
HAL Id: hal-00534695
https://hal.science/hal-00534695

Submitted on 20 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Comparison of Numerical Solvers for Cavitating Flows
Eric Goncalvès da Silva, Maxime Champagnac, Regiane . Fortes Patella

To cite this version:
Eric Goncalvès da Silva, Maxime Champagnac, Regiane . Fortes Patella. Comparison of Numerical
Solvers for Cavitating Flows. International Journal of Computational Fluid Dynamics, 2010, 24 (6),
pp.201-216. �10.1080/10618562.2010.521131�. �hal-00534695�

https://hal.science/hal-00534695
https://hal.archives-ouvertes.fr


International Journal of Computational Fluid Dynamics
Vol. 00, No. 00, February 2010, 1–43

RESEARCH ARTICLE

Comparison of Numerical Solvers for Cavitating Flows
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Different computational fluid dynamics (CFD) strategies have been developed to simulate, analyze and better
understand cavitating flows. Based on homogeneous models, two numerical approaches using compressible and
incompressible codes, are applied to capture large density variations and unsteady behaviours of cavitating
flows. Simulations are performed on two-dimensional Venturi geometries and compared with experimental
data. Local and global analyses are proposed and the necessity to account for compressibility phenomena is
discussed.
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Nomenclature

c speed of sound
CP , CV thermal capacities
E total energy
e internal energy
Fc, Fd convective and diffusive flux densities
H total enthalpy
h enthalpy
k turbulent kinetic energy
M local Mach number
M∞ infinite Mach number
n outer normal to a surface
P static pressure
Pi stagnation temperature
Pvap vapour pressure
Pr, Prt Prandtl numbers
P∞ reference pressure
q total heat flux
qref energy of fluid at a given reference state
ReL Reynolds number based on the length L
T mean static temperature
Ti stagnation temperature
Tref reference temperature
W conservative variables
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α void ratio
β parameter of the preconditioning method
γ ratio of thermal capacities
λ± eigenvalues of the preconditioned inviscid system
δ(.)l+1/2 difference operator for the l direction: (.)l+1 − (.)l
µ(.)l+1/2 averaged operator for the l direction: ((.)l+1 + (.)l)/2
ε dissipation rate
µ, µt molecular and eddy viscosity
ρ density
ρ(A) spectral radius of matrix A
ρV viscous spectral radius
σ cavitation number
τ total stress tensor
Ω cell volume
()L liquid value
()V vapour value
()n value at temporal iteration n

1 INTRODUCTION

The capability for simulation and prediction of cavitating flows is of critical importance in
the design of equipment such as turbomachinery, turbopumps in rocket propulsion systems,
hydrofoils, fuel injectors, marine propellers, nozzles and underwater bodies. In most cases,
cavitation is an undesirable phenomenon, causing significant degradation in the performance:
reduced flow rates, lower pressure increases in pumps, load asymmetry, vibrations, noise and
erosion. In most industrial applications, cavitating flows are turbulent and the dynamics of
the formed interface involves complex interactions between vapour and liquid phases. These
interactions are not well understood in the closure region of cavities where a distinct interface
may not exist and where the flow is unsteady.

A number of physical and numerical models have been developed to investigate cavitating
flows. Two-phase flow is often treated as a homogeneous phase mixture. A homogeneous
mixture consists of a single fluid of varying density ρ. In the mixture, the phases are as-
sumed to be in kinematic, mechanical and thermal equilibrium: they share the same velocity,
pressure and temperature. Moreover, vaporization or condensation processes are assumed to
be instantaneous. Hence, this approach cannot reproduce strong thermodynamic or kinetic
non-equilibrium effects. Density variation is determined by a cavitation model. In the literature,
cavitation modelling is often based on either ”equation of state (EOS)” models or ”void ratio
transport equation” models. In the EOS method, to close the system, the density is related
to the pressure and the temperature (Delannoy and Kueny 1990, Song 2002, Liu et al. 2004,
Moreau et al. 2004, Sinibaldi et al. 2006, Pouffary et al. 2008, Goncalves and Fortes-Patella
2009). In the second approach, the system is closed by adding a transport equation for the void
ratio including a cavitation source term (Kunz et al. 2000, Ahuja et al. 2001, Senocak and Shyy
2002, Singhal et al. 2002, Wu et al. 2005, Fortes-Patella et al. 2006).

