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The Herschel-Quincke (HQ) tubes, consisting in putting tubes in derivation along a main acoustic wave
guide, are used as passive devices to control fan noise. In order to assess the efficiency of this system, a
new mixed analytical-numerical model is presented. The technique relies on combining Finite Element
techniques to accurately describe the HQ tube with an integral representation for the acoustic pressure
in the main duct. The presence of acoustic liners on the walls of the duct is taken into account via an
appropriate modal decomposition of the Green’s function. We show that our algorithm allows a very fast
and accurate computation of the scattering matrix of such a system with a numerical complexity that
grows very mildly with the frequency. Results show that ‘nearly’ optimal configurations can be quickly
identified with a very small computational expense.

1 Introduction

One of the most significant sources of noise of an air-
craft is due to the propelling system. This noise, which
is present during all phases flight around airport, can be
decomposed into several types : classical jet noise out-
side the exhaust nozzle and inner turbo machinery noise
(fan, compressor, turbine & combustion). In particular,
fan noise is responsible for pure tones at the Blade Pas-
sage Frequency (BPF) harmonics, due to the interaction
between the rotor wakes and the stator vanes. In order
to reduce noise level in modern turbofan engines, sound
waves generated by the fan are typically absorbed by
acoustic lining covering the duct engine. Though effi-
cient, these passive liners seem to have reach their limit
and there is still a need for considering other passive
techniques to reduce further the sound radiation from
the duct outlet. In this context Herschel-Quincke tubes
concept could prove to be a reliable option.

In 1833, Herschel [8] first discussed the idea of us-
ing acoustic interferences of tones by simply connect-
ing a tube to the main duct in view of reducing the
transmitted acoustic waves. Thirty three years later,
Quincke [14] experimentally validated Herschel’s theory
and many works and experiments have been carried out
to explain physical phenomena and explore the poten-
tiality of this system as a noise control device [3, 18].

The assessment of the efficiency of such a system re-
quires a precise knowledge of the acoustic field in the
duct. Though standard Finite Element (FE) software
could, in principle, be used for this purpose, a full 3D
FE model would be extremely demanding as the num-
ber of variables is expected to grow like f3 (f is the
frequency). This can have a negative impact when, for
instance, some efficient optimizations (geometry of the
HQ tubes and their positions) are needed.

Assuming plane wave propagation, the resonance be-

havior of two duct combination was first established
analytically by Selamet et al. [16] and then extended
to a multiple duct configuration [17]. The proposed
approach is simple to implement and allows a very
fast computation of the transmitted wave but it is
unfortunately limited to low frequency applications.
To make some progress, Brady [2] proposed a two-
dimensional model including multi-modal analysis in the
main duct using a Green’s function formalism. The
three-dimensional model was then extended by Hallez
[6]. Finally, Poirier [12, 13] proposed an improvement
by taking into account the exact shape of the interface
between the main cylindrical duct and the HQ tube.
All the authors just cited simplified their analysis by
assuming that the acoustic velocity is constant over the
duct-tube interface. Furthermore they all modelized the
HQ tubes as if they were straight waveguides in which
only plane waves are allowed to propagate.

Because these assumptions are known to break down
as the frequency increases (see for instance Tang & Lam
[19]), Maréchal et al. [10] proposed an enhanced model
by taking into account (i) the exact shape of the HQ
tube(s) and (ii) the non uniformity of the acoustic ve-
locity on the interfaces. Authors show that these im-
provements can be made with a relatively small addi-
tional computational cost while leading to very accu-
rate results even in the mid-frequency regime. In the
present paper, we shall show that the technique can be
also extended and applied for ducts with acoustic lin-
ers on its walls. This is particularly important as early
experiments combining typical acoustic liners and HQ
tubes already showed promising results for reducing the
transmitted acoustic power [4, 1].



