the simplicial case. We have one integration
per edge, of the form

KM,N =

∫
dge

∏
f∈∂e

Π
ρf
MfNf

(g
εef
e ) (6)

where Πρ
MN(g) is the matrix element of the Spin(4) repre-

sentation ρ; M = Mf1 , ...,Mfn is a multi-index; and the
product is over the n faces bounded by e (including re-
peated faces). In the case where K is dual to a simplicial
complex, n=4. It is immediate to see that KM,N is the

operator in the tensor product (
⊗

fout
ρf ) ⊗ (

⊗
fin

ρ†f )

of the ρf representation spaces (where fin are the faces
with the same orientation as e and fout are the faces
with opposite orientation.) that projects on its invariant
subspace

He = Inv
[
(
⊗
fout

ρf )⊗ (
⊗
fin

ρ†f )
]
. (7)

Let I label an orthonormal basis in He. (These are called
intertwiners.) Then

KM,N =
∑
I

IM I†N. (8)

For each internal edge e, the two intertwiners are asso-
ciated to the two vertices bounding the edge (see Figure
3), in the sense that their indices are contracted with the
other intertwiners at the same vertex. The result of the

FIG. 3: Assign Ie to the begin point and assign I†e to the end
point of an internal edge e.

integration is therefore

ZBF (K) =
∑
ρf

∏
f

dim(ρf )
∑
Ie

∏
v

Av(ρf , Ie). (9)

Here the sum over Ie is over the assignment of one inter-
twiner to each edge e of K. The product over v is over
the vertices of K. The vertex amplitude Av(ρf , Ie) is de-
fined as follows. Say at the vertex v ∈ V (K) there are n
outgoing edges eout and m incoming edges ein. Then

Av(ρf , Ie) := tr

(⊗
eout

Ieout
⊗
ein

I†ein

)
(10)
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The trace in eq.(10) is precisely the spinfoam trace de-
fined in [20]. The contractions between the intertwiners
in the spinfoam trace could be described by the follows:
For each edge e each index Mi is associated with a face f
bounded by the edge e. The trace is defined by contract-
ing the two indices associated with the same face of the
two intertwiners corresponding to the two edges bound-
ing f . This can be easily seen to give the character χρ of
(5). In the special case when the complex K is dual to a
simplicial complex, there are 5 internal edges joining at v
and each pair of edges determines a 2-face, the spinfoam
trace is nothing but the Spin(4) 15-j symbol.

Alternatively, the BF partition function can also be
expressed in the form [20]

ZBF (K) =
∑
ρf

∏
f

dim(ρf ) tr

 ⊗
e∈E(K)

Pe

 (11)

where Pe :=
∑
Ie
Ie ⊗ I†e is understood as the projection

operator projecting from the product of the representa-
tions on the 2-faces bounded by e to its invariant sub-
space. And the index contractions in tr

(
⊗e∈E(K)Pe

)
are

the contractions between intertwiners, as above.

All gravitational spinfoam theories have this same
structure.

B. SL(2,C) BF Theory

Let now G = SL(2,C). The derivation of the spinfoam
representation of SL(2,C) is as above, with a few differ-
ences. SL(2,C) unitary irreps (in the principle series)
can be labelled by the same quantum numbers (k, p) as
the SO(4) ones, but now p is a real number [31]. The
unitary irreps of SL(2,C) are infinite dimensional and
can be decomposed into an infinite direct sum of SU(2)
irreps, i.e.

V (k,p) =

∞⊕
j=k

V
(k,p)
j (12)

where V
(k,p)
j ∼ Vj is the carrier space of the spinj repre-

sentation of SU(2). This decomposition provides a con-
venient basis |j,m > in V (k,p), obtained diagonalizing L2

and Lz of SU(2). In this basis, for g ∈ SL(2,C), we write

the representation matrices on V (k,p) as Π
(k,p)
jm,j′m′(g)

where j ∈ {k, k + 1, · · · ,∞} and m ∈ {−j, · · · , j}. As
one might expect from the fact that p is a continuous

label, the representation “matrix element” Π
(k,p)
jm,j′m′ is

distributional on the Hilbert space L2[SL(2,C)] defined
by the Haar measure. These matrix elements form a
generalized orthonormal basis and define a Fourier-like
transform. That is, for any square integrable function

f(g) on SL(2,C),

f(g) =
1

8π4

∑
k

∫ +∞

−∞
dp (k2 + p2) tr

[
F (k, p) Π(k,p)(g−1)

]
F (k, p) =

∫
SL(2,C)

f(g) Π(k,p)(g) dµH(g) (13)

which is known as Plancherel theorem [31]. Accordingly,
we have an identity for Fourier decomposition of delta
function on SL(2,C)

δ(g) =
1

8π4

∑
k

∫ +∞

−∞
tr
[
Π(k,p)(g)

]
(k2 + p2) dp (14)

in analogy with eq.(4). Proceeding as in the Euclidean
case, we find

ZBF (K) =

∫ ∏
e

dge
∏
f

δ(Uf ) (15)

=
∑
kf

∫
dpf

∏
f

(k2f + p2f )

∫
dge

∏
f

tr
[
Π(kf ,pf )(Uf )

]
As in the euclidean case, each ge integral is of the form

Kjm,j′m′ =

∫
dge

∏
f∈∂e

Π
(kf ,pf )

jfmf ,j′fm
′
f

(
g
εef
e

)
. (16)

Formally, this is still a projector on the invariant com-
ponent of the tensor product of n irreducibles. However,
since now one of the two Casimirs has continuous spec-
trum p, then the trivial representation p = k = 0 is not
a proper subspace of the tensor product, but only a gen-
eralized subspace. This does not forbids us to introduce
an orthonormal basis of intertwiners I in this subspace,
as we did in the Euclidean case, and write

Kjm,j′m′ =
∑
I

Ijm I†j′m′ (17)

but we have to remember that the intertwiners are gener-
alized vectors. Using this, we can formulate the spinfoam
representation of SL(2,C) BF theory in the same way as
we did for Spin(4) theory.

• The Fourier decomposition of the SL(2,C) delta
function assigns an SL(2,C) irrep labeled by
(kf , pf ) to each face f .

• Eq.(16) assigns an SL(2,C) intertwiner Ie to each
source of each edge e, and a dual intertwiner Ie† to
its target.

• At each vertex v with n outgoing edges
eout1 , · · · , eoutn and m incoming edges ein1 , · · · , einm ,

the intertwiners Ie
out

and Ie
in† are contracting on

their j,m and j′,m′ indices, according to how the
faces neighboring the vertex are bounded by the
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edges. The result of this contraction gives the spin-
foam vertex amplitude

Av

(
(k, p)f , Ie

)
:= tr

((⊗
eout

Ie

)
⊗

(⊗
ein

I†e

))
(18)

• Finally the partition function of SL(2,C) BF the-
ory is

ZBF =
∑
kf Ie

∫
dpf

∏
f

(k2f + p2f )
∏
v

Av

(
(k, p)f , Ie

)
(19)

This expression, however, is ill defined, due to the fact
that the intertwiners are generalized vectors, and the
trace (18) may diverge. This issue is addressed and an-
swered in [32], where it is shown that the source o f the
divergence is a redundant integral over SL(2,C) in the
definition of Av. It is then immediate to regularize Av
by removing one SL(2,C) integration per each vertex.
The resulting amplitude is proven in [32] to be finite, ex-
cept for some particular pathological vertices, which we
exclude here for simplicity. In what follows we always
assume that the vertex amplitude is so renormalized.