The crucial requirement of multiphase codes is the ability to accurately and efficiently span
both incompressible and compressible flow regimes. Cavitating flows are characterized by
large variation of the local Mach number. Indeed the speed of sound can be several orders of
magnitude higher in the liquid phase than in the two-phase mixture (supersonic regime). Thus
for low speed applications, numerical methods must be able to properly simulate simultaneously
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nearly-incompressible and highly-compressible flow areas. In the literature, both incompressible
and compressible solvers have been used. The first category must include density variations for
cavitating applications; for example with SIMPLE or PISO pressure-based algorithms (Ventikos
and Tzabiras 2000, Senocak and Shyy 2002, Singhal et al. 2002, Coutier-Delgosha et al. 2003,
Wu et al. 2005, Fortes-Patella et al. 2006). On the other hand, compressible codes require an
appropriate equation of state to cover all possible fluid states (pure liquid, two-phase mixture
and pure vapour). A well known difficulty concerns the stiffness on the solution convergence
when the Mach number becomes low. In this situation, the dominance of convection terms
renders the system stiff and compressible solvers converge slowly. To overcome this difficulty, a
preconditioned method is necessary. The physical acoustic waves are replaced by pseudo-acoustic
modes much closer to the advective velocity, reducing stiffness and enhancing the convergence.
A number of studies have been carried out with different preconditioned compressible solvers
(Edwards and Franklin 2000, Kunz et al. 2000, Ahuja et al. 2001, Schmidt et al. 2006, Sinibaldi
et al. 2006, Goncalves and Fortes-Patella 2009). Both approaches seem to have strong and weak
points. According to (Ahuja et al. 2001), incompressible codes can lead to an erroneous acoustic
speed in the mixture, particularly in the interface region, which may be not appropriate for
unsteady simulations. Both CFD algorithms have been compared in (Venkateswaran et al.
2002) and applied to unsteady cavitating ogive flows. Computational results showed distinct
behaviours between codes regarding the re-entrant jet phenomenon: with the incompressible
code, the phenomenon was more developed and reached the leading edge of the cavity. The
authors concluded that compressibility effects may need to be taken into account to correctly
describe the cavity dynamics. Finally, a third method combining the advantages of the first two
approaches has been explored (Rossow 2007, Housman 2009) and provided interesting results.

In the present study, we present two in-house finite-volume codes solving the one-fluid RANS
equations with an EOS cavitation model. In the mixture, a barotropic EOS is used to close
the system for both codes. Two numerical approaches have been tested. The first code is an
incompressible pressure-based solver modified to consider density variations. Both pure phases
are assumed incompressible. The second approach is based on a compressible density-based
code with a preconditioning method. Both pure phases are compressible and follow the stiffened
gas EOS.

The models and numerical techniques are evaluated by comparing the numerical results with
experimental data on two Venturi geometries with cold water (Fortes-Patella et al. 2006, Barre
et al. 2009). In the following, we will first summarize the essential elements of the governing
equations, modelling concepts and numerical schemes before presenting the computational re-
sults.

2 EQUATION OF STATE: THE BAROTROPIC LAW

The cavitation model applied in the present work is based on a sinusoidal barotropic law
(Delannoy and Kueny 1990) (Figure 1). This law is characterized by an adjustable parameter
cmin which can be interpreted as the minimum speed of sound in the mixture. This parameter
is set to 0.86 m/s for both codes.

When the pressure is between Pvap + ∆P and Pvap − ∆P , the following relationship applies,
function of the void ratio α:

P (α) = Pvap +

(

ρsat
L − ρsat

V

2

)

c2
min Arcsin (1 − 2α) and α =

ρ − ρsat
L

ρsat
V − ρsat

L

(1)

where ∆P represents the pressure width of the law, ρsat
L and ρsat

V are the saturation values of
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liquid and vapour densities. For a void ratio value of 0.5, the pressure is equal to the saturation
pressure Pvap.

For cold water, the cavitation phenomenon is assumed to be isothermal. The speed of sound
can be easily computed :

c2 =

(

∂P

∂ρ

)

s

=

(

∂P

∂ρ

)

T

=
c2
min

√

1 − (1 − 2α)2
(2)

This speed is always strictly positive and thus the inviscid compressible system is hyperbolic.
Moreover, this mixture EOS is convex for the cmin value considered (i.e. the Hessian matrix
of internal energy has to be positive definite) and respects entropy conditions (Goncalves and
Fortes-Patella 2009).

