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       In this contribution a way to associate quasi-particles in inertial or non-inertial motion with 
surface-wave solutions is shown, especially for Rayleigh and Bleustein-Gulyaev surface waves on 
elastic or piezoelectric substrates. Perturbations of various kinds are also envisaged. The technique 
employed for this is based on the exploitation of the wave-momentum equation deduced via 
Noether’s theorem or by direct computation, and associated with the basic field equations. 

1  Introduction
 
      After a long period of competition, the wavelike 
and particle-like visions of some dynamical theories 
seem to have reached an agreement in their useful 
complementarity [1]. Both serve to describe a 
propagating information via their well founded 
duality. More specifically, wave theory is a non-
discretized model as opposed to the particle theory 
that is a discretized (in some sense) condensed, or 
even “materialized” model. The wave modelling 
favours a description of the propagation of information 
in terms of wave number and frequency. As to the 
particle model, it pertains to a diffusion of information 
through certain interactions in terms of momentum 
and energy. Classically, the duality between the two 
modellings is concretised by the introduction of the 
Planck constant as a true translator. For instance, if, in 
a picturesque vision, we can say that photons are 
grains of light (luminous vibrations) and acoustic 
phonons are grains of acoustic vibrations, both in an 
unbounded space, the particle-like objects studied in 
the present contribution account in their very 
definition for the fact that the continuous waves are 
confined along a guiding surface and also for the type 
of considered boundary conditions. We can speak of 
guided quasi-particles or grains of surface acoustic 
waves (SAWs). This explains the relative complexity 
for the proof of their existence and the sometimes 
farfetched definition of their effective mass. 
 
       In the present approach we are very much 
influenced by the study of solitonic waves whose 
nickname “solitons” suggests a particle-like behaviour 

[2]. But contrary to these that are extremely spatially 
localized nonlinear waves, here we are concerned with 
harmonic waves of small amplitude and infinite 
support in propagation space. Here, exploiting the 
analogy with solitons, we study the quasi-particles that 
are dual – in the sense of the above emphasized 
duality – of surface waves or guided waves that are 
solutions of the elastic wave problems associated with 
specific boundary conditions such as Rayleigh waves, 
Lamb waves, etc. Remember that such waves have an 
energy confined to the vicinity of the appropriate 
guiding interface. We are thus led to a clear 
introduction of the notion of surface acoustic phonon. 
Usually such a notion is elusive and strictly based on 
lattice dynamics [3]. The interest in this study stems 
from the potentially associated simple interpretation of 
the interaction between fellow waves or of the 
interaction of such a wave with material objects 
(defects, inclusion,…). In order to define the looked 
for dual quasi-particles, it proves efficient and well 
adapted to exploit the conservation equations of 
canonical momentum (wave momentum) and energy, 
as recently revisited in continuum mechanics [4].  
 
     More precisely, we consider here the most popular 
case of SAWs, the Rayleigh wave propagating along 
the free surface of an isotropic elastic substrate and the 
case of so-called Bleustein-Gulyaev SAWs 
propagating on top of a 6mm-symmetric piezoelectric 
crystal. The reason for considering these two cases is 
that the first provides an example of nondispersive but 
multicomponent SAWs (polarized in the sagittal 
plane), while the second exhibits an example of a 
nondispersive SAW with only one mechanical 
component (an SH wave from the mechanical view 



point) but coupled to electrostatics in the appropriate 
crystal symmetry. Minimal perturbations to these are 
also considered such as coupling with an external 
mechanical medium (superimposed film with its own 
elastic energy; coupling with an external fluid) in the 
first case, and coupling with an external dielectric 
medium (vacuum) in the second case. The case of 
dispersive waves such as Love and Lamb waves, and 
that of generalized Rayleigh waves, as well as more 
complicated surface conditions (Stoneley waves, 
elastic slip, delamination) and propagation in a 
dissipative substrate, are left out for the moment.  
 