C. Boundary Hilbert Space

Let us rewrite the partition function (3) in a slightly
different form. Split each edge e bounded by the vertices
v and v′ into two half edges (ev) and (ev′), and associate
a group element gev to each half edge (oriented towards
the vertex). Then replace each integral dge with the two
integrals dgev, dgev′ . This gives

ZBF (K) =

∫
dgev

∏
f

δ
(∏
e∈∂g

(g−1ev gev′)
εef
)
, (20)

where there is one integration per each couple
vertex/adjacent-edge. Next, let v be a vertex in the
boundary of the face f . For each such couple fv, in-
troduce a group variable gfv. Then (20) can be rewritten
in the form

ZBF (K)=

∫
dgfvdgev

∏
f

δ(
∏
v∈∂f

gfv)
∏
fv

δ(g−1fv gevg
−1
e′v) (21)

where e and e′ are the two edges in the boundary of f
that meet at v, ordered by the orientation of f . This can
be rewritten in the form

ZBF (K) =

∫
dgfv

∏
f

δ
(∏
v∈∂f

gfv
) ∏

v

Av(gfv) (22)

where the vertex amplitude Av(gf ) is defined by

Av(gf ) =

∫ ∏
e∈∂v

dge
∏
f∈∂v

δ(gef gfg
−1
e′f

) (23)

is a function of one group element for each face in the
boundary of v. Here the integral is over one group ele-
ment per each edge in the boundary of the vertex v and,
as before, e and e′ are the two edges in the boundary of
f that meet at v. This is the “holonomy” form of the
partition function [30].

Let |Fv| be the number of links f of the graph γv,
namely the number of faces f in ∂v. The vertex ampli-
tude (23) is a function in

Hγv = L2[G|Fγ |]. (24)

We call this the (non-gauge invariant) boundary Hilbert
space of the vertex v. It is easy to se that the vertex am-
plitude (23) is an element of this space. More precisely,
it is an element of the (possibly generalized) subspace

Kγv = L2[G|Fγ |/G|Eγ |] (25)

where |Eγ | is the number of nodes of γv, namely the
number of edges in ∂v, formed by the states invariant
the gauge transformation

ψ(ge) = ψ(ΛsegeΛte) (26)

where Λ ∈ G and se and te are the source and target of
e.

A moment of reflection shows also that (10) and (18)
are simply the amplitude (23) expressed in the standard
spin network basis of Kγv . Let us now study the bound-
ary space Hγv in more detail. (It is convenient to con-
sider the non-gauge-invariant Hilbert space Hγv , besides
the gauge invariant one because the expressions of geo-
metric constraints will not be gauge invariant, thus they
can only be represented as operators on Hγv .)

The natural derivative operator defined on the Hilbert
space L2[G] is the left invariant derivative that generates
the right G action:

JIJψ(g) =
d

dα
ψ(eαT

IJ

g)
∣∣∣
α=0

(27)

where T IJ (I, J = 0, · · · , 3) is a standard Lie algebra
generator of Lie(G).

Fix an SU(2) subgroup of G, and choose a basis in
Lie(G) such that the direction I = 0 is preserved by
SU(2). Then we can split the six generators T IJ of
Lie(G) into 3 rotation generators and 3 boost genera-
tors. Accordingly, we define (i, j, k = 1, 2, 3)

Li :=
1

2
εijkJ

jk, Ki := J0i (28)

which have the standard commutation relations[
Li, Lj

]
= εijkL

k, (29)[
Ki,Kj

]
= sεijkL

k, (30)[
Ki, Lj

]
= εijkK

k (31)

where s = +1 for Spin(4) and s = −1 for SL(2,C).
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We denote by JIJf the left invariant derivative operator

acting on the variable gf of ψ(gf ) ∈ Hγv . Notice that the
right invariant vector field

RIJψ(g) =
d

dα
ψ(geαT

IJ

)
∣∣∣
α=0

(32)

satisfies RIJψ(g) = JIJψ(g−1). Therefore

JIJf−1 = RIJf . (33)

The bivector operators JIJf have a physical interpreta-
tion in terms of the BF theory we started from. They are
the quantum operators that quantize the discretized ver-
sion of the 2-form field BIJ , restricted to a 3-dimensional
boundary. The reason for this is the follows: Classically
the Hamiltonian analysis of BF theory can be carried out
[33]. The resulting non-vanishing Poisson bracket reads{

εabcBabIJ(x), AKLd (x′)
}

= δcdδ
K
[I δ

L
J]δ

3(x, x′) (34)

where a, b, c = 1, 2, 3, x and x′ belong to a 3-dimensional
spatial manifold S. These canonical conjugate variables
can be discretized in analogy with Hamiltonian lattice
gauge theory. Given a graph γ imbedded in S, there ex-
ists a 2-cell complex dual to the graph γ, such that given
a link f in the graph there is a unique 2-face Sf dual
to the link f . This 2-cell complex defines a polyhedral
decomposition of the spatial manifold σ. With this set-
ting, we associate a group variable gf ∈ G to each link
f , and associate a Lie algebra variable BIJf to each Sf
(the Lie algebra variables are also labeled by f because
of the 1-to-1 correspondence between links and 2-faces).
The Poisson algebra of these discretized variables has the
following standard expression{

gf , gf ′
}

= 0{
BIJf , gf ′

}
= δff ′T

IJgf{
BIJf , BKLf ′

}
= δff ′f

IJ,KL
MNB

MN
f (35)

where f IJ,KLMN denotes the structure constant of
Lie(G). In our case, if we consider our boundary graph
γv and abstractly define the above Poisson algebra on γv,
we find that the bivector operator JIJf for each oriented

link f (as a right invariant vector) is the quantum op-
erator representing the Lie algebra variable BIJf (up to

−i~), because of the commutation relation between JIJf
and gf on the boundary Hilbert space.

III. BOUNDARY QUANTUM GEOMETRY

We now consider a modification of BF theory. The
modification is obtained by restricting the boundary
space Hγv by imposing a certain constraint. Let us first
define this constraint and then discuss the consequences
and the motivation of imposing it.