2 Problem statement

The problem under consideration is illustrated in Fig. 1.
It consists of a two-dimensional lined main duct (domain
Ω) of height h which is connected to a single HQ tube.
The inlet and outlet pipes (regions I and II) are identi-
cal, each having rigid walls at its boundaries. We wish
to evaluate the scattering matrix (or S-matrix) of this
acoustic system, that is given incident pressure waves
P+

I
and P−

II
, we compute the scattered waves P−

I
and

P+
II
. We call Γ1 (resp. Γ2) the lined wall of the main

duct with impedance Z1 (resp. Z2). In the main duct as
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Figure 1: Main duct with one Herschel-Quincke tube

well as in the HQ tube, the acoustic pressure p satisfies
the Helmholtz equation

Δp+ k2p = 0. (1)

All boundaries under consideration are rigid (i.e. ∂np =
iωρv ·n = 0 where n is the outward unit normal) except
on the lined walls where the local impedance condition
is prescribed:

Zi =
1

Yi

=
p

v · n
, i = 1, 2. (2)

Here, we adopt the e−iωt -convention, k = ω/c is the
wave number, c the celerity, ω the angular frequency,
ρ the fluid density and v denotes the acoustic velocity.
Finally, we require that p and its normal derivative (i.e.
the normal velocity) to be continuous across the inter-
face ΓT. The transmission conditions at the artificial
boundaries ΓI and ΓII are given from the pressure wave
field in the inlet and outlet pipes. This is expressed as
the usual modal series

P±j =

∞∑
m=0

A±j,mψm(x)e
±iβmz (3)

where j =I or II. Here the pair (ψm, βm) defines the
classical propagative (or evanescent) mode in the rigid
pipe. These modes are conveniently normalized so that
the orthogonality property holds

∫ h

0

ψm(x)ψm′(x) dx = δmm′ . (4)

3 Mixed numerical-analytical

model

In this section, we shall present the main ingredients of
the method, that is (i) the establishment of a numeri-
cal impedance matrix describing the dependence of the
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Figure 2: Parameters of a HQ tube

pressure and its normal derivative on both interfaces of
the HQ tube and (ii) the Green’s formalism in the main
duct.
Impedance matrices considered in Ref. [2, 6, 16, 17]

are built with the restriction that only plane waves are
allowed to propagate in the HQ tube. HQ tube parame-
ters are described in Fig. 2 : dint is the distance between
interfaces, d the tube half-width and L the average HQ
tube length. Note that the tube is not necessarily of
circular shape as it is suggested in the figure. Under the
plane wave assumption, the 2×2 impedance matrix has
the explicit form

Z(ω) =
1

k sin (kL)

[
cos (kL) 1

1 cos (kL)

]
, (5)

where it is understood that the pressure and its nor-
mal derivative at the interface are connected via the
impedance condition

pint = Z(ω) ∂npint. (6)

The vector pint (resp. ∂npint) simply contains the value
of the constant pressure (resp. normal derivative pres-
sure) on both interfaces. In order to take into account
the acoustic particle velocity variation at the interfaces,
numerical impedance matrices can be built via finite el-
ement discretization of the acoustic pressure field in the
HQ tube. The first step is to compute a set of eigen-
modes (Φn, ωn) of the HQ tube with rigid wall condi-
tions on the boundary. We define D(ω) the diagonal
matrix with its diagonal entries: (ω2n − ω2)−1. Once
the number Nm of modes has been chosen, a numerical
impedance matrix can be recovered as follows

Z(ω) =
(
Φ̃ D(ω) Φ̃T +R(ω)

)
F̃int. (7)

Here, Φ̃ = (Φ̃1 · · · Φ̃Nm
) stands for the matrix contain-

ing the eigenmodes in its columns and the tilde sym-
bol means that we only retain the nodal values of these
eigenmodes on the interface. F̃int define the classical fi-
nite element discretization matrix at the interfaces. Sim-
ilarly, the vector pint (resp. ∂npint) in (6) now contains
the value of the pressure (resp. the normal derivative)
at each node of the FEM mesh on the interface. The
interest of such a decomposition is that when the fre-
quency of interest is taken well below the highest modal
resonant frequency (i.e. ω � ωNm

), the correction term
R(ω) is quasi-constant so we can take R(ω) ≈ R(0) and
store the so-called static correction matrix once for all.
Thus, the computation of (7) is a very fast and simple
procedure.
In the main duct, the theory starts by introducing the

lined-walled duct Green’s function satisfying the usual
modal radiation condition on both ends of the main



duct, i.e.