3 THE INCOMPRESSIBLE SOLVER

The IZ code, supported by the French space agency CNES, is based on an incompressible ap-
proach adapted to two-dimensional cavitating flows. The numerical resolution is a pressure-
correction method derived from the SIMPLE algorithm. It uses a finite-volume discretization ap-
plied to structured orthogonal meshes with staggered grids. All computations are time-dependent
to take into account the variation of density. Other applications are presented in (Coutier-
Delgosha et al. 2002, 2003, Fortes-Patella et al. 2006).

3.1 Governing equations

The RANS equations coupled with a two-equation k − ε turbulence model are solved in the
orthogonal frame of curvilinear coordinates (ξ, η). The system can be expressed as :

∂W

∂t
+

1

J

∂

∂ξ

[

h2

(

uW −
FW

h1

∂(W/ρ)

∂ξ

)]

+
1

J

∂

∂η

[

h1

(

vW −
FW

h2

∂(W/ρ)

∂η

)]

= SW (3)

W =













ρ
ρu
ρv
ρk
ρε













FW =













0
µ + µt

µ + µt

µt/σk

µt/σε













SW =































0
−1

J

∂(h2P )

∂ξ
−1

J

∂(h1P )

∂η

µt

(

[

1

J

∂(h2v)

∂ξ

]2

+

[

1

J

∂(h1u)

∂η

]2
)

ρε

C1k

(

[

1

J

∂(h2v)

∂ξ

]2

+

[

1

J

∂(h1u)

∂η

]2
)

− Sε































where W denotes the conservative variables, h1 and h2 the scale factors (the square roots of the
diagonal components of the metric tensor) and J = h1×h2, u and v the velocity components along
coordinates ξ and η respectively. The quantities σk, σε, C1 and Sε depend on the formulation of
the turbulence model.
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3.2 Spatial discretization

The finite volume method is applied for the space discretization. Each equation is integrated
locally on its own control volume based on the staggered grid to avoid pressure oscillations.
The pressure and the density are calculated at the center of the cells, while the velocity compo-
nents u and v are located respectively on the western and the southern faces of each cell.
The diffusive terms are discretized with a second-order space-centered scheme, while the convec-
tion terms are estimated through the second-order HLPA (Hybrid Linear Parabolic Approxima-
tion) scheme (Zhu 1991). This is a second-order scheme, which locally switches to first order, to
prevent numerical oscillations in critical high pressure or high density gradient areas.

3.3 Temporal discretization

Several first and second order numerical schemes are available. An unconditionally stable second-
order implicit scheme is applied to compute values at iteration n + 1:

∂W

∂t
=

3W n+1 − 4W n + W n−1

2∆t
(4)

3.4 Turbulence model

A k − ε RNG turbulent closure model (Yakhot et al. 1992), modified for two-phase flow simu-
lations by adding a turbulent viscosity limiting function f(ρ), is used. The turbulent viscosity
satisfies:

µt = f(ρ)Cµ
k2

ε
where Cµ = 0.085 (5)

In pure phases, f(ρ) = ρ. In the two-phase mixture regions, an arbitrary decrease of the
turbulent viscosity was proposed by Reboud (Reboud et al. 1998, Coutier-Delgosha et al. 2002):

f(ρ) = ρV + (1 − α)n(ρL − ρV ) (6)

where n is a parameter greater than 1. In the present study, we have chosen the value n = 10.
The turbulence model is coupled with standard wall functions.

3.5 Iterative procedure

If the flow is incompressible, we use a classical pressure-correction method proposed by Patankar
(Patankar and Spalding 1972). It is based on the SIMPLE algorithm, modified to include the
cavitation treatment. The resolution of each time-step is divided into several iterations, until
convergence is reached. Each iteration is composed of successive steps. The velocities are first
estimated from the momentum equations with a pressure field. Then, values of velocities are
corrected by solving a Poisson pressure correction equation in order to satisfy continuity. The
cavitation process induces the following modifications:

• The density is first calculated with the barotropic state law after solving the momentum

equations, as well as its derivative
∂ρ

∂P
.

• When the pressure correction dP is obtained, the density values are corrected using the

relation: dρ =

(

∂ρ

∂P

)

dP

The main steps of a single iteration are listed next to determine values at iteration n + 1:
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a) Resolution of the transport equations for the turbulent variables and calculation of the
turbulent viscosity.
b) Calculation of the estimated velocities U∗ from the momentum balance equations.
c) Calculation of the intermediate density ρ∗ and its derivative with respect to the pressure,
according to the equation of state.
d) Resolution of the pressure correction equation, which involves not only velocity variations
dU but also supplementary density variations terms dρ.
e) Computation of the new velocity Un+1, pressure Pn+1 and density ρn+1 fields.