A. Geometric Constraints

Consider a vertex v and its boundary graph γv. For
each link f , consider the Lie algebra element Σ given by

Bf = ∗Σf +
1

γ
Σf (36)

where the star indicates the Hodge dual in the Lie alge-
bra. Consider a node e of the boundary graph γv, and
let f ∈ ∂e be all oriented away from e. Then define

1. Simplicity Constraint: There exists a unit vector
(ne)I for each e such that, for all f ∈ ∂e

(ne)I
∗ΣIJf = 0. (37)

2. Closure Constraint:∑
f∈∂e

ΣIJf = 0. (38)

These are the two constraints on which we focus. The
main motivation for considering these constraints is the
fact that the action of general relativity in the Holst for-
mulation can be written in the form

SGR[e, ω] =

∫
B ∧ F [ω] (39)

where ω is an SL(2,C) connection,

B = ∗Σ +
1

γ
Σ (40)

and

ΣIJ = eI ∧ eJ (41)

where eI is the tetrad one form. The restriction ΣIJf

∣∣∣
B

of

Σ to any space-like boundary B satisfies the conditions:

nIΣ
IJ
∣∣
B = 0 (42)

where nI is the normal to the boundary and

dΣ = 0. (43)

Equations (36), (37) and (38) can be seen as a discrete
consequence of equations (40), (42) and (43). Here, how-
ever, we take the discretized equations (36), (37) and (38)
as our starting point, and study their consequences. A
full discussion on the relation of these equations with con-
tinuum general relativity will be considered elsewhere.2

2 The Plebanski simplicity constraint implies the constraints given
here. However the reverse is not true in general, unless “shape-
matching” conditions [22] are imposed on each face shared by two
polyhedra. We do not demand such shape-matching conditions
here. There is some evidences from the large-j behavior of the
generalized spinfoam model that non-shape-matching amplitudes
are suppressed in the large-j asymptotic [25].
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The key consequences of these constraints is that they
allow Σ to determine a classical polyhedral geometry at
each node e of the boundary graph γv. (See also [22].)
This follows from the following

Theorem III.1. Given an F-valent node e in γv, let F
bivectors Σf satisfy (37) and (38). Then there exists a
(possibly degenerate) flat convex polyhedron in R3 with F
faces, whose face area bivectors coincide with ΣIJf . The
resulting polyhedron is unique up to rotation and trans-
lation.

Proof: Without loss of generality, we fix the unit
vector (ne)I = (1, 0, 0, 0) (we call this the time-gauge).
The simplicity constraint eq.(37) reduces to

Σ0i
f = 0. (44)

Hence the surviving components of ΣIJf are Σijf . We

denote these nonvanishing components simply by Σif =
1
2ε
i
jkB

jk or ~Σf , in terms of which the closure constraint
(38) reads ∑

f

~Σf = 0. (45)

Consider ~Σf as vectors in R3. Call |Σf | the length of

the 3-vector ~Σf , and let ~nf := ~Σf/|Σf |. We first suppose
the unit vectors ~nf are non-coplanar. Then we recall
Minkowski’s Theorem [21], which states that whenever
there are F non-coplanar unit 3-vectors ~nf and F positive
numbers Af satisfying the condition∑

f

Af~nf = 0, (46)

then there exists a convex polyhedron in R3, whose faces
have outward normals ~nf and areas Af . And the result-
ing polyhedron is unique up to rotation and translation.3

When we apply Minkowski’s theorem to our case, we
see that the existence of the unit 3-vectors ~nf and the
lengths |Σf |, as well as the closure constraint eq.(45),
together imply that there is a convex polyhedron in R3,
unique up to translation and rotation, such that each ~nf
is an outward normal of a face and each |Σf | is an area of
a face. Such a polyhedron can be concretely constructed
via Lasserres reconstruction algorithm [34]. Let ei the

natural triad in R3, then the 3-vector ~Σf can be expressed
as an oriented area:

Σijf =

∫
f

ei ∧ ej . (47)

3 Imagine the polyhedron immersed in a homogeneous fluid.
Eq.(46) multiplied by the pressure is the sum of the pressure
forces acting on the faces, which obviously vanishes.

2-complex K boundary graph γv boundary 3d geometry

e edge node polyhedron

f face link face of polyhedron

TABLE I: The different geometrical interpretations of the la-
bels e and f .

Finally, the case of coplanar unit 3-vectors ~nf can
be obtained as a limit of non-coplanar case, yielding
degenerate polyhedra. �

This geometrical interpretation equips the variables e
and f with a further new meaning: they represent, re-
spectively, polyhedra in a 4d space and faces of these
polyedra. See Table 1.

The geometrical interpretation in terms of tetrahedra
(and now polyhedra) has raised a lively discussion and it
is sometimes unpalatable to the more canonical-oriented
part of the community. Part of this discussion is based
on misunderstanding. The precise claim here is that if we
take the diff-invariant Hilbert space of the theory and we
truncate it to a finite graph (so that the observable alge-
bra is also truncated), then the truncated Hilbert space
(with its observables algebra) has a classical limit, and
this classical limit can be naturally interpreted as de-
scribing a collection of polyhedra. This is well consistent
with classical general relativity, because classical general
relativity as well admits truncations where the geome-
try is discretized. Also, this is not inconsistent with the
continuous picture for the same reason for which the fact
that the truncation of Fock space to an n particle Hilbert
space describes discrete particles, is not inconsistent with
the fact that Fock space itself describes a (quantized)
field.

Let us now see how the constraints translate on the
variable B given in (36). We have easily:

Simplicity Constraint:

CJf = nI

(
∗BIJf −

s

γ
BIJf

)
= 0, (48)

Closure Constraint:

GIJe =
∑
f∈e

BIJf = 0, (49)

where s = +1 for Spin(4) and s = −1 for SL(2,C).

Consider a single polyhedron e, with the time-gauge
(ne)I = (1, 0, 0, 0), and introduce the rotation Ljf :=
1
2ε
j
klB

kl
f and boost Kj

f := B0j
f components of BIJf . Then

the simplicity constraint (48) becomes simply

~Kf = sγ ~Lf ; (50)
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the rotation generators are proportional to the boost gen-
erators. The closure constraint (49) can be written as∑

f∈∂e

~Lf = 0, (51a)

and
∑
f∈∂e

~Kf = 0. (51b)

where the second, eq.(51b), is redundand, by eq.(50).
Let us now move to the quantum theory, and impose

the two constraints (50) and (51a) weakly [9, 13] on the
quantum states. This gives

Simplicity Constraint:〈
ψ, ~Kfψ

′
〉

= sγ
〈
ψ, ~Lfψ

′
〉
. (52)

Closure Constraint:∑
f∈∂e

〈
ψ, ~Lfψ

′
〉

= 0

∑
f∈∂e

〈
ψ, ~Kfψ

′
〉

= 0, (53)

These equations define a subspace HEγv (respectively HLγv
in Lorentzian case) of the boundary Hilbert space Hγv
of BF theory, where the constraints hold weakly. That
is, we define HEγv as the subspace where these equations
hold for any two states ψ and ψ′ in a dense domain, for
all nodes s of γv.

