
HAL Id: hal-00534684
https://hal.science/hal-00534684

Submitted on 4 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Architecture-centric development and evolution
processes for component-based software
Huaxi Yulin Zhang, Christelle Urtado, Sylvain Vauttier

To cite this version:
Huaxi Yulin Zhang, Christelle Urtado, Sylvain Vauttier. Architecture-centric development and evolu-
tion processes for component-based software. SEKE 2010 - 22nd International Conference on Software
Engineering and Knowledge Engineering, Jul 2010, Redwood City, United States. pp.680-685. �hal-
00534684�

https://hal.science/hal-00534684
https://hal.archives-ouvertes.fr


Architecture-centric development and evolution
processes for component-based software

Huaxi (Yulin) Zhang, Christelle Urtado, Sylvain Vauttier
LGI2P / Ecole des Mines d’Alès – Nı̂mes – France

{Huaxi.Zhang,Christelle.Urtado,Sylvain.Vauttier}@mines-ales.fr

Abstract—Component-based development focuses on compo-
nent reuse and composition: abstract components (as wished)
must be searched for and matched to existing component
(as found). This search and reuse activity greatly impacts
software development and evolution processes. Unfortunately,
very few works propose adaptations of traditional software
engineering processes and no existing ADL yet permits to de-
scribe the resulting development artifacts. This paper proposes
architecture-centric processes for the development and evolution
of component-based software. Architecture-centric development
produces descriptions for architecture specification, architecture
configuration and component assembly. The paper shows how
Dedal, a three-level ADL, can be used to support the consistent
description of these three artifacts. The paper then shows how
these descriptions can be used during a controlled architecture-
centric evolution process that helps build, test and record versions
of component-based software. This tackles the well-known issues
of architecture erosion and drift that denote mismatches between
the different architecture definitions.

I. INTRODUCTION

Component-based software engineering (CBSE) is the major
technical response to the increase in software system com-
plexity and the ever growing need to decrease development
time and cost without giving up quality. It promotes a reuse-
based approach to define, implement and compose loosely
coupled independent software components into whole software
systems [1], [2]. Software architectures can be described at
three development stages: architecture specification, archi-
tecture configuration and instantiated component assembly.
Conformance between these descriptions must be guaranteed
top-down from an abstract description level to the next,
more concrete one. Such descriptions could also be used to
control software evolution by propagating changes bottom-
up. Surprisingly, no architecture description language (ADL)
proposes such a detailed description for architectures that
covers the artifacts produced during the component-based
development cycle. Most ADLs, such as Wright [3], [4],
C2SADEL [5], [6], Darwin [7], focus on modeling one or two
architecture descriptions levels. Furthermore, no ADL is rich
enough to serve as the support of a complete evolution process
for component-based software. This paper first presents an
architecture-centric development process, based on intensive
component reuse. It defines how architectures can be gradually
defined, thanks to three-leveled architecture definitions which
capture the design decisions at each step of the process.
More specifically, explicit architecture specifications provide

a means to effectively integrate the reuse of components as
part of the development process. A controlled architecture-
centric evolution process is then presented. The aforemen-
tioned three-leveled architecture definitions are used to check
the consistency of changes and to manage the propagation of
changes when architecture definitions are versioned to prevent
architecture drift and erosion [8]. The features of Dedal – our
proposed ADL – are specifically designed to support these two
processes.

The remaining of this paper is organized as follows. Sec-
tion II defines the proposed architecture-centric development
process and its associated architecture descriptions. Section III
presents how the Dedal ADL supports the three proposed
architecture descriptions. Section IV depicts the context of
software evolution in CBSD before Sect. V defines a controlled
architecture-centric evolution process and its support with
Dedal. Section VI concludes and draws future work directions.

II. ARCHITECTURE-CENTRIC DEVELOPMENT FOR CBS

A. An architecture-centric development process

Component-based software development is characterized
by its implementation of the “reuse in the large” principle.
Reusing existing (off-the-shelf) software components there-
fore becomes the central concern during development. In the
context of component-based software development, traditional
software development life-cycles have to be adapted [2].
Figure 1 illustrates our vision of such a development life-
cycle which is classically divided in two: the component
development life-cycle (sometimes referred to as component
development for reuse), which is not detailed here, and the
component-based software development cycle (referred to as
component-based software development by reuse) that de-
scribes how previously developed software components can
be used for new software development (and how this reuse
process impacts the way software is built).