A loop is added to the pressure correction step inside each iteration to check that the void ratio
remains between 0 and 1. Moreover, the density, velocity components and turbulent variables
can be under-relaxed if convergence is difficult to obtain. The pressure correction is not relaxed.

3.6 Inlet and outlet conditions

The boundary conditions are based on a system of dummy cells. Classical incompressible types
of boundary conditions are applied:
- at the inlet, the velocity component u is imposed and the component v is set to 0.
- at the outlet, a static pressure is imposed, and if the velocity component u < 0, the gradient
∂v

∂x
is set to 0.

We assume that inlet and outlet areas are in a pure liquid region. No cavitation appears in these
boundaries.

4 THE COMPRESSIBLE SOLVER

The CaviFlow code solves the compressible one-fluid RANS system for multi-domain structured
meshes. It is based on a cell-centered finite-volume discretization. More details concerning the
code are given in (Goncalves and Fortes-Patella 2009).

4.1 Preconditioning method for the Euler system

The preconditioning method is based on the modification of the derivative term by a pre-
multiplication with a suitable preconditioning matrix Pc. We used the formulation proposed by
(Turkel 1987) with the primitive variables pressure, velocity and entropy :

Pc =





β2 0 0
0 1 0
0 0 1





β is a parameter of the order of the Mach number. In our study, we have chosen the form
given by (Choi and Merkle 1993):

β2 = min
[

max
(

M2,KM2
∞

)

, 1
]

(7)

This form implies that there is no preconditioning used in transonic and supersonic flow regions
(in the mixture). When β2 = 1, the preconditioning matrix becomes the identity matrix and the
system returns to its classical non-preconditioned form. Moreover, for very small flow-velocity,
β2 is not allowed to be less than a given percentage of the freestream velocity, determined by
the coefficient K. For inviscid computations, K is near unity.
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4.2 The compressible RANS system

The inviscid preconditioner presented previously is used (no viscous terms are introduced). The
compressible RANS equations coupled with a two-equation turbulence model can be expressed
as:

P−1
c

∂W

∂t
+ div (Fc − Fv) = S (8)

W =













ρ
ρV
ρE
ρk
ρΨ













; Fc =













ρV

ρV ⊗ V + PI
(ρE + P )V

ρkV
ρΨV













; Fv =













0
τ

τ .V − q
(µ + µt/σk) grad k
(µ + µt/σΨ) grad Ψ













where W denotes the conservative variables, V the mean velocity vector, E the total en-
ergy, Fc and Fv the convective and viscous flux densities and S the source terms which concern
only the transport equations. Ψ is a turbulent variable.
The exact expression of the eddy viscosity µt and the source terms depends on the turbulence
model as well as constants σk and σΨ. τ is the total stress tensor and q the total heat flux
vector, evaluated with the Newtonian law, the Fourier law and the Boussinesq assumption.
For pure phases, we use the convex stiffened gas equation of state (Le Metayer et al. 2004) :

P (ρ, e) = (γ − 1)ρ(e − qref ) − γP∞ (9)

P (ρ, T ) = ρ(γ − 1)CvT − P∞ (10)

T (ρ, h) =
h − qref

Cp
(11)

where γ = Cp/Cv is the polytropic coefficient, Cp and Cv are thermal capacities, qref the energy
of the fluid at a given reference state and P∞ a constant reference pressure. e and h denote the
internal energy and enthalpy respectively.

4.3 Spatial discretization

Using the finite-volume technique for space discretization, a semi-discrete form of equation (8)
may be written for a computational cell of volume Ω limited by a surface Σ and with an outer
normal n:

P−1
c Ω

∂W

∂t
+

∑

allfaces

(Fc − Fv).nΣ = ΩŜ (12)

For the mean flow, the convective flux density vector on a cell face is computed with the
space-centered Jameson scheme stabilized by scalar artificial dissipation (Jameson et al. 1981).