B. New Boundary Hilbert Space:
Euclidean Theory

Let us now construct HEγv . Here we first define HEγv
and then prove that it solves the geometric constraint.
We begin with some preliminaries on the structure of the
BF boundary Hilbert space. In the Euclidean theory, this
space has the following decomposition

Hγv =
⊗
f

L2[Spin(4)] =
⊗
f

⊕
ρf

Vρf ⊗ V ∗ρf

 . (54)

where Vρ denote the representation space for the Spin(4)
irrep ρ and V ∗ρ is the representation space for the Spin(4)
adjoint irrep ρ∗. For each face f , Vρf and V ∗ρf transforms

in a gauge transformation (26) under the action of Λsf
Λtf , where sf and tf are the initial and final points of
the link f . By regrouping all representations space that
transform under the action of the same Λe, namely by
regrouping the representation spaces associated to the
same vertex e of γv we can rewrite the decomposition in
the form

Hγv =
⊕
{ρf}

⊗
e

⊗
f∈∂e

V (e,f)
ρf

(55)

where

V
(sf ,f)
ρf := Vρf

V
(tff)
ρf := V ∗ρf (56)

Therefore the sum over colorings ρf associates a repre-
sentation space ⊗

f∈∂e

V (e,f)
ρf

(57)

to each vertex e. This space can be seen as the quanti-
zation of the shapes of a polyhedron with faces having
fixed areas, determined by the coloring ρf [22].

Since Spin(4) ∼ SU(2)+ × SU(2)−, a unitary irrep
of Spin(4) is given by a tensor product of two SU(2)
irreps. Vρ = Vj+ ⊗ Vj− with spins j+ and j−. We can
characterize ρ by ρ = (p, k), where

p = j+ + j−, k = j+ − j−. (58)

The SU(2)± subgroups of Spin(4) are its canonical self-

dual and antiself dual components, generated by ~L± ~K,
and should not be confused with the (non-canonical)

SU(2) subgroup generated by ~L, used to pick a time
gauge. If we decompose Vρ = Vp,k in irreducibles of
SU(2), we have

Vp,k = Vj+ ⊗ Vj− =

p⊕
j=|k|

V p,kj . (59)

We now define HEγv . In the representation space Vp,k,

pick the V p,kj subspace (in the decomposition above),
where j is defined by

p = j + r (60)

k = γj − r (61)

By doing so, we obtain the subspace V γj+r,j−rj in each
Vp,k. By restricting in this manner all the Vρf subspaces
in (54) we obtain a subspace of Hγv . We define the non-
gauge-invariant new boundary space to be this subspace.
That is ⊕

{jf ,rf}

⊗
e

⊗
f∈e

(V
jf+rf ,γjf−rf
jf

)(e,f) (62)

where the sum is over non-negative half-integers jf and
rf . The possible coloring in HEγv are labelled by the two
non-negative half-integer quantum numbers jf and rf .
The quantum number jf characterizes the SU(2) spin of
the representation and is easily identified with the corre-
sponding LQG quantum number which is associated to
each link of the graph. rf is a new quantum number, also
associated to each link of the graph.

Notice also that (60) restricts also the possible values
of j and r to those for which p = γj + r is half integer.



9

This awkward feature of the Euclidean case disappears
in the Lorentzian theory.

We can translate all this in terms of the (j+, j−) no-
tation. This gives

j+ =
1 + γ

2
j and j− =

1− γ
2

j + r (63)

and the modified γ-simplicity relation 4

(1− γ)j+ = (1 + γ)(j− − r). (67)

Next, we define the gauge invariant new boundary
space. Consider the diagonal actions of h ∈ SU(2) on
each product representation space eq.(57) at each e. We
denote the invariant subspaces under this actions by

I
{jf}
e = InvSU(2)

⊗
f∈e

(V
jf+rf ,γjf−rf
jf

)(e,f)

 (68)

The gauge invariant new boundary Hilbert space is de-
fined by

HEγv :=
⊕
{jf ,rf}

⊗
e

I
{jf}
e . (69)

An orthonormal basis in HEγv can be constructed as
follows. Given a polyhedron e with F faces, we assign at
e an F -valent SU(2) intertwiner iA1···AF

e associated with
F SU(2) irreps jf , f = 1, · · ·F . An orthonormal basis is

then defined by the following functions on [Spin(4)]|E(γv)|

TEγv,jf ,rf ,ie(gf )=
∏
f

√
[(1+γ)jf + 1][(1−γ)jf + 2rf + 1]

∏
e

[
iAe1···AeFe

∏
f∈e

C
m+
efm

−
ef

Ae1

]∏
f

[
ε
n+
efn

+

e′f ε
n−efn

−
e′f

]
∏
(e,f)

[
D

1+γ
2 jf

m+
efn

+
ef

(g+ef )D
1−γ
2 jf+rf

m−efn
−
ef

(g−ef )

]
(70)

here gef = (g+ef , g
−
ef ) ∈ Spin(4), Dj(g) is the representa-

tion matrix of the SU(2) irrep j, and C
m+
efm

−
ef

Aef
denotes

4 The Spin(4) irreps for a given Barbero-Immirzi parameter γ,
should be such that

r =
(1 + γ)j− − (1− γ)j+

1 + γ
(64)

is a non-negative integer, and satisfy

0 6 r 6 j+ + j− − |j+ − j−| (65)

implying

|1− γ|
1 + γ

j+ 6 j− 6 j+ or j+ 6 j− 6
3 + γ

1 + γ
j+. (66)

the Clebsch-Gordan coefficient (Af = −kf , · · · , kf )〈
1 + γ

2
jf ,

1− γ
2

jf + rf ; jf , Aef

∣∣∣ (71)∣∣∣ 1 + γ

2
jf , m

+
ef ;

1− γ
2

jf + ref , m
−
ef

〉
.

ε
n±efn

±
e′f are the unique 2-valent SU(2) intertwiners with

representations j+f = 1+γ
2 jf and j− = 1−γ

2 jf +rf respec-

tively. Thus TE(γv,jf ,rf ,ie) is essentially a function over

gf = gefgfe′ . Note that if we ask the quantum numbers
rf to be some fixed integers, then the spin-network func-
tions TE(γv,jf ,rf ,ie) can be equivalently considered as an

SU(2) spin-network functions, thus the boundary Hilbert
space is spanned by SU(2) spin-networks, as the case of
LQG kinematical Hilbert space.

We are now ready to prove our first main result.

Theorem III.2. The Hilbert space HEγv solves the geo-
metric constraint (52-53), with s = 1.

Proof: The closure constraint (53) follows im-
mediately since the states in HEγv is invariant under

the diagonal SU(2∂ gauge transformation (g+ef , g
−
ef ) 7→

(heg
+
ef , heg

−
ef ) at each e (the constraint is even solved

strongly). The nontrivial proof is for the simplicity con-
straint (52). Define the self-dual/anti-self-dual operators:

~J±f :=
1

2
(~Lf ± ~Kf ) (72)

then (52) reads

(1− γ)
〈
ψ, ~J+

f ψ
′
〉
E
− (1 + γ)

〈
f, ~J−ψ ψ

′
〉

= 0. (73)

The operators ~J±f on L2(Spin(4)) act on individual V
(e,f)
ρf

(see, e.g. Sec.32.2 of [4]). Therefore we only need to show

that in each Clebsch-Gordan subspace V
ρ=(j+,j−)
j , with

j+ ≡ 1+γ
2 and j− ≡ 1−γ

2 k+r, the following relation holds
for all pairs Φ,Ψ of vectors

(1− γ)〈Ψ| ~J+|Φ〉 − (1 + γ)〈Ψ| ~J−|Φ〉 = 0 (74)

where 〈 | 〉 is the Hermitian inner product on the Spin(4)
irrep Vρ=(j+,j−).