Our component-based software development life-cycle de-
liberately is an architecture-centric development process fo-
cusing on the produced architecture artifacts (architecture
descriptions as models of the software) for each development
step. In this component-based software development life-
cycle, software is considered to be produced by the reuse of
components that have previously been stored and indexed in
a component repository. After a classical requirement analysis
step, architects establish the abstract architecture specification.



Fig. 1. Component-based software development process

They define which functionalities should be supplied by com-
ponents, which interfaces should be exported by components,
and how interfaces should connect to build a software system
that meets the requirements. In a second step, architects create
architecture configurations that define the sets of component
implementations (classes) by searching and selecting from
the component repository. Abstract component types from the
architecture specification then become concrete component
types in architecture configurations. In a third step, config-
urations are instantiated into component instance assemblies
and deployed to executable software applications.

The claim of this paper is that an architectural description
should correspond to each of the three steps (specifica-
tion, configuration and assembly) of the component-based
software development process. These three point of views on
architectures are necessary to reflect the architect’s design
decisions and should be expressed using an adequate ADL.

B. Development cycle coverage by existing ADLs

Software system architectures [9] gather design decisions
on system. They are expressed using an ADL. In the syntax of
most ADLs, architectures are usually described by two com-
plementary views: an architecture specification where a class
of systems is described as composed of component classes
and connector classes, and an architecture configuration where
a system instance is described as composed of component
instances and connector instances.

Systems can also be described at various steps of their life-
cycles. To our knowledge, no ADL really includes this time
dimension. Some works such as UML [10] or Taylor et al. [9]
implement or describe close notions. UML makes it possible
to describe object-oriented software at various life-cycle steps
but this capability is not transposed in their component model.
Taylor et al. distinguish two description levels for architectures
at design and programming time, respectively called perspec-
tive and descriptive architectures.

Garlan et al. [11] points out the importance of three levels
(called task, model and runtime layers) for dynamic software
evolution management but, as far as we know, do not pro-
pose any ADL or metamodel to concretely implement them.
Other existing ADLs such as C2SADEL, Wright, Darwin, Uni-
con [12], SOFA2.0 [13], Fractal ADL [14] and xADL2.0 [15]
do not either (see Table I).

As a conclusion, we found no research work that enables
to model the three levels of software systems as architectural
descriptions which correspond the development stages.

ADL Specification Configuration Assembly
C2SADEL X X ×
Wright × X ×
Darwin × X ×
Unicon × X ×
SOFA 2.0 × X ×
Fractal ADL × X ×
xADL 2.0 × X X

TABLE I
EXPRESSIVENESS OF EXISTING ADLS

C. Example of a Bicycle Rental System

Figure 2 shows the example used throughout the paper: the
architecture specification of a bicycle rental system (BRS). A
BikerGUI component manages a user interface. It cooperates
with a Session component which handles user commands.
The Session component cooperates with the Account and
Bike&Course components to identify the user, check the
balance of its account, assign him an available bike and then
calculate the price of the trip when the rented bike is returned.
In the following, we will use a part of this system (BikeCourse
and BikeCourseDB component roles and their connection) to
illustrate our concepts and ADL syntax.

III. OVERVIEW OF THE DEDAL ADL

In this section, we present elements of the syntax of the
Dedal ADL [16] we propose to describe the artifacts produced
at each of the three stages of component-based software
development.

Fig. 2. BRS abstract architecture specification



A. Abstract Architecture Specifications

Abstract architecture specifications (AASs) are the first
level of software architecture descriptions. They provide a
generic definition of the global structure and behavior of
software systems according to previously identified functional
requirements. They are specified during the design step of
software and serve as a basis to create concrete architecture
configurations. These architecture specifications are abstract:
they do not identify concrete component types that are going
to be instantiated in the software system. They only describe
“ideal” component types from the application point of view.
Abstract architecture specifications can be compared to per-
spective architectures as denoted by Taylor et al. [9].

In Dedal, an AAS is composed of a set of component roles
and a set of connections. The architecture version number and
versioning information are also part of the abstract architecture
specification description (see Sect. V). Figure 3 provides an
example of the AAS for the BRS. For readability reasons,
this description represents only a small part of the BRS AAS
depicted in Fig. 2.

specification BRSSpec
component_roles
BikeCourse; BikeCourseDB

connections
connection BikeQSCnt
client BikeCourse.BikeQS
server BikeCourseDB.BikeQS

connection CourseQSCnt
client BikeCourse.CourseQS
server BikeCourseDB.CourseQS

version 2.0;
pre_version 1.0;

by additionGISList;

Fig. 3: AAS of the BRS (partial)

Component roles model abstract component types in that
they describe the roles components should play in the system.
A component role lists the interfaces (both required and
provided) the component should expose1. As component roles
are abstract component specifications, Dedal describes them
outside architecture specifications, so as they can be reused
from a specification to another (which would not be possible
if they were embedded). Figure 4 shows the description of the
BikeCourse component role.