Discretization of the viscous terms is performed by a second-order space-centered scheme.
For the turbulence transport equations, the upwind Roe scheme (Roe 1981) was used to obtain
a more robust method. The second-order accuracy was obtained by introducing a flux-limited
dissipation.
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4.4 Temporal discretization

Time integration is achieved through a low-cost implicit method (Luo et al. 1998). The implicit
method consists in solving, at each time step, a system of equations arising from the lineariza-
tion of a fully implicit scheme. The main advantage of this method is that the storage of the
Jacobian matrix is completely eliminated, which leads to a low-storage algorithm. The viscous
flux Jacobian matrices are replaced by their spectral radii. The Jacobian matrices, which appear
from the linearization of the centered fluxes, are approximated with the numerical fluxes. The
following system is obtained, for iteration n:

∆W n +
∑

l=i,j,k

[

σlδlµl(∆fn
l ) − σlδl(ρ

V
l ∆W n) − 0.5σlδl

(

P−1ρ(PAl)δl∆W n
)]

= Rn
expl (13)

where ∆W n = W n+1 − W n, σl = ∆t/∆xl, and Rn
expl represents the explicit conservative

residuals. For each direction l, ρV
l is the viscous spectral radius, µl the averaged operator, δl

the difference operator, Al the Jacobian matrix of the convective flux for the direction l and
ρ(PAl) the spectral radius of the matrix PAl.

The implicit time-integration procedure leads to a system which can be solved directly
or iteratively. The direct inversion can be memory intensive and computationally expensive.
Therefore, an implicit relaxation procedure is preferred and the point Jacobi relaxation
algorithm was chosen.

For unsteady computations, the dual time stepping method, proposed by (Jameson 1991), was
used to tackle the lack of numerical efficiency of the global time stepping approach. The derivative
with respect to the physical time is discretized by a second-order formula. The initialization of
the derivative with respect to the physical time was performed with a first-order formula.

4.5 Turbulence modelling

The considered model is the Jones-Launder k−ε model (Jones and Launder 1972). In two-phase
areas, the Reboud limiter is applied with the same constant n = 10. The turbulence model
is coupled with standard wall functions. Computations with both codes were not performed
rigorously with the same turbulence model, but we assumed that the Jones-Launder and the
RNG k − ε models roughly provided similar solutions.

4.6 Inlet and outlet boundary conditions

The numerical treatment of the boundary conditions is based on the use of the preconditioned
characteristic relations. The number of variable to impose at boundaries is given by the number
of positive characteristics. The characteristic relations obtained for the preconditioned system,
in two-dimensional flows, are:

−c2(ρc
− ρs) + (P c

− P s) = 0 (14)

V c
t − V s

t = 0 (15)

(λ+ − Vn)(P c
− P s) + ρβ2c2(V c

n − V s
n ) = 0 (16)

(λ− − Vn)(P c
− P s) + ρβ2c2(V c

n − V s
n ) = 0 (17)
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The variables with superscript c are those to be computed at the boundary. Variables with
superscript s are obtained by the current numerical scheme. Vt and Vn are the tangential and
normal components of the mean velocity respectively. λ+ and λ− are the eigenvalues of the
preconditioned inviscid system, given by:

λ± =
1

2

[

u(1 + β2) ±
√

(β2 − 1)2u2 + 4β2c2
]

(18)

At inflow, four variables have to be imposed. We have chosen the stagnation pressure Pi, the
stagnation temperature Ti, and the direction of the velocity. A Newton algorithm can be used
to compute the pressure with the characteristic relation (17) and the conservative variables can
be evaluated at the boundary.
At outflow, only one variable is imposed, which we have chosen to be the static pressure. The
conservative variables are computed with three characteristic relations (14)-(16).
We assume that inlet and outlet areas are in a pure liquid region. No cavitation appears in these
boundaries.

5 COMPUTATIONS AND COMPARISONS: OPEN CAVITY

The first case is an open cavity on a Venturi geometry, following the classification of partial
cavity flows (Laberteaux and Ceccio 2001).

5.1 Experimental geometry and conditions

The tested Venturi is characterized by a divergence angle of 4◦ (see Figure 2). The selected
operating point is characterized by (Barre et al. 2009):
Uinlet = 10.8 m/s : the inlet velocity
Pinlet = 35000 Pa : the pressure in the inlet section
Tref = 293K : the reference temperature

σinlet =
Pinlet − Pvap

0.5ρU2
inlet

≃ 0.55 : the cavitation parameter in the inlet section

ReLref
=

UinletLref

ν
= 2.7106 : the Reynolds number

With these parameters, a cavity length L ranging between 70 mm and 85 mm has been obtained.

The experimental void ratio and velocity profiles are obtained for five stations by a double
optical probe (Figures 2 and 3). The velocity is evaluated as the most probable value and
the void ratio is obtained from the signal of the double optical probe using a post processing
algorithm.