To evaluate these matrix elements, we use the explicit
representation of the vectors as multi-spinors. The vec-
tors in the SU(2) irrep Vj can be represented as totally
symmetric spinorial tensors with 2j spinor indices. The
generators of SU(2) are then Pauli matrices σAi B acting
on each index, followed by a sum. A state |Φ〉 in Hj in

the Clebsch-Gordan subspace V j
+,j−

j ⊂ Vj+⊗Vj− can be

expressed by (Ai, Bi = 1, 2)

ΦA1...A2j+ ,B1...B2j− = (75)

εA1B1 ...εArBrφAr+1...A2j+ ,Br+1...B2j− ,
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with complete symmetrization of all (A1, ...A2j+) indices
understood and the same for the (B1, ..., B2j−) indices.

The action of ~J− on the state Φ in (75), can then be
computed explictly, giving

J−iΦ(A1...A2j+ )(B1...B2j− ) =

2j−∑
p=1

σ
Bp
i B̃p

Φ(A1...A2j+ )(B1...B̃p...B2j− ) (76)

=

r∑
p=1

σ
Bp
i B̃p

εA1B1 ...εApB̃p ...εArBrφ(Ar+1...A2j+Br+1...B2j− ) +

2j−∑
p=r+1

σ
Bp
i B̃p

εA1B1 ...εArBrφ(Ar+1...A2j+Br+1...B̃p...B2j− )

= −
r∑
p=1

σ
Ap
i Ãp

εA1B1 ...εÃpBp ...εArBrφ(Ar+1...A2j+Br+1...B2j− ) +

2j−∑
p=r+1

σ
Bp
i B̃p

εA1B1 ...εArBrφ(Ar+1...A2j+Br+1...B̃p...B2j− )

where in the third step, we use the identity σBi B̃ε
AB̃ = −σAi Ãε

ÃB coming from the SL(2,C) invariance of εAB . Then

the matrix elements of ~J− are

〈Ψ|J−i|Φ〉 = −
r∑
p=1

σ
Ap
i Ãp

Ψ(A1...Ap...A2j+ )(B1...B2j− )Φ
(A1...Ãp...A2j+ )(B1...B2j− )

+

2j−∑
p=r+1

σ
Bp
i B̃p

εA1B1
...εArBrψ(Ar+1...A2j+Br+1...Bp...B2j− )ε

A1B1 ...εArBrφ(Ar+1...A2j+Br+1...B̃p...B2j− )

= (−r)σA2j+

i Ã2j+
Ψ(A1...A2j+ )(B1...B2j− )Φ

(A1...Ã2j+ )(B1...B2j− )

+(2j− − r)σA2j+

i Ã2j+
εA1B1

...εArBrψ(Ar+1...A2j+Br+1...B2j− )ε
A1B1 ...εArBrφ(Ar+1...Ã2j+Br+1...B2j− )

= 2(j− − r)σA2j+

i Ã2j+
Ψ(A1...A2j+ )(B1...B2j− )Φ

(A1...Ã2j+ )(B1...B2j− ) (77)

Similarly,

〈Ψ|J+i|Φ〉 = 2j+σ
A2j+

i Ã2j+
Ψ(A1...A2j+ )(B1...B2j− )Φ

(A1...Ã2j+ )(B1...B2j− ). (78)

Then eq.(74) follows immediately

(1− γ)〈Ψ|J (+)i|Φ〉 − (1 + γ)〈Ψ|J (−)i|Φ〉

= 2
[
(1− γ)j+ − (1 + γ)(j− − r)

]
σ
A2j+

i Ã2j+
Ψ(A1...A2j+ )(B1...B2j− )Φ

(A1...Ã2j+ )(B1...B2j− )

= 0 (79)

which proves the simplicity constraint eq.(52). �

C. New Boundary Hilbert Space:
Lorentzian Theory

Now we turn to the case of G = SL(2,C). In this case
the decomposition of the Hilbert space reads

Hγv =
⊗
f

L2
(
SL(2,C),dµH

)
(80)

=
⊗
f

⊕
kf=N/2

∫ ⊕
R

dpf
(
p2f + k2f

)
V(kf ,pf ) ⊗ V

∗
(kf ,pf )

where kf are still non-negative half-integers but pf ∈ R
is now a real number. Here

∫ ⊕
denotes a direct integral

decomposition [35] (see also Chapter 30 of [4]). V(k,p)
denotes the unitary irrep of SL(2,C) in the principal se-
ries, and V ∗(k,p) denotes the adjoint irrep. We can then

proceede as in the EUclidean theory. The BF boundary
Hilbert space reads

Hγv =
⊕
{kf}

∏
f

∫ ⊕
R

dpf
∏
f

(
p2f + k2f

)⊗
e

⊗
f∈e

V
(e,f)
(kf ,pf )

(81)
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The representation space V(k,p) is infinite-dimensional
and can be decomposed into SU(2) irreps (irreps of the

subgroup generated by ~L), i.e.

V(k,p) =

∞⊕
j=k

V k,pj . (82)

This time we introduce the two parameters j and r by

p = γj
j + 1

j − r
, (83)

k = j − r. (84)

and we define the new boundary space by restricting each

V(k,p) to its V k,pj subspace satisfying (83). This time p

does not need to be half-integer, therefore (83) can be
solved for any j. The new quantum numbers associated
to each face are jf and rf , each being a nonnegative half
integer.

As before, we consider the diagonal SU(2) action at
each e for all he ∈ SU(2). The invariant subspace under
this action is

I
jf
e = InvSU(2)

⊗
f∈e

(
V
γjf (jf+1)

jf−rf
,jf−rf

)(e,f)
 (85)

The new boundary Hilbert space is defined by a prod-
uct of these invariant subspaces over all the polyhedra e,
followed by a sum over all the possible jf and rf :

HLγv :=
⊕
{rf ,jf}

⊗
e

I
jf
e (86)

where jf and kf are non-negative half-integers with con-
straints (1) jf ≥ rf . HLγv is a direct sum over a set of
subspaces contained in the fiber Hilbert spaces of Hγv
(see eq.(80)), thus has well-defined inner product.