G(x,x0) =

∞∑
n=0

ψ̃n(x)ψ̃n(x0)

−2iβ̃n

eiβ̃n|z−z0| (8)

where x = (x, z) and x0 = (x0, z0) are two points in
the propagative domain Ω. Function ψ̃n is the trans-
verse mode satisfying the lined-wall conditions and β̃n

is the associated axial wave number. Low order modes
are numerically calculated with a technique described by
Kravanja [9] and validated by Nennig et al. [11] whereas
higher order modes are recovered using asymptotic ex-
pansions.
Using the Green’s theorem, the pressure anywhere in

the lined duct (Ω domain) is given via the integral rep-
resentation

p(x) =

∫
ΓI∪ΓII

(G∂np− p ∂nG) dΓ(x0)

+

∫
ΓT

G (∂np− iρωY2p) dΓ(x0). (9)

The discretization of this equation is carried out in two
steps. First, collocating (9) at the FEM nodes of the
HQ tube interface leads to

KT,T ∂npint + KT,I A
−

I
+KT,II A

+

II

= FT,I A
+

I
+ FT,II A

−

II
(10)

where vectors A±
j contain the modes amplitudes A±j,m,

(j=I,II). The first block matrix

KT,T = Z(ω)−G+ iρωY2GZ(ω) (11)

stems from the self interaction of the acoustic pressure at
the tube interface. Here the Green matrix G stems from
the discretization of the second integral in (9). Other
matrices are built by simply substituting,

p = P
+

j + P
−

j and ∂np = ∂n(P
+

j + P
−

j ) (12)

with (j=I,II) in the first integral of (9). This opera-
tion requires the computation of the coupling coefficients
Cmn given by the overlap integrals

Cmn =

∫ h

0

ψm(x)ψ̃n(x) dx. (13)

which also arise in standard mode matching techniques.
The system (10) is completed by taking the evaluation
point x in the integral equation on the inlet and outlet
boundaries. An additional set of equations is then pro-
duced by projecting (9) onto the hard-wall modes basis
to give

Kj,T ∂npint + Kj,I A
−

I
+Kj,II A

+

II

= Fj,I A
+

I
+ Fj,II A

−

II
(14)

for both boundaries j=I and II. Now, by calling

K =

⎡
⎣ KT,T KT,I KT,II

KI,T KI,I KI,II

KII,T KII,I KII,II

⎤
⎦ ,F =

⎡
⎣ FT,I FT,II

FI,I FI,II

FII,I FII,II

⎤
⎦ ,

HQ tube d (m) dint (m) L (m)
1 0.02337 0.0985 0.0593
2 0.02337 0.0985 0.0393
3 0.00837 0.0985 0.0793
4 0.00337 0.0485 0.0393

Table 1: Parameters of the HQ tube.

the global matrix system can be solved to give⎛
⎝ ∂npint

A
−

I

A
+

II

⎞
⎠ = K−1F

(
A

+

I

A
−

II

)
. (15)

In practice, the summation in (3) is limited to the num-
ber of propagative modes as well as some evanescent
modes which are included to ensure a precise approxima-
tion of the pressure field in the inlet and outlet bound-
aries. Thus, the square matrix K is of a relatively small
size in the present study.