B. Concrete Architecture Configurations

Concrete architecture configurations (CACs) are the sec-
ond level of system architecture descriptions. They result from
the search and selection of real component types (compo-
nent classes) from a component repository. These component
classes must match abstract component descriptions from the
architecture but need not be identical; compatibility is suffi-
cient. CACs describe the architecture from an implementation

1Dedal further includes the description of architecture dynamics using
behavior protocols that are not presented here due to space limitations [16].

component_role BikeCourse
required_interfaces BikeQS; CourseQS; LocOprs
provided_interfaces BikeOprs; CourseOprs

Fig. 4: BikeCourse component role

viewpoint (by assigning component roles to existing compo-
nent types). CACs correspond to descriptive architectures as
denoted by Taylor et al. [9].

CACs list the concrete component and connector classes
which compose a specific version of a software application.
The architecture of a given software is thus defined by a
unique AAS and possibly several CACs (each of which must
be conform to the AAS). This means that each component or
connector class used in an architecture configuration must be a
legal implementation of the corresponding component role or
connection in the architecture specification. The configuration
version number and versioning information are also part of the
concrete architecture configuration description (see Sect. V).
An excerpt of the BRS configuration derived from the speci-
fication presented on Fig. 2 and 3 is described in Fig. 5.

configuration BRSConfig
implements BRSSpec (2.0)
component_classes
BikeTrip (1.0) as BikeCourse;
BikeCourseDBClass (1.0) as BikeCourseDB

version 2.0;
pre_version 1.0;

by additionStationDataList;

Fig. 5: A possible CAC for the BRS

Component classes used in the CAC are listed and each
of them is associated to the component role it implements.
Component classes can either be primitive or composite. Prim-
itive component classes are implemented by a single class.
Composite component classes are coarser grained components
which implementation is a configuration. Component classes
can have (externally visible) attributes so as to be able to
express constraints on component instance states.

Conformance between an AAS and a CAC is a matter of
conformance between component roles and the component
classes that supposedly implement them. Many conformance
relations could be defined, from stricter to very loose ones.
On the one hand, we defend that reused components need
not be exactly identical to specifications because being too
strict in this matter might seriously decrease the number of
reuse opportunities. On the other hand, it is expected from a
conformance relation that it enables verifications that guaran-
tees good chances that the thought component combination
will execute. The rule of the thumb that can be used is
that concrete components must provide at least what the
specification declares it provides and require less than what
the specification already requires.

C. Instantiated Software Component Assemblies

Instantiated software component assemblies (ISCAs) are
the third level of architectures. They result from the instan-



tiation of the component classes from a configuration. They
provide a description of runtime software systems and gather
information on their internal states thus enabling the record of
state-dependent design decisions [17].

ISCAs list the component and connector instances that com-
pose a runtime software system, the attributes of this software
system, and the assembly constraints the component instances
are constrained by. The assembly version number and ver-
sioning information are also part of the instantiated software
component assembly description (see Sect. V). Figure 6 gives
the description of a software assembly that instantiates the
BRS architecture configuration of Fig. 5.

assembly BRSAss
instance_of BRSConfig (2.0)
component_instances
BikeTripC1 as BikeCourse;
BikeCourseDBClassC1 as BikeCourseDB

assembly_constraints
BikeTripC1.currency=="Euro.";
BikeCourseDBClassC1.company==
BikeTripC1.company;

version 2.0;
pre_version 1.0;

by additionStationDataInsList;

Fig. 6: ISCA for the BRS

Component instances document the instances of compo-
nents that constitute the runtime software system. They are
instantiated from the corresponding component classes of the
architecture configuration. They might contain constraints on
components’ attributes that reflect design decision that impact
component states (attribute values).

Assembly constraints define conditions that must be ver-
ified by attributes of some component instances of the as-
sembly, to enforce its consistency. Such assembly constraints
are not mandatory. Assembly constrains are illustrated on the
example of Fig. 6 where the value of the currency attribute
of component BikeTripC1 is fixed to the “Euro” value. These
constraints are very simple and do not yet enable the expres-
sion of alternatives, negation, nor the resolution of possible
conflicts.

Conformance between a CAC and an ISCA is quite
straightforward. All component instances of the assembly
must be an instance of a corresponding component class
from its source configuration (and reciprocally). Conformance
also includes the verification that attribute names used in
an assembly constraint of some component assembly per-
tain to the component classes the components of the as-
sembly are instances of. For example, the assembly con-
straint BikeTripC1.currency=”Euro.” of Fig. 6 entails that
the BikeTrip component class (from which BikeTripC1 is
instantiated) must possess a currency attribute.

IV. CONTEXT OF ARCHITECTURE-CENTRIC EVOLUTION

A. Requirements of architecture-centirc evolution

Component-based software development has been widely
studied during recent years, while there has been less effort to

study component-based software evolution. Software evolution
is defined as the collection of all programming activities
intended to generate a new version of some software from an
older operational version [18]. In the context of component-
based development, a software evolution process must be re-
invented as claimed by [19], [20].

To our opinion, software evolution should possibly be trig-
gered from any architecture level of component-based software
(specification, configuration or assembly). Indeed, depending
on contexts, evolution can occur during specification or design
(e.g. if the evolution management process is integrated into
some development environment), or directly at runtime (e.g. if
the evolution management process is to be used by some
autonomic software) [21]. For example, the specification of
some software architecture can be required to evolve to meet
new requirements, thus adding a new component role to
provide new functionalities. The architect might also want
the configuration to evolve at design time, for example to
replace some component class by another compatible one
that has better qualities (e.g. cheaper, more efficient, better
maintained or safer). Changes might also occur at runtime
as for example when some component fails and must be
replaced by another one that provides similar (or sometimes
only acceptable replacement) functionality. Changes, either
they be triggered from the specification, the configuration or
the assembly description levels, must nonetheless be managed
adequately for all three description levels to be kept consistent
with one another. This entails architecture re-engineering or
architecture re-factoring.

B. Evolution support in existing ADLs

Evolution in existing ADLs typically characterizes by five
facts. Firstly, few ADLs enable to describe changes, except
C2SADEL and Darwin which both use change transactions that
apply on the runtime system. They have no formal description
of changes as first class information in ADL syntax. Secondly,
evolution can only be triggered from the configuration level
(e.g. C2SADEL, Darwin, Wright). As these ADLs do not
describe running assemblies, they cannot enable changes to be
triggered from this level. Thirdly, some consistency checks are
performed (e.g. C2SADEL, Wright), but none of them checks
all consistencies of architectures: name, behavior, interface,
interaction and refinement. Then, change propagation is lim-
ited. Evolution processes should handle all three description
levels of software architectures. Some change at one of the
three levels should be propagated to the other two in order
to maintain all descriptions consistent and prevent architecture
drift and erosion. This propagation should possibly be directed
top-down (from specification to assembly) or bottom-up (from
assembly to specification). To our knowledge, the few existing
ADLs that support change propagation (e.g. xADL2.0) only
direct it in a top-down manner. This is adapted to traditional
software development and evolution but could be improved
in the case of open and dynamic component software (as
autonomous systems). At last, versioning components and
architectures is not frequent except SOFA2.0 and MAE [22].



ADL Consistency checking Evolution test Change propagation Versioning
C2SADEL Refinement × × ×
Wright Name, interaction, deadlock × × ×
Darwin State × × ×
SOFA2.0 Behavior × × State-based
xADL2.0 × × Horizontal (topdown) ×
MAE Subtyping Perfective X Change-based

TABLE II
EVOLUTION SUPPORT IN EXISTING ADLS

change additionStationData
time dynamic
level configuration
operation addition
artifact component_class is StationData
purpose perfective
origin given

Fig. 7: Change description example

MAE uses configuration management to control component
versions, but provides no version support for whole architec-
ture configuration or specifications. In conclusion, most ADLs
provide a limited support for evolution as shown in Table II.

V. ARCHITECTURE-CENTRIC EVOLUTION FOR CBS
In this section, we present our vision of a component-

based software evolution process based on Dedal. Architecture
evolution can be triggered by changes at any of the three rep-
resentation levels. Moreover, both top-down (re-factoring) and
bottom-up (re-engineering) change propagation are supported.
Classically, evolution operations at a representation level are
controlled in order to enforce their conformance with upper
(more abstract) representation levels. Conversely, changes are
propagated to lower representation levels in order to update
them and maintain their consistency with upper representation
levels. Our approach allows bottom-up evolution too, in which
transitional non-conform architectures can be created to expe-
riment new solutions [16]. Combined top-down and bottom-up
evolution prevents architecture erosion and drift [8].

A. First class change expression

In order to be able to trace the evolution of software archi-
tectures, changes should be explicitly described in the same
language as for architectures. Furthermore, having them de-
scribed modularly makes them reusable. This can be summed
up saying that changes need to be first class entities. Dedal
implements this principle. Changes from a version to the
next (delta) are described as a list of change operations.
Figure 7 gives the example of the additionStationData change
description.

The effects of changes on architectural elements (component
roles, component classes, component instances, architectures,
configurations, assemblies) might result in their versioning.
Dedal records two pieces of information for each version: the
versionID that identifies versions and the pre version link that
constitute the structure of the version tree. Figure 5 gives an
example of such versioning information for the BRSConfig
architecture configuration.

B. Architecture-centric evolution process

The three levels of architecture descriptions constitute the
underlying logical foundation of software evolution. Evolution
can be initiated at any of the three levels of software archi-
tecture. The evolution process decomposes into three stages
(see Fig. 8). Evolution planning analyzes the impact of change
and checks its consistency in each architecture description.
Evolution implementation prepares, tests the change and im-
plements it in the implementation environment. Evolution re-
engineering propagates changes to other levels and versions
software if necessary. This evolution process is controlled by
both an architecture evolution management module and an
implementation evolution management module.

Consistency is an internal property of an architecture de-
scription, which intends to ensure that its elements do not
contradict one another [9]. The aim of consistency checking
is to predict whether changes induce inconsistencies inside and
among the three levels of a given architecture. We define intra-
level consistency that checks name inconsistency, interface
inconsistency, attribute inconsistency, interaction inconsistency
and inter-level consistency that checks mapping inconsistency.
If changes preserve consistency, the thought evolution will be
permitted. If not, it will either be forbidden or trigger the
derivation of a new architecture version for which consistency
will be ensured.

If inconsistencies are detected, the evolution process either
forbids the thought evolution or consider the thought evolution
as being part of a new architecture version. This step is called
change propagation [23]. The new architecture version will
be derived and its content inferred so as to be consistent with

Fig. 8. Architecture evolution process for component-based software



the thought change. The information necessary to derive new
versions on each of its levels are extracted from lower to higher
levels.

Versioning in Dedal relies on a changed-based version
model which maintains version trees for the three descriptions
of components (roles, classes and instances) and for whole
specifications, configurations and assemblies. In each level,
versions record three types of information: version ID, previ-
ous version ID and change operations. Fig. 9 shows an example
of such a version tree for the BRS.

VI. CONCLUSION

Dedal enables the explicit and separate representations of
architecture specifications, configurations and assemblies. Ar-
chitecture design decisions can thus be precisely captured and
traced throughout the component-based development process.
Evolution may be initiated at any description level. Consis-
tency is checked and changes are propagated (top-down and
bottom-up) to the other description levels so as to maintain
the architecture descriptions up-to-date and consistent. This
provides a controlled support for component-based software
evolution that prevents architecture drift and erosion.

Dedal and the process presented in this paper have been
implemented in a tool that validates the feasibility of the
approach. It already allowed us to manually experiment evo-
lution scenarios on small examples and gave us preliminary
experimental feedback on the expressiveness and adequateness
of the proposed ADL. Our implementation is an extension of
Julia, an open-source java implementation of the Fractal2 com-
ponent model. Dedal-based component architectures can be
described and visualized through multiple synchronized views:
using a box-based architectural view, using an XML-based
syntax for Dedal or using the BNF-based syntax for Dedal
presented in this paper. Preliminary experiments have been run
on the software architecture of customizable electronic music

2 http://www.objectweb.org

Fig. 9. Version of the BRS architecture

instruments. A perspective for this work is to experiment it to
manage component-based software product lines.

REFERENCES

[1] I. Sommerville, Software Engineering, 8th ed. Addison Wesley, 2006.
[2] M. R. V. Chaudron and I. Crnkovic, Software Engineering; Principles

and Practice. John Wiley & Sons, 2008, ch. Component-based Software
Engineering, pp. 605–628.

[3] R. Allen, D. Garlan, and R. Douence, “Specifying dynamism in software
architectures,” in Proc. of the Wkshp on Foundations of Component-
Based Software Engineering, Zurich, Switzerland, September 1997.

[4] R. Allen, R. Douence, and D. Garlan, “Specifying and analyzing
dynamic software architectures,” in Proc. of the Conf. on Fund. Appr.
to Soft. Engineering, Lisbon, Portugal, March 1998, pp. 21–37.

[5] N. Medvidovic, “ADLs and dynamic architecture changes,” in Joint
Proc. of the 2nd Int’l software architecture Wkshp and Int’l Wkshp on
multiple perspectives in software development on SIGSOFT ’96 Wkshps,
San Francisco, USA, 1996, pp. 24–27.

[6] N. Medvidovic, D. S. Rosenblum, and R. N. Taylor, “A language and en-
vironment for architecture-based software development and evolution,”
in Proc. of the 21st Int’l Conf. on Software Engineering, Los Angeles,
USA, May 1999, pp. 44–53.

[7] J. Magee and J. Kramer, “Dynamic structure in software architectures,”
SIGSOFT Softw. Eng. Notes, vol. 21, no. 6, pp. 3–14, 1996.

[8] D. E. Perry and A. L. Wolf, “Foundations for the study of software
architecture,” ACM SIGSOFT Software Engineering Notes, vol. 17, no. 4,
pp. 40–52, 1992.

[9] R. N. Taylor, N. Medvidovic, and E. M. Dashofy, Software Architecture:
Foundations, Theory, and Practice. John Wiley & Sons, January 2009.

[10] G. Booch, J. Rumbaugh, and I. Jacobson, Unified Modeling Language
User Guide, (2nd Ed.). Addison-Wesley, 2005.

[11] D. Garlan, B. Schmerl, and J. Chang, “Using gauges for architecture-
based monitoring and adaptation,” in Proc. Working Conf. on Complex
and Dynamic Systems Architecture, Brisbane, Australia, December 2001.

[12] M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M. Young, and
G. Zelesnik, “Abstractions for software architecture and tools to support
them,” IEEE TSE, vol. 21, no. 4, pp. 314–335, 1995.

[13] T. Bures, P. Hnetynka, and F. Plasil, “Sofa 2.0: Balancing advanced
features in a hierarchical component model,” in Proc. of the 4th Int’l
Conf. on Software Engineering Research, Management and Applications.
Seattle, USA: IEEE, 2006, pp. 40–48.

[14] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B. Stefani,
“The fractal component model and its support in java: Experiences with
auto-adaptive and reconfigurable systems,” Softw. Pract. Exper., vol. 36,
no. 11-12, pp. 1257–1284, 2006.

[15] E. M. Dashofy, A. van der Hoek, and R. N. Taylor, “A comprehensive
approach for the development of modular software architecture descrip-
tion languages,” ACM TOSEM, vol. 14, no. 2, pp. 199–245, 2005.

[16] H. Y. Zhang, “A multi-dimensional architecture description language
for forward and reverse evolution of component-based software,” Ph.D.
dissertation, Montpellier II University, France, April 2010.

[17] M. Shaw and D. Garlan, Software architecture: perspectives on an
emerging discipline. Prentice-Hall, 1996.

[18] M. M. Lehman and J. C. Fernandez-Ramil, “Towards a theory of
software evolution - and its practical impact,” in Proc. Int’l Symposium
on Principles of Software Evolution, 2000, pp. 2–11.

[19] S. S. Yau, J. S. Collofello, and T. M. MacGregor, “Ripple effect analysis
of software maintenance,” in Software engineering metrics I: measures
and validations. McGraw-Hill, Inc., 1993, pp. 71–82.

[20] K. H. Bennett and V. T. Rajlich, “Software maintenance and evolution: a
roadmap,” in Proc. of the Int’l Conf. on Software Engineering – Future
of SE track, 2000, pp. 73–87.

[21] N. Medvidovic, “Architecture-based specification-time software evolu-
tion,” Ph.D. dissertation, University of California, Irvine, 1999.

[22] R. Roshandel, A. V. D. Hoek, M. Mikic-Rakic, and N. Medvidovic,
“Mae–a system model and environment for managing architectural
evolution,” ACM TOSEM, vol. 13, no. 2, pp. 240–276, 2004.

[23] C. Urtado and C. Oussalah, “Complex entity versioning at two granu-
larity levels,” Information Systems, vol. 23, no. 2/3, pp. 197–216, 1998.