An orthonormal basis is constructed as follows. Con-
sider the oriented boundary graph γv. Given a F -valent
vertex/polyhedron e, we assign it an intertwiner iA1···AF

e

associated with F spins jf , f = 1, · · · , F

ie ∈ Inv

 ⊗
−−−→
(e,f) outgoing

Vjf
⊗

−−−→
(e,f) incoming

V ∗jf

 (87)

An orthogonal basis inHLγv is given by the following func-
tions (distributions) on SL(2,C)

TL(γv,jf ,rf ,ie)(gf ) = (88)∏
e

iAe1···AeFe

∏
(e,e′)

Π
(
γjf (jf+1)

jf−rf
,jf−rf )

jfAef ,jfAe′f
(gf )

here Π(p,k) denotes the representation matrix in SL(2,C)
irrep labeled by (p, k). All the Aef indices of the repre-
sentation matrices are contracted with the Aef indices of
the intertwiners.

The new boundary Hilbert space HLγv is not a sub-
space of the BF boundary Hilbert space Hγv , because

TL(γv,jf ,rf ,ie) are constructed by Π(k,p) which are distri-

butions. In order to check the geometric constraints
Eqs.(52) and (53) on HLγv , we have to compute the
(dual) action of the bivector operator on the distributions
TL(γv,jf ,kf ,ie). Fortunately the Hilbert space L2

(
SL(2,C))

has the structure of direct integral decomposition (see
eq.(80)). Then the (dual) action of the bivector opera-

tors~̂K and~̂L gives the actions of Lie algebra generators
~L and ~K on each fiber Hilbert space V(k,p).

We are now ready to proove our second main result

Theorem III.3. The Hilbert space HLγv solves the geo-
metric constraint (52,53), with s = −1.

Proof: Closure constraint follows immediately and
strongly by the diagonal SU(2) invariance at each poly-
hedron e. We only need to consider a single irrep V(k,p)

(p = γj(j+1)
k ) because ~L and ~K leave it invariant and,

different (p, k)’s label orthogonal subspaces in HLγv .
A canonical basis in V(p,k) is obtained diagonalizing the

Casimir operators J · J, ∗J · J, L · L and L3. The basis
can be denoted |(p, k); j,m〉 or simply as |j,m〉 since we
only consider a single irrep. On this canonical basis, the
generators act in the following way [36]:

L3|j,m〉 = m|j,m〉,
L+|j,m〉 =

√
(j +m+ 1)(j −m)|j,m+ 1〉,

L−|j,m〉 =
√

(j +m)(j −m+ 1)|j,m− 1〉,
K3|j,m〉 = −α(j)

√
j2 −m2|j − 1,m〉 − β(j)m|j,m〉

+α(j+1)

√
(j + 1)2 −m2|j + 1,m〉,

K+|j,m〉 = −α(j)

√
(j −m)(j −m− 1)|j − 1,m+ 1〉

−β(j)
√

(j −m)(j +m+ 1)|j,m+ 1〉

−α(j+1)

√
(j +m+ 1)(j +m+ 2)|j + 1,m+ 1〉,

K−|j,m〉 = α(j)

√
(j +m)(j +m− 1)|j − 1,m− 1〉

−β(j)
√

(j +m)(j −m+ 1)|j,m− 1〉

+α(j+1)

√
(j −m+ 1)(j −m+ 2)|j + 1,m− 1〉,

where

L± = L1 ± iL2, K± = K1 ± iK2 (89)

and

α(j) = i
j

√
(j2−k2)(j2+p2)

4j2−1 , β(j) = kp
j(j+1) (90)

Using these equations, one can check directly that

〈j,m′|
(
Ki + β(j)L

i
)
|j,m〉 = 0. (91)

which is nothing but

〈j,m′|
(
Ki + γLi

)
|j,m〉 = 0. (92)

because pk = γj(j + 1).
�
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D. Quantum Polyhedral Geometry

In this section we show that the boundary Hilbert
space HEγv and HLγv carries a representation of quantum
polyhedral geometry, consistent with the classical poly-
hedral geometry that we have discussed in Section III A.
Recall that we defined two different bivectors JIJef and

ΣIJef related by

BIJf =

(
∗Σf +

1

γ
Σf

)IJ
ef

(93)

Theorem III.1 states that classically, the geometric con-
straint of BIJf implies that BIJf is the area bivector of a
face f of a polyhedron e. On the BF boundary Hilbert
space Hγv the bivector BIJf is quantized to be the left

invariant vector field JIJf . Inverting the above equation,
we can write the quantum operator corresponding to Σ
(which we indicate with the same symbol) as

ΣIJf :=
γ2

γ2 − s

(
∗JIJef −

1

γ
JIJef

)
(94)

Give a polyhedron/vertex e of the boundary, if we choose
the unit vector (ne)I = (1, 0, 0, 0), then the simplicity

constraint implies the vanishing of Σ0j
f for each face f .

That is, the matrix elements of the operators Σ0i
f vanish

on HEγv and HLγv , thus we consider them as vanishing

operators on HEγv or HLγv . The nontrivial operator on

HEγv and HLγv is

Σif ≡
1

2
εijkΣjkf =

γ2

γ2 − s

(
K̂i
f −

1

γ
L̂if

)
(95)

Because of the quantum simplicity constraint (52), we

can identify K̂i
ef with sγ~Lef on the dense domain of the

new boundary Hilbert space, as far as the matrix ele-
ments of the operators are concerned. Thus, in the sense
of their matrix element

~Σf = sγ ~Lf (96)

By the SU(2) gauge invariance, then∑
f∈∂e

Σ̂f = 0 (97)

(with all f ’s oriented out of e.) Consider now a family of
coherent states that makes the spread of these operators
small. These coherent states are then characterized by

eigenvalues of ~Σf that satisfy the equation above. By
Minkowski theorem, they determine a polyhedron e at

each vertex. ~Σef represents the normal to face area of
the polyhedron e, normalized so that its norm is the area
of the face [22]. The area operator for a face f (in units
that 8π`2p = 1 [1]) is then

Âf = γ
√
L̂ief L̂

i
ef = γ

√
jf (jf + 1). (98)

It is clear that the area operator doesn’t depend on the
orientation of the face. Thus the two areas of the two
faces of the two polyhedra e and e′ that are determined
by the same face f are equal. (Recall that the one of
the two is determined by the left invariant vector field J
and the other by the right invariant vector field R, since
Rf = Jf−1 .)

At fixed values of the areas, the shapes of the polyhedra
is described by the intertwiner spaces at each e. We recall
that an over-complete basis in these spaces is formed by
the Livine-Speziale coherent intertwiners [10]

||~j, ~n〉 :=

∫
SU(2)

dµH(g)
∏
f⊂e

Djf (g)|jf , nf 〉 (99)

These can be labeled [16] by the elements in
×fS2/SL(2,C). Thinking of S2 as the compactified com-
plex plane of zf , a coherent intertwiner is determined by

F quantum area jf and F − 3 complex cross-ratios ~Z

Zk =
(zk+3 − z1)(z2 − z3)

(zk+3 − z3)(z2 − z1)
(100)

which are invariants of SL(2,C). The space of these
cross-ratio ×fS2/SL(2,C) can be identified [38] with the
Kapovich and Millson phase space SF [39], which is also
the space of shapes of polyhedra at fixed areas jf . Thus,

we can label the coherent intertwiner by ||~j, ~Z〉, in vari-
ables that relate directly to the shape of the polyhedron.
The resolution of identity in the intertwiner space can
be expressed as a integral over the Kapovich and Millson
phase space SF , i.e.