The experimental views for this geometry show a relatively stable cavity behaviour (Figure 4).
It is characterized by an almost constant length, although the closure region always fluctuates,
with the existence of a re-entrant jet and little vapour cloud shedding. The re-entrant jet is
mainly composed of liquid which flows upstream along the solid surface. For this geometry, no
periodic cycles with large shedding were observed.

5.2 Mesh

The grid is an H-type topology. It contains 251 nodes in the flow direction and 62 in the orthog-
onal direction. A special contraction of the mesh is applied in the main flow direction just after
the throat to better simulate two-phase flow area (Figure 5). The y+ values of the mesh, at the
center of the first cell, vary between 12 and 27, for a non-cavitating computation.
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According to the study of mesh dependence presented in (Coutier-Delgosha et al. 2005), this
grid size is adequate to simulate cavitation sheets in such Venturi type section.

5.3 Numerical parameters

For the non-cavitating regime, computations are started from an uniform flow-field. For the
cavitating regime, we used for both codes :
- the vapour pressure, Pvap = 2339Pa
- the saturation values of liquid/vapour density, ρsat

L = 1000kg/m3 and ρsat
V = 0.02kg/m3

- the farfield value of turbulent kinetic energy, k∞=0.0045 m2/s2

- the dimensionless time step for unsteady computations, ∆t∗ =
∆tUinlet

Lref
= 0.015.

The numerical parameters used for simulations are summarized in Table (1) and Table (2).

5.4 Comparison of the two solvers

Two series of solutions are presented and compared: steady and unsteady solutions.

5.4.1 Steady solutions

First, the goal was to obtain a steady solution with a stable cavitation sheet with a length
close to 80 mm. The defined sheet length Lcav used for representing the computational results
has been determined by the length of the iso-line corresponding to a void ratio α = 0.2.
With the compressible solver, steady computations were carried out with a local time stepping
method whereas, with the incompressible solver, unsteady simulations were performed without
reducing the turbulent viscosity. The overall results are given in Table (3). The σinlet value
obtained with the compressible code is over-estimated in comparison with both the experimental
value and the numerical ”incompressible” value.

Figure 6 shows the longitudinal velocity (left) and void ratio (right) profiles for the present
experiments and numerical simulations. The overall agreement seems good between the exper-
imental data and simulations. This is especially true for stations 1 and 2 where no re-entrant
jet phenomena occur. Further downstream, experimental observation indicates a recirculating
behaviour with a re-entrant jet extending roughly through half the sheet thickness. No relevant
influence of the numerical schemes and turbulence models is observed.

The wall pressure profiles are plotted in Figure 7 versus the distance x − xinlet. The first five
data are located inside the cavity (where void ratio and velocity profiles are measured). For
all computations, the pressure remains at an almost constant value in the cavity. Downstream,
discrepancies are notable due to the re-entrant jet. In comparison with experimental data, the
re-compression is a little under-evaluated with the compressible code and over-estimated with
the incompressible code.

5.4.2 Unsteady solutions

Next, unsteady calculations were performed with the goal of obtaining a quasi-stable cavita-
tion sheet with a significant re-entrant jet. With the compressible solver, unsteady computations
were carried out with the dual time stepping method and the Reboud viscosity limiter. With the
incompressible solver, unsteady simulations were performed with the same turbulent viscosity
limiter. The overall results are given in Table 4; they show the better agreement obtained with
the compressible code for the σinlet value.

The numerical solutions obtained from both codes present some marked differences. The
incompressible code captured low frequency periodic oscillations of the cavitating sheet (around
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6 Hz). A view of the cavity (contours of the void ratio) obtained with the IZ code over one
period is presented in Figure 8. Oscillations of the cavity are clearly exhibited.
On the other hand, the compressible code captured a quasi-stable behaviour in good agreement
with the experimental view. No frequencies are revealed by a direct Fourier transformation
of the vapour volume. A view of the cavity at five instants is plotted in Figure 9. We can
observe the attached cavity from the throat of the Venturi up to x = 0.3m. Downstream, the
recirculating area with two-phase structure shedding is well illustrated.

Figure 10 shows the longitudinal velocity (left) and void ratio (right) profiles for experiments
and unsteady numerical results. The numerical values are obtained by a time-averaged treatment.

