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Introduction

These notes present a sketch of semiclassical methods which can be used to describe the spectral properties (and as a consequence, the long time properties) of a certain class of 1-particle quantum chaotic systems. Here are two examples:

• damped waves ψ(x, t) on a compact riemannian manifold X of negative sectional curvature. The dynamics is described by the damped wave equation

(1) ∂ 2 t -∆ X + 2b(x)∂ t ψ(x, t) = 0 , and the damping function b(x) ≥ 0 is assumed to be smooth.

• quantum scattering on R d , described by the Schrödinger equation [START_REF] Sjöstrand | Complex scaling and the distribution of scattering poles[END_REF] i ∂ t ψ(x, t) = P ( )ψ(x, t) , P ( ) = -

2 ∆ 2 + V (x) ,
where the potential V (x) has compact support and consists of 3 peaks centered on an equilateral triangle; is Planck's constant. These two systems seem very different. The configuration spaces are respectively compact and of infinite volume, the wave equation does not depend on ; the damped wave equation can be rewritten in terms of a contracting semigroup, while the propagator e -itP ( )/ is unitary.

In the damped wave situation, Eq. ( 1) can be diagonalized by a discrete set of metastable modes e -ikj t ψ j (x), where ψ j (x) ∈ L 2 (X) satisfies the generalized eigenvalue equation

(3) ∆ + k 2 j + 2i b(x) k j ψ j (x) = 0 .
The eigenvalues k j are complex, and lie in the strip -2 max(b) ≤ ℑk j ≤ 0. We are interested in the distribution of these eigenvalues in the high-frequency limit ℜk j → ∞.

In the scattering situation (2), the Hamiltonian P ( ) is selfadjoint on L 2 (R), with absolutely continuous spectrum on R + . However, the Green's function (P ( )z) -1 (x, y), well-defined for ℑz > 0, admits a meromorphic continuation through R + to the lower half-plane, with discrete poles {z j ( )} of finite multiplicities (the resonances of P ( )). We will investigate the distribution of these resonances, in the vicinity of a fixed energy E > 0, in the semiclassical limit → 0. To each resonance is associated a metastable state ψ j (x), which is not in L 2 but formally decays with time as e -itzj ( )/ ψ j (x).

The lifetime of a metastable state is given by the imaginary part of the eigenvalue,

τ j = 1 2|ℑkj | , resp. τ j = 2|ℑzj( )| .
Here are some common features of the two systems. In §2.1 we show that the high-frequency limit ℜk j → ∞ is similar with the semiclassical limit → 0. It is then relevant to study the corresponding classical dynamics: in the damped wave situation, it is the geodesic flow on X, while in the scattering case it is the Hamiltonian flow generated by the Hamiltonian p(x, ξ) = |ξ| 2 2 + V (x), in some energy interval [E -δ, E + δ]. Our assumptions on X or V (x) imply that these classical flows are both "strongly chaotic".

In both cases, the long time properties of our quantum system involves a spectrum of complex "eigenvalues" associated with metastable states. Our main aim is to understand the distribution of the lifetimes τ j in the semiclassical/high energy limit, especially the ones which are not infinitesimally small when → 0: we will thus focus on resonances such that |ℑz j ( )| = O( ).

Transformation to nonselfadjoint spectral problems

Each of these two quantum systems can be recast into a spectral problem for an associated nonselfadjoint differential operator on L 2 , with discrete spectrum near the real axis.