1I(~j) =

∫
SF

dµ(~Z) ||~j, ~Z〉 〈~j, ~Z|| (101)

where the explicit expression of the measure dµ(~Z) is
given in [16]. Finally the volume operator for a polyhe-
dron can be defined as in [22], in terms of the classical
volume of a polyhedron and the coherent intertwiner.

Notice that the quantum polyhedral geometry doesn’t
depend on the quantum numbers rf . The quantum
numbers rf don’t affect the quantum 3-geometry on the
boundary.

IV. AMPLITUDES

A. Vertex Amplitude: Euclidean theory

If we take BF theory and restrict all vertex-boundary
spaces toHEγv (orHLγv ) we obtain a new dynamical model.
Here we give explicitly its vertex and face amplitude.
Let’s start with the Euclidean case. The BF vertex am-
plitude can be written in the holonomy representation:
(each edge joining at v is uniquely determined by a ver-
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tex/polyhedron e on the boundary) reads

Av(gf ) =
∑
j±f ,i

±
e

∏
f

√
2j+f + 1

√
2j−f + 1

Av(j
+
f , j

−
f ; i+e , i

−
e )TBF

γv,j
±
f ,i
±
e

(gf ) (102)

Here

Av(j
+
f , j

−
f ; i+e , i

−
e ) = tr

(⊗
e∈v

I†e

)
(103)

where I = (i+, i−) and we assume the valence of v is n.
TBF
(γv,j

±
f ,i
±
e )
∈ Hγv is a Spin(4) spin-network function on

the boundary graph γv

TBF
γv,j

±
f ,i
±
e

(gf ) := Tγv,j+f ,i
+
e

(g+f )Tγv,j−f ,i
−
e

(g−f ) (104)

where

Tγv,jf ,ie(gf ) =
∏
f

√
2jf + 1

∏
e

[
(ie)
{mef}

]
(105)

∏
(e,f)

[
D
jf
mefnef (gef )

]⊗
f

[
εnefne′f

]
The vertex amplitude eq.(102) is a distribution of the
boundary Hilbert space Hγv , i.e. there is a dense domain
of Hγv spanned by the spin-network functions TBF

(γv,j
±
f ,i
±
e )

,

such that Av(gee′) lives in the algebraic dual of this dense
domain. After imposing the geometric constraint, we re-
strict ourself to the subspace HEγv . Such a restriction
results in a (dual) projection of the vertex amplitude Av,
i.e. we obtain

AEv (gf ) =
∑

jf ,rf ,ie

〈
Tγv,jf ,rf ,ie , Av

〉
TEγv,jf ,rf ,ie(gf ) (106)

where Tγv,jf ,rf ,ie is a orthonormal basis of HEγv (recall
eq.(70)), and 〈 , 〉 is the inner product of the BF bound-
ary Hilbert space Hγv . The evaluation of AEv is straight-
forward:

AEv (gf ) =
∑

jf ,rf ,ie

∏
f

√
2j+f + 1

√
2j−f + 1 (107)

∑
i+e ,i

−
e

Av

(
j+f , j

−
f ; i+e , i

−
e

)∏
e

f ie
i+e ,i

−
e
TEγv,jf ,rf ,ie(gee′)

where we write j+ ≡ 1+γ
2 j and j− ≡ 1−γ

2 j + r and for
each F -valent boundary polyhedron/vertex

f ie
i+e ,i

−
e

= iAe1···AeFe C
m+
e1m

−
e1

Ae1
· · ·Cm

+
eFm

−
eF

AeF

(i+e )m+
e1···m

+
eF

(i−e )m−e1···m
−
eF

(108)

Then in the (jf , rf , ie)-spin-network representation, the
vertex amplitude is

AEv (jf , rf , ie) =
∑
i+e ,i

−
e

Av

(
j+f , j

−
f ; i+e , i

−
e

)∏
e

f ie
i+e ,i

−
e
(109)

which nontrivially depends on the quantum numbers rf
via the definition of j−f .

There is another way to write this vertex amplitude
in (jf , rf , ie)-spin-network representation. Define a map

I
{rf}
E from SU(2) intertwiners to Spin(4) intertwiners,

depending on the quantum numbers rf . Given an F -
valent SU(2) intertwiner ie with spins k1, · · · , kF , let

I
rf
E : ie 7→ I

rf
E (ie) = iAe1···AeFe C

n+
e1n
−
e1

Ae1
· · ·Cn

+
eFn

−
eF

AeF∫
dg+dg−

∏
f∈e

D
1+γ
2 jk

m+
efn

+
ef

(g+) D
1−γ
2 jf+rf

m−efn
−
ef

(g−) (110)

Given an edge e ∈ E(K), we associate an intertwiner

I
{rf}
E (ie) to the inital point of the edge e, and a dual

intertwiner I
{rf}
E (ie)

† to the final point of e. Then the
vertex amplitude AEv can be written a spinfoam trace of

the intertwiners I
{rf}
E (ie)

AEv (kf , rf , ie) = tr

(⊗
e∈v

I
{rf}
E (ie)

†

)
(111)

where we have again assumed that all the edges joining
at v are oriented towards v.

B. Vertex Amplitude: Lorentzian theory

The Lorentzian vertex amplitude can be defined in the
same manner. The SL(2,C) BF vertex amplitude is ex-
pressed in the holonomy representation as a distribution

Av(gf ) =
∑
kf ,Ie

∫ ∏
f

dpf
∏
f

(
k2f + p2f

)
(112)

Av

(
pf , kf ; Ie

)
TBFγv,(k,p)f ,(l,n)e(gf )

where

Av

(
pf , kf ; Ie

)
= tr

(⊗
e

I†e

)
(113)

and

TBFγv,pf ,kf ,Ie(gf ) =
∏
e

I{jef},{mef};Ie
∏
f

Π
pf ,kf
jefmef ,je′fme′f

(gf )

Recall that we always assume the vertex amplitude is
associated with an integrable spin-network graph, thus
is finite after regularization [32].