4 Results

This section presents some numerical results computed
with our numerical model. The width of the main duct is
h = 2a = 0.04859 m and the length of the liner is 0.6 m.
The results are presented with respect to the dimension-
less variable ka. The study is carried out from very low
frequency up to ka = 22.3 (which corresponds to 5000
Hz) with a stepsize of 10 Hz. In the overall frequency
range, the incident pressure is a plane wave. The first
cut-off frequency occurs at ka = π/2 which corresponds
to f ≈ 3523 Hz. For the lined wall, the impedance
value are chosen as to be in line with perforate plates
encountered in the aeronautic industry. Thus, we take
Z1 = 2 + 2i and Z2 = 1 + 1i. The expected frequency
dependence of the impedance is not taken into account
here but this can be easily included in the analysis. The
Transmission Loss (TL) is defined as the ratio of trans-
mitted acoustic power with respect to the incident one,
that is

TL = −10 log10

⎛
⎝ 1

β0
∣∣A+

I,0

∣∣2
∑
m≥0

βm

∣∣∣A+

II,m

∣∣∣2
⎞
⎠ , (16)

where the summation is limited to propagative modes
only.
In the present study, four different HQ tubes which

parameters are given in Table 1 are investigated. In or-
der to validate the method, a full finite element model is
used. Radiation conditions at both ends of the duct have
been implemented using the DtN map [5, 7, 15]. In Fig.
3 are plotted the TL calculated from our mixed model
and the FE model (the HQ tube 1 is considered here).
The very good agreement validates the present method
and the small discrepancies noticeable at high frequency
are thought to be due to the FE model which starts loos-
ing accuracy. Note that it takes about 40 minutes to
produce these results when using the FE model whereas
only 9 minutes are needed with the mixed model. More
importantly, the number of FE nodes (around 25000) is
very large compared to number of variables used in our



model (i.e. the number of nodes at the interface + the
number of modes in the summation in (3)) which does
not exceed 30. At higher frequency, this number is ex-
pected to grow very mildly with the frequency whereas
the FE model would quickly become intractable because
of the computational overhead.
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Figure 3: HQ tube in a lined duct : mixed
model, full finite element model.

Finally, we shall demonstrate that our mixed model
can be used efficiently in order to find a ‘nearly’ opti-
mal configuration with a very small computational ex-
pense. Given a set of HQ parameters (Table 1), the TL
curves have been computed up to 5000 Hz for 4 scenar-
ios: (i) no HQ tube, (ii) tube 2, (iii) tube 3 and (iv)
tube 4. Here the position of the tube is fixed to a con-
stant value for all configurations. The four curves are
plotted in Fig. 4. It is clear from these results that a
‘nearly’ optimal configuration is given by the tube 4. In
the present example, by ‘nearly’ optimal we mean that
the inclusion of the HQ tube in the liner should provide
better Transmission Losses than if only the liner was
present in the frequency range of interest. Here again,
we have to point out that the overall cost for computing
these results is negligible. It is clear that the use of the
FE method would be more computer time consuming
especially if time allocated for the mesh preparation is
taken into account. Depending on the problem, our al-
gorithm could be enhanced even further. For instance,
the four block matrices Kj,j′ (j, j

′=I,II) do not depen-
dent on the position and the geometry of the HQ tube,
thus these can be computed only once for all. The in-
clusion of another HQ tube next to the first one can be
done at very small expense since the additional block
matrices involving the tube (indice T) are, up to some
phase shifts, similar to the original one. It goes without
saying that all these improvements are being considered
in the near future.

5 Conclusions

To conclude, it has been shown, from these early re-
sults, that the mixed model allows to identify the com-
bined effects of the acoustic liners as well as the pres-
ence of HQ tubes giving access to a precise knowledge
of the transmitted sound field. Compared to standard
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Figure 4: TL curves for an incident plane wave:
liners without HQ tube, HQ tube 2, HQ tube

3 and HQ tube 4.

FEM, the proposed model allows very fast computation
of the Transmission Loss with a computational complex-
ity that increases very mildly with the frequency. The
algorithm has been developed in the bidimensional case
in order to assess its potentiality but work is ongoing
to extend the model to 3D configurations so that real
geometries could be tackled.
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