2 The case of standard Rayleigh 
waves             

2.1 Reminder         

      The standard equations for dynamical small-strains 
in a homogenous isotropic body in the absence of 
body force and in Cartesian tensor notation are 
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The boundary conditions that accompany (1) read 
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on complementary parts of the supposedly regular 
boundary of unit outward n of B.B

       The Rayleigh surface acoustic wave (SAW) 
involves the longitudinal and vertical displacement 
components (polarization parallel to the sagittal 
plane), propagating in the  direction of wave 

number and with amplitude decreasing 

exponentially to zero with depth . With 
standard notation  
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the celebrated Rayleigh equation for the Rayleigh 
speed  reads [5] Rc
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2.2 Conservation of wave momentum   

      Either through the application of Noether’s 
theorem in a variational formulation or by direct 
computation (by applying to (1) and rearranging 
terms) it is shown that in addition to the energy 
equation, (1) is accompanied, at each regular material 
point,  by a co-vectorial conservation equation, the 
equation of so-called wave momentum [4]: 
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where (L=K-W, K kinetic energy, W potential energy; 
= Eshelby stress tensor; cf. [4]) jib
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Once a solution to a standard boundary-value problem 
for (1) and (4) is know by any means, (8) can be 
exploited for another purpose. This is the case here. 

2.3 Quasi-particle associated with the standard 
Rayleigh SAW    

      We integrate (8) in a vertical band (see Figure 1) 
of the sagittal plane ,0, 00 RxxD , and 

thickness unity in the direction (the solution does 
not depend on that coordinate) and apply the 
divergence theorem. The resulting various surface 
terms are treated in different manners. The term at 

  yield zero as all quantities go to zero by the 
nature of a surface wave. The terms on the left and 
right sides of the band compensate one another by 
virtue of the periodicity of the solution along and 
the opposite sign of their unit normals. It remains the 
term at the surface with confined to a 

wavelength of the Raleigh wave. The remarkable 

results here are that the component of this surface 
term is nil by computation (average over a wavelength 
of a 

3x
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cossin term) while the component vanishes 
because it is proportional to the “Rayleigh” equation 
(7) that is satisfied by the solution (this indeed says 
that the average over one wavelength of the 
Lagrangian density L evaluated at the limiting surface 
is proportional to the linear “dispersion relation”).   A 
direct evaluation of the integral over the band D of the
left hand side of (8) yields identically zero, so that 

2x



there only remains a nonzero component that 
represents the inertial motion of a quasi particle of 
“mass” MR  (per unit length in the  direction)  
such that   
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where A is the amplitude of the longitudinal 
displacement component, and the nondimensional 
factor f is evaluated as   
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Accordingly, the “mass” contains the whole of 
information related to the surface wave solution 
represented by a quasi-particle in inertial motion 
guided by the limiting surface.  
 

3   The case of Bleustein-Gulayev 
waves             
 
3.1 Reminder

       In this case allowed by the crystal symmetry 
(6mm with axis perpendicular to the sagittal plane), 
the SAW consists in only one elastic component  of 
the shear horizontal (SH) type (along  ) coupled to 
a quasi-electrostatic potential 

3x
 via piezoelectricity. 

(cf.[6], pp.250-254). The surviving field equations 
from the electromechanical case (compare (1); now D
is the electric displacement)   
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read ( is the 2D Laplacian operator in the sagittal 
plane)  
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where use has been made of the constitutive equations 
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and 
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Here  is an elastic coefficient,  is the dielectric 

coefficient of the substrate, and is a piezoelectric 

constant. The boundary conditions at may be of 
the following types: 
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0jijn  (mechanically free surface);                 (17) 

0jj Dn ;                                                  (18) 

0  (electrically grounded surface);                 (19) 

0   (matching to an external electric field, e.g., 

vacuum of electric permeability );                    (20) 0

In the last case one has to account for the electrostatic 
equation 
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Equations (14) can be re-written as the system  
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For the surface wave problem for with 
boundary conditions (17)-(19), one obtains the 
Bleustein-Gulyaev SAW solution with “dispersion” 
relation [6] 
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where 222 1/ KKK .  

For the surface wave problem for with 
matching conditions (17), (18), and (20) , one obtains 
the Bleustein-Gulyaev SAW solution with “dispersion” 
relation  [6] 
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where  
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 Since 22~ KK , BGBG cc~ , and the depth penetration 
length in the substrate is somewhat larger in the 
present case than in the electrically grounded solution. 

