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INTERTWINING AND COMMUTATION RELATIONS

FOR BIRTH-DEATH PROCESSES

DJALIL CHAFAÏ AND ALDÉRIC JOULIN

Abstract. Given a birth-death process on N with semigroup (Pt)t≥0 and a discrete
gradient ∂u depending on a positive weight u, we establish intertwining relations of
the form ∂uPt = Qt∂u, where (Qt)t≥0 is the Feynman-Kac semigroup with potential
Vu of another birth-death process. We provide applications when Vu is non-negative
and uniformly bounded from below, including Lipschitz contraction and Wasserstein
curvature, various functional inequalities, and stochastic orderings. Our analysis is
naturally connected to the previous works of Caputo-Dai Pra-Posta and of Chen on
birth-death processes. The proofs are remarkably simple and rely on interpolation,
commutation, and convexity.

1. Introduction

Commutation relations and convexity are useful tools for the fine analysis of Markov
diffusion semigroups [B-E, B, L]. The situation is more delicate on discrete spaces, due
to the lack of a chain rule formula [B-L, A, Che1, J-P, B-T, Cha2, C-DP-P, Che3]. In
this work, we obtain new intertwining and sub-commutation relations for a class of birth-
death processes involving a discrete gradient and an auxiliary Feynman-Kac semigroup.
We also provide various applications of these relations. Our analysis is naturally related
to the curvature condition of Caputo-Dai Pra-Posta [C-DP-P] and to the Chen exponent
of Chen [Che1, Che3]. More precisely, let us consider a birth-death process (Xt)t≥0 on the
state space N := {0, 1, 2, . . .}, i.e. a Markov process with transition probabilities given by

P x
t (y) = Px(Xt = y) =















λxt + o(t) if y = x