At stations 3, 4 and 5, the recirculating behaviour with a re-entrant jet is well simulated by
the compressible code. On the other hand, the incompressible code largely under-estimated
the re-entrant jet intensity and the thickness of the recirculating area (at station 3, it is not
captured).
For the void ratio profiles, both codes provided a similar solution at station 3, in good
agreement with the experimental data. At station 4, with the incompressible code, a liquid
re-entrant jet (α = 0) is observed close to the wall, up to a distance y = 0.001m, whereas
the re-entrant jet captured by the compressible calculation is not composed of pure liquid
(at the wall, the void ratio value is around 0.35 instead of 0.15). At station 5, the length
of the sheet obtained with the incompressible code is shorter than the experimental value.
With the compressible code, the void ratio is in very close agreement with the experimental data.

The wall pressure is plotted in Figure 11 versus the distance x − xinlet. Theses values are
obtained by a time-averaged treatment for both experiments and calculations.
With the incompressible code, the computed pressure inside the cavity is smaller than the
vapour pressure. After station 3, we observe an area where the time-averaged pressure is above
the vapour pressure, due to the oscillating behaviour of the cavity. With the compressible code,
the pressure inside the cavity is in good agreement with the experimental data. Downstream, the
re-compression is slightly under-evaluated, as previously observed with the steady simulations.

Comparisons with measurements data suggest that the compressible formulation provides an
improved description of the cavitation dynamics compared with incompressible computations.

6 COMPUTATIONS AND COMPARISONS: UNSTEADY RE-ENTRANT CAVITY

The second case is an unsteady re-entrant cavity with quasi periodic break-off and roll-up of a
portion of the cavity.

6.1 Experimental geometry and conditions

This Venturi is characterized by a divergence angle of 8◦, illustrated in Fig. 12. The geometrical
data are:
Inlet section: Si = 50 × 44 mm2 (where the reference pressure is measured);
Throat section: Sthroat = 33.5 × 44 mm2;
Length of the test section (chord): Lref = 224 mm.

The selected operating point is characterized by the following physical parameters debined by
Fortes-Patella et al. (2006):
Uinlet = 7.04 m/s: the inlet velocity
Q = 0.0155 m3/s: the flow imposed in the circuit
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Pinlet = 55000 Pa: the pressure in the inlet section

σinlet =
Pinlet − Pvap

0.5ρU2
inlet

≃ 2.15 ± 0.06: the cavitation parameter in the inlet section

ReLref
=

UinletLref

ν
= 1.57 106 : the Reynolds number

With these parameters, an unsteady cavity with quasi-periodic fluctuations of the attached
sheet and vapour clouds shedding has been obtained. Fig. 13 shows an instantaneous photograph
of the cavity with a large structure shedding. The maximum length L of the attached cavity
is about 45 mm. The vapour shedding frequency is close to 45 Hz, estimated from Fourier
transformations of the unsteady pressure signal.

This geometry is equipped with three probing holes to make various measurements such as the
local void ratio and instantaneous local velocity (Fig. 14).

6.2 Mesh

The grid is an H-type topology. It contains 250 nodes in the flow direction and 61 in the orthog-
onal direction. A special contraction of the mesh is applied in the main flow direction just after
the throat to better simulate the two-phase flow area (Fig. 15). The y+ values of the mesh, at
the center of the first cell, vary between 9 and 31 for a non cavitating computation.

6.3 Numerical parameters

For the cavitating regime, the dimensionless time step is: ∆t∗ =
∆tUinlet

Lref
= 610−3.

Numerical parameters used for simulations are similar to those presented previously.

6.4 Global analyses

Different calculations were performed, summarized in Table (5). The goal was to obtain a
periodic cavitation sheet with a frequency close to 45 Hz.

The vapour volume changes are plotted in Fig. 16 for both codes. The incompressible solution
seems more regular. Moreover, the values are quite different: the ratio between compressible
and incompressible values is around 2.
A direct Fourier transformation (DFT) of the vapour volume was performed to evaluate the
frequency. Fig. 17 presents the frequency results for the incompressible code (left) and the
compressible code (right). A peak is clearly visible for both codes, with better agreement for
the incompressible code.

A view of the cavity (contours of the void ratio) obtained with the incompressible IZ code,
over one period, is presented in Figure 18. Large-scale two-phase structure shedding is clearly
observed. The re-entrant jet is very intense and flows upstream to the throat of the Venturi,
leading to the disappearance of the attached cavity. These results corroborate conclusions
presented in (Venkateswaran et al. 2002).

The solution obtained with the compressible code presents differences. A view of the cavity
over one period is plotted in Figure 19. A small cavity attached to the throat is always present.
Two-phase structures convected in the flow are smaller and condense rapidly, in comparison with
the incompressible solution.
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6.5 Velocity and void ratio profiles

Figure 20 illustrates the longitudinal velocity (left) and void ratio (right) profiles for experiments
and unsteady numerical results. The numerical values are obtained by a time-averaged treatment.