2.1. Damped quantum mechanics. Following [START_REF] Sjöstrand | Asymptotic distribution of eigenfrequencies for damped wave equations[END_REF], let us start from the damped wave system. The generalized eigenvalue equation ( 3) for ℜk j ≫ 1 can be rewritten using an effective "Planck's constant" ≈ (ℜk j ) -1 , and replacing k j by the "energy"

z j = ( kj ) 2 2 = 1/2 + O( ): (4) P dw ( )ψ j = z j ψ j + O( 2 ), P dw ( ) = - 2 ∆ 2 -i b(x) .
The principal symbol of the operator P dw ( ), p 0 (x, ξ) = |ξ| 2 /2, is real and generates the geodesic flow on X. The skew-adjointness of P dw ( ) only appears in the subprincipal symbol -i b(x): the latter does not influence the classical dynamics, but is responsible for the decay of probability along the flow. Indeed, for ψ 0 a wavepacket microlocalized on ρ 0 = (x 0 , ξ 0 ) ∈ T * X, its evolution ψ(t) = e -itP dw ( )/ ψ 0 will be another wavepacket microlocalized at ρ t = (x t , ξ t ) = Φ t (ρ 0 ), with total probability reduced by a finite factor ( 5)

ψ(t) 2 ψ 0 2 ≈ exp -2 t 0 b(x s ) ds .
In the limit → 0, one can speak of a damped classical dynamics: each point ρ t evolves according to the geodesic flow, and carries a weight which gets reduced by the above factor along the flow. The horizontal spectral density of P dw ( ) is given by Weyl's law, which (to lowest order) does not depend on the damping [START_REF] Sjöstrand | Asymptotic distribution of eigenfrequencies for damped wave equations[END_REF]: for any c > 0, [START_REF] Nonnenmacher | Quantum decay rates in chaotic scattering[END_REF] 

♯{Spec(P dw ( )) ∩ ([1/2 -c , 1/2 + c ] + iR)} = -d+1 c C X + O(1) ,
where C X > 0 only depends on X. On the other hand, we will see that the distribution of the imaginary parts ℑz j ( ) strongly depends on the interplay between the geodesic flow and the damping b(x).

Complex scaled scattering

Hamiltonian and open dynamics. The scattering operator P ( ) in ( 2) can be transformed to a nonselfadjoint one through the complex scaling method [START_REF] Sjöstrand | Complex scaling and the distribution of scattering poles[END_REF]. One deforms the configuration space R d into a complex contour Γ θ = {x + iθf (x)}, where f (x) = 0 for x in a ball B(0, R) containing the support of V (x) (the "interaction region"), while f (x) = x for |x| ≥ 2R. We take an angle θ = M log(1/ ), M > 0 fixed. This leads to a "scaled" operator P θ ( ), which is no more selfadjoint: in the sector -2θ < arg(z) ≤ 0 it admits discrete eigenvalues, which correspond to the resonances of P ( ).

Our quest for resonances has turned into the spectral study of P θ ( ). This operator admits the symbol

p θ (x, ξ) = p(x, ξ) -iθ ξ, df (x) t ξ + O(θ 2 )|ξ| 2 , p(x, ξ) = |ξ| 2 2 + V (x) .
The operator P θ ( ) presents similarities with (4): its principal symbol p(x, ξ) is real and generates the Hamiltonian flow on p -1 (E), while its imaginary part is of higher order log(1/ ), and generates a damping outside B(0, R). One difference with P dw lies in the strength of this damping: for an initial wavepacket localized on a point ρ 0 ∈ p -1 (E), the full probability after time t will be reduced by a factor 2M t 0 ξs,df (xs) t ξs ds : the probability is semiclassically strongly suppressed as soon as the trajectory enters the zone where ξ, df (x) t ξ > 0 (this "absorbing zone" contains the exterior of B(0, 2R)).

Classically, this corresponds to an "open dynamics": the point ρ t evolves according to the Hamiltonian flow, but it gets "absorbed", or "killed" as soon as it enters the absorbing zone.

Trapped set. For any energy E > 0, the forward (resp. backward) trapped set K - E (resp. K + E ) is defined as the set of initial points which remain bounded for all positive (resp. negative) times:

K ∓ E = {ρ 0 = (x 0 , ξ 0 ) ∈ p -1 (E), |x t | ≤ R, ∀t ≷ 0} , while the trapped set is made of their intersection K E = K - E ∩ K + E .
Notice that K E is a compact flow-invariant set. The above remark shows that any wavepacket localized on a point ρ 0 ∈ K - E will be absorbed after a finite time, namely the time it takes to enter the absorbing zone. On the other hand, a point ρ ∈ K - E will converge to the trapped set K E as t → ∞. This argument shows that, in some sense, long time quantum mechanics (at energy ≈ E) takes place on K E .

Fractal Weyl laws

The above argument can be made precise when estimating the number of resonances of P ( ) near E. In the case we are interested in, K E is a hyperbolic repeller (that is, there is no fixed point on K E , and all trajectories are hyperbolic), this number is bounded above by a fractal Weyl law directly related with the geometry of K E [START_REF] Sjöstrand | Fractal upper bounds on the density of semiclassical resonances[END_REF].

Theorem 1. Assume that the trapped set K E at some energy E > 0 is a hyperbolic repeller, and write its Minkowski dimension dim M (K E ) = 1 + 2ν. Then for any c, α > 0, one has in the semiclassical limit [START_REF] Schenck | Energy decay for the damped wave equation under a pressure condition[END_REF] ♯{Res(P ( )

) ∩ ([E -c , E + c ] -i [0, α])} = O( -ν-0 ) .
This theorem is proved by conjugating P θ ( ) by a suitable "weight" G( ), so that the symbol p θ,G of the conjugated operator e -G( ) P θ e G( ) satisfies ℑp θ,G < -2C outside the √ -neighbourhood of K E . Estimating the volume of this neighbourhood, and some involved pseudodifferential calculus on p θ,G , lead to the above upper bound.

A similar argument can be used to study the distribution of decay rates ℑz j / for the operator (4). For any time T > 0, one can construct a weight G T ( ), such that the conjugate operator P dw,GT ( ) = e -GT ( ) P dw ( )e GT ( ) admits the symbol ( 8)

p dw,GT (x, ξ) = |ξ| 2 2 -i b T (x, ξ) + O( 2 ) ,
where the subprincipal symbol b T (ρ) = T -1 T /2 -T /2 b(x t ) dt is the average of the damping along the flow. The geometric assumption of negative curvature that the geodesic flow on X is Anosov, in particular it is ergodic. This implies that, on the energy shell p -1 (1/2), the time average b T (ρ) almost everywhere to the microcanonical average b = Vol(X) -1 X b(x)dx when T → ∞. From there one can deduce that most of the eigenvalues ℜz i ( )

∈ [1/2, c , 1/2 + c ] concentrate near the "typical line" ℑz = -b [1].
Using finer properties of the Anosov geodesic flow, one can estimate the number of eigenvalues away from this "typical line" [START_REF] Anantharaman | Spectral deviations for the damped wave equation[END_REF]. To state the result, we need to introduce the extremal ergodic averages of the damping, b -= lim T →∞ min p -1 (1/2) b T , and similarly for b + .

Theorem 2. Assume X is a compact surface of negative curvature. Then, there exists a function H : R → R, strictly concave on [b -, b + ] and equal to -∞ outside, with maximum H( b) = d -1, such that for any c > 0 and any α ∈ [0, b], [START_REF] Petkov | Analytic continuation of the resolvent of the Laplacian and the dynamical zeta function[END_REF] ♯{Spec(P dw ( )

) ∩ ([1/2 -c , 1/2 + c ] -i [0, α])} = O( -H(α)-0 ) .
A similar estimate holds for the range -ℑz ≥ α, α > b.

Comparing this "fractal Weyl upper bound" with the Weyl law [START_REF] Nonnenmacher | Quantum decay rates in chaotic scattering[END_REF] confirms that most resonances are on the typical line. The above theorem is obtained by studying the large deviations of the value distribution of b T in the limit T → ∞: roughly speaking, for α < b, the volume of the points ρ ∈ p -1 (1/2) such that b T (ρ) ≤ α decays like e T (H(α)-(d-1)) . This volume estimate is then used to get [START_REF] Petkov | Analytic continuation of the resolvent of the Laplacian and the dynamical zeta function[END_REF].

In both situations, the upper bounds on counting resonances/eigenvalues were obtained by deforming the operator P θ (resp. P dw ) by an appropriate microlocal weight, and studying the imaginary part of the resulting operator by phase space volume arguments, where the classical dynamics plays a prominent rôle.

3.1. Spectral gaps. We now present a complementary type of spectral information, which can be obtained by a similar method for these two systems. Namely, we want to understand if the lifetimes τ j ( ) can be arbitrarily large in the semiclassical limit; or on the opposite, if there exists a gap of size ∝ between the real axis and the eigenvalues/resonances. The presence of such a gap has important consequences on the long time properties of the system.

Let us start with the scattering problem. The gap question can be rephrased as: "Are the metastable states able to concentrate on K E when → 0?" The answer will result from a competition between, one one side, the fast dispersion of wavepackets due to the hyperbolic classical flow, on the other side the "thickness" of the trapped set allowing the state to reconstruct itself through constructive interferences.

A dynamical quantity reflecting this competition is of statistical nature, it is a topological pressure associated with the flow on K E :

P(-ϕ u /2) = lim T →∞ 1 T log γ:T ≤Tγ ≤T +1 exp - Tγ 0 ϕ u (ρ t )/2 dt .
Each γ is a periodic orbit in K E with period T γ , and ϕ u (ρ) is the unstable Jacobian of the flow. The above mentioned competition lies in the fact that each exponential weight gets very small when T γ → ∞, while the number of terms grows exponentially.

The following gap criterion was first obtained [START_REF] Ikawa | Decay of solutions of the wave equation in the exterior of several convex bodies[END_REF] for the case of hard obstacles, and then generalized in [START_REF] Nonnenmacher | Quantum decay rates in chaotic scattering[END_REF] to smooth potentials. Theorem 3. Assume the trapped set K E is a hyperbolic repeller. If the pressure P(-ϕ u /2) < 0, then for any c, ǫ > 0 and any small enough , the strip [E -c , E + c ] + i [P(-ϕ u /2) + ǫ, 0] does not contain any resonance of P ( ).

In dimension d = 2, the condition P(-ϕ u /2) < 0 is equivalent with a purely geometric statement, namely the fact that the Hausdorff dimension dim H (K E ) < 2 (notice that dim H p -1 (E) = 3).

In the case of damped waves, the gap question is nontrivial if b -= 0, that is, if there exists a flow-invariant subset of p -1 (1/2) with no damping. A result similar to the one above was obtained in [START_REF] Schenck | Energy decay for the damped wave equation under a pressure condition[END_REF]. In this case, the local decay of probability is due to both hyperbolic dispersion and damping. Theorem 4. Assume that X has negative curvature, and that the topological pressure P(-ϕ u /2 -b) < 0. Then, for any c, ǫ > 0, and > 0 small enough, the strip [1/2 -c , 1/2 + c ] + i [P(-b -ϕ u /2) + ǫ, 0] does not contain eigenvalues of P dw ( ).

Open questions

Most of the above results are upper or lower bounds. The natural question is: "Are these bounds sharp?" The fractal Weyl bound ( 7) is conjectured to be sharp for α > 0 large enough, a fact which has been tested numerically on a number of examples, but could be proved only for a very specific toy model [START_REF] Nonnenmacher | Distribution of resonances for open quantum maps[END_REF]. On the opposite, the bounds (9) for eigenmodes of the damped wave equation are not expected to be sharp for all values of α. The size of the gap itself is believed to be larger than the topological pressure bound we gave above. Such an "extra gap" was proved for the 3-disk scattering, using advanced estimates on classical mixing [START_REF] Petkov | Analytic continuation of the resolvent of the Laplacian and the dynamical zeta function[END_REF].
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