We can project Av on the new boundary Hilbert space
HLγv , in the same way as the Euclidean case

ALv (gf ) =
∑

jf ,rf ,ie

∏
f

(
γ2j2f (jf + 1)2

(jf − rf )2
+ (jf − rf )2

)
〈
TLγv,jf ,rf ,ie , Av

〉
TLγv,jf ,rf ,ie(gee′) (114)
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where 〈 , 〉 is the inner product on the BF boundary
Hilbert space. The states

TLγv,jf ,rf ,ie(gf ) =
∏
e

iAe1···AeFe

∏
(e,e′)

Π

γjf (jf+1)

jf−rf
,jf−rf

jfAef ,jfAe′f
(gf )

form an orthogonal basis in HLγv . By using the orthogo-
nality relation∫

SL(2,C)
dg Π

(p,k)
jm,ln(g) Π

(p′,k′)
j′m′,l′n′(g) =

1

k2 + p2
δkk

′
δ(p− p′)δjj′δll′δmm′δnn′ (115)

it is straightforward to show that in the (jf , rf , ie)-spin-
network representation, the resulting vertex amplitude
reads

ALv (jf , kf , ie) =
〈
TL(γv,jf ,kf ,ie) , Av

〉
(116)

=
∑
Ie

Av

(
(
γjf (jf + 1)

jf − rf
, jf − rf ); Ie

)∏
e

f ieIe

where

f ieIe := i
{Aef}
e I{jf},{Aef}Ie

(
γjf (jf + 1)

jf − rf
, jf − rf

)
(117)

As expected, the vertex amplitude ALv obtained in this
manner is divergent, and we need a regularization proce-
dure. To this aim, rewrite the vertex amplitude in terms
of spinfoam trace as we did for the Euclidean theory. We
define a formal map I

rf
L from SU(2) intertwiners into

SL(2,C) intertwiners, depending on the quantum num-
bers rf

I
rf
L (ie){j′f},{A′f} =

∫
dg

∏
f⊂e

Π
(
γjf (jf+1)

jf−rf
,jf−rf )

j′fA
′
ef ,jfAef

(g) · i{Aef}e

which gives ALv by a spinfoam trace

ALv (jf , rf , ie) = tr

⊗
f∈e

I
{rf}
L (ief )†

 (118)

To regularize the vertex amplitude ALv it is sufficient to
removing one of the dg integration (which is reduntand)
at each vertex. With this, the vertex amplitude ALv is
finite.

C. Face Amplitude and Partition Function

It is argued in [29] that the face amplitude of a spin-
foam model is determined by three inputs: (a) the choice
of the boundary Hilbert space, (b) the requirement that
the composition law holds when gluing two complexes
K and K′, (c) a particular locality requirement (see [29]

for the details of the three assumptions). These require-
ments are implemented if the partition function has the
form (22). By inserting the vertex amplitudes that we
have defined into this expression, we complete the defi-
nition of an Euclidean and a Lorentzian model.

Expanding the delta function in representation, we ob-
tain

ZE,L(K) =
∑

jf ,rf ,ie

∏
f

dE,L(jf , rf )
∏
v

AE,Lv (jf , rf , ie)

where the Euclidean face amplitude is

dE(jf , rf ) =
[
(1 + γ)jf + 1

][
(1− γ)jf + 2rf + 1

]
(119)

the Lorentzian one is

dL(jf , rf ) =
γ2j2f (jf + 1)2

(jf − rf )2
+ (jf − rf )2. (120)

where the dimension factors AEf :=
[
(1 +

γ)kf + 1
][

(1− γ)kf + 2rf + 1
]

and ALf :=[
k2f + γ2j2f (jf + 1)2/k2f

]
are the face amplitudes

for the Euclidean and Lorentzian theories. In the
Euclidean case, the face amplitudes is different from
the one obtained in [29] and coincide with the ones
deduced from the BF partition function. In [29] the face
amplitude obtained is the dimension of SU(2) unitary
irrep i.e. 2jf + 1. The origin of the difference is the
difference in the boundary Hilbert space. The one here,
HEγv or HLγv , has additional degree of freedom with

respect to the space L2(SU(2)L) of [29].

V. THE NEW DEGREE OF FREEDOM AND
RELATION TO QUANTUM GR

Does the new degree of freedom of the theory defined
above, which is captured by the quantum number rf , has
a physical interpretation relevant for quantum gravity?
There are some reasons to suspect a negative answer. Let
us consider the Euclidean theory for simplicity.

First, we have seen that rf does not affect the bound-
ary geometry. We expect all gravitational degrees of free-
dom to be captured by the geometry. More precisely,
in the classical theory we have the well known (“left
area=right area”) relation

|Σ+|2 = |Σ−|2, (121)

which implies

|1− γ|j+ = |1 + γ|j− (122)

which in turns implies rj = 0. We can still obtain states
compatible with GR in the classical limit by demanding
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that

lim
j±→∞

r

j−
= 0 for 0 < γ < 1

lim
j±→∞

r

j−
= 2 for γ > 1 (123)

in the large-j asymptotic regime. But this begins to be
a bit artificial.

Furthermore, in the classical theory the area of a face
can be equally computed in the time gauge as A4 =√

(Σf )IJ(Σf )IJ or as A3 = γ
√

ΣifΣif . Classically the

two areas A4 and A3 are equal after the simplicity con-
straint is imposed, and they indeed equal in the large-j
limit after quantization [9]. Let us denote the condition
A4 = A3 the consistency constraint. If we ask A4 and
A3 to be equal as operators in the quantum level on the
boundary Hilbert space (as in the case of [9]), then again
this fixes rf . The precise value of rf fixed depends on
how the operators corresponding to A4 and A3 are or-
dered. In this sense the quantum numbers rf are related
to the operator-ordering ambiguities of the consistency
constraint. Once an order is chosen, there is no more
independent quantum number rf in the theory. With a
suitable ordering, we can fix rf = 0

For these consideration, it may be reasonable to sus-
pect that the weak imposition of the simplicity con-
straints may in fact be too weak to properly define quan-
tum general relativity, in the same sense in which the
strong imposition of these constraints in the old Barrett-
Crane model was too strong. There is a simple way out,
which is to impose the (non-commuting) simplicity con-
straints weakly, and the diagonal simplicity constraint
(for instance in the form (121)) strongly. With this choice
of constraints, properly ordered, we obtain rf = 0, pre-
cisely the LQG state space in the boundary, and pre-
cisely the new models amplitudes. Finally, the gluing

conditions gives the SU(2) face amplitude. Thus, we re-
cover precisely the quantum gravity theory described for
instance in [1].

Note that one could also take the point of view that
the quantum numbers rf label different possible defini-
tions of the spin-foam models. In each of these spin-foam
models, the boundary Hilbert space solves the simplicity
constraint weakly. And for different choices of rf the
boundary Hilbert spaces are isometric to each other.

VI. CONCLUSION AND OUTLOOK

By imposing the simplicity constraints on a quantum
BF theory defined on an arbitrary cellular complex, we
have obtained a theory which: (1) is well defined both
in the Euclidean and the Lorentzian context; (2) gener-
alizes the existing spinfoam model to general 2-cell com-
plexes, along the lines suggested by [20]; (3) has bound-
ary state that have a natural interpretation in the semi-
classical limit as a polyhedral geometry on the boundary.
In particular, we have shown that the KKL extension of
the spinfoam formalism still satisfies the simplicity con-
ditions weakly.

The weak simplicity constraint allow a space larger
than the one of LQG to emerge. The physical interpreta-
tion of the additional degree of freedom is unclear. It can
be eliminated by imposing the non-commuting simplicity
constraints weakly and the diagonal one strongly.
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