At station 1, with the compressible code, the recirculating behaviour is very well captured,
yet the void ratio is largely over-predicted. For the incompressible code, the void ratio is slightly
under-estimated due to the disappearance of the attached cavity.
At station 2, both codes under-evaluated the recirculating zone thickness. For the void ratio
profile, values obtained with the incompressible code are largely over-predicted, whereas values
obtained by the compressible code are in better agreement with the experimental data.
At station 3, no experimental velocity profiles are usable. For the void ratio profile, the compress-
ible code computed a pure liquid zone: two-phase structures shedding is not enough extended.
On the other hand, the incompressible code captured large-scale cavitation structures, but with
excessive void ratio values.

7 CONCLUSION

Two different cavitating one-fluid CFD code have been presented and applied to Venturi flows.
The first is based on a pressure-based incompressible algorithm modified to take into account
density variations. The second uses a density-based compressible approach including a precon-
ditioning algorithm to treat the pure liquid incompressible region.
Both codes were compared on cavitating flows using the same cavitation model, the same mesh,
a k − ε model with the same viscosity limiter and the same numerical time step. Two different
cavitation cases were tested: an aperiodic quasi-stable cavity sheet and a quasi-periodic unsteady
re-entrant cavity. Global and local analysis of flows based on void ratio and velocity profiles were
carried out.
For the first case, the compressible code captured a solution in close agreement with the ex-
perimental data, both for the global behaviour and the local analysis. On the other hand, the
incompressible code provided a different solution with a periodic low frequency oscillating sheet.
For this case, it seems necessary to account for compressibility effects to correctly describe the
cavity dynamics.
For the second case, the re-entrant jet phenomenon obtained with both codes presents some
marked differences. The compressible code under-predicted large-scale cavitation structure shed-
ding. The opposite situation is observed with the incompressible code: a very intense re-entrant
jet is captured, which flows upstream to the throat and completely eliminates the attached cav-
ity. These results corroborate conclusions presented in (Venkateswaran et al. 2002).
Additional investigations are necessary to clearly conclude on the importance of the compress-
ibility effects. Additional computations are in progress to analyze the influence of the turbulence
model for unsteady computations and to pursue comparative studies between numerical ap-
proaches.
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Table 1. numerical parameters, IZ

IZ parameters all computations

maximum of SIMPLE iterations / physical time step 1500
convergence criterion for the density ρ 10−6

under-relaxation coefficient for ρ 0.2
under-relaxation coefficient for u and v 0.7
under-relaxation coefficient for k and ε 0.4
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Table 2. numerical parameters, CaviFlow

CaviFlow parameters steady non-cav steady cav unsteady cav

CFL number 10 0.5 0.5
preconditioning parameter K 1 3 3
implicit Jacobi iterations 15 15 15
2nd and 4th order dissipation parameter 0 ; 0.032 0.5 ; 0.040 0.5 ; 0.040
dual time stepping sub-iterations - - 100
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Table 3. Sigma inlet values, steady solutions, 4◦

Venturi

σinlet Lcav (mm)

experimental ≃ 0.55 ≃ 80
incompressible solver 0.585 80.1
compressible solver 0.63 78.9
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Table 4. Sigma inlet most probable values, unsteady solutions, 4◦ Venturi

code σinlet Lcav (mm) comments

incompressible solver 0.60 40 to 74 periodic oscillations of the sheet: 6Hz
compressible solver 0.56 70 quasi-stable sheet with re-entrant jet
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Table 5. Sigma inlet most probable values, 8◦ Venturi

code σinlet comments

experimental ≃ 2.15 periodic sheet: 45Hz
incompressible solver 2.11 periodic sheet: 48Hz
compressible solver 2.09 periodic sheet: 40 Hz
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Figure 1. The barotropic equation of state
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Figure 2. Schematic view of the 4◦ Venturi
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Figure 3. View of the cavity and the five stations, 4◦ Venturi
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Figure 4. Photograph of the cavity, 4◦ Venturi
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Figure 5. Enlargement of the mesh near the throat, 4◦ Venturi
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Figure 12. Schematic view of the 8◦ Venturi
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Figure 13. Photograph of the cavity, 8◦ Venturi
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Figure 14. View of three stations of measurement, 8◦ Venturi
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Figure 20. Time-averaged velocity (left) and void ratio (right) profiles, 8◦ Venturi