3.2 Quasi-particle associated with the Bleustein-
Gulyaev SAW  

       In this case the Eshelby stress in the wave-
momentum equation contains an electric contribution 
and is given by [4] 
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Proceeding just like in Paragraph 2.3, for the 
electrically grounded top surface, we are led to the 
following Newtonian equation of motion for the 
associated quasi-particle: 
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with “mass” per unit length in the direction:  3x
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The last nondimensional quantity blows up with 
piezoelectricity , but the amplitude A also goes 
to zero  in these conditions. Independently of the proof 
of (28), working directly on the energy equation, it is 
possible to prove exactly that the total energy of the 
obtained quasi-particle is Newtonian and reads:  
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so that (28) ad (30) together provide a true Newtonian 
point-mechanics for this quasi-particle.   
  
     The situation is a priori more complicated when the 
matching condition (20) prevails. The integral of the 
wave-momentum equation must be evaluated over a 
whole vertical band extending from  to 

kness in the 3x  direction. But the final result 

is practically the sam as (28)-(29), with BGc    and 

2x

2x  with width equal to one wavelength and a 

unit thic
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K replaced by BGc~  and K~ , respectively. In h cases 
 have benefit from the remarkable result that the 

average over one wavelength of the relevant 
component 22b or its jump (second case) is 
proportional to the identically satisfied dispersion 
relation, e.g., in the second case 
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4 Perturbation of the motion 

Perturbations of the above set SAW problems  

 
 

    equation of quasi-particles 

can be envisaged along three directions. Perturbations 
in the mechanical boundary conditions can be of two 
types. For instance the limiting plane may be equipped 
with its own free energy [7] or the mechanical solution 
in the substrate must match an external wave solution 
in a liquid. It is shown that the first case results for the 
Rayleigh SAW in a perturbation of the “dispersion” 
relation (7) such as 
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velocity of the associated quasi-particle and 

its mass (that change in opposite directions, keeping 
the motion inertial). That is, we have  
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This parameter depends only on the speeds of the 

ayleigh wave, of the transverse wave and of the R
longitudinal wave. Therefore, it is a known negative 
constant. Then we observe that RFc  increases from 

Rc  to Tc  when the angular fr ency equ  varies 
ween 0 and CFbet . The latter is the characteristic 

value of the angular frequency that corresponds to the 
limit for the Ra h wave to exist, as the transverse 
wave still is evanescent. 
 
     The second type of pe

yleig

rturbation (coupling with an 
utside fluid; Scholte-Stoneley SAW) is not examined 

 is related, not 
 an alteration in boundary conditions, but to a 

ectives

he standard Rayleigh SAW 
d the Bleustein-Gulyaev SAW nicely complement 
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     Finally, the last type of perturbation
to
change in the constitution of the substrate (e.g., 
viscoelasticity). In that case we should expect a non-
inertial motion of the Rayleigh quasi-particle with a 
perturbing force in the right-hand side of the motion 
equation and resulting in a slow down of the quasi-
particle. .   
 

   Persp5
 
        The studied cases of t
an
each other while being the simplest ones to deal with. 
Further developments include considering classical  
Stoneley waves (at the interface of two elastic crystals 
of appropriate symmetries) and also dispersive Love 
and Lamb waves, all cases that require, like the second 
case of Bleustein-Gulyaev waves above, the 
consideration of a vertical band of integration of the 
wave-momentum equation including  one interface.  

 

R
 
[1]  Feynman R., L
  
       Reading,  Mass. (1964). 
 
[2]  Maugin G.A., Christov C
  
       Selected topics in nonlinear wave mechanics,  
       Christov C.I, Guran A., Eds, pp.117-160,   
       Birkhauser, Boston (2002). 
 
[3]  Ludwig W., “Dynamics at cr

  
 
[4]   Maugin G.A., Material inhomogeneities in  
  
       (1993).  
 
[5]  Achenbac
  
  
[6]  Maugin G.A., Continuum mechanics of  
   
       Amsterdam (1988).     
 
[7] Vlasie-Belloncle V., Rou
  
      and guided waves”, Ultrasonics, 45, 188-195  
      (2006). 
 



  

  

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Integration of the equation of wave

momentum in the sagittal plane for Rayleigh  SAWs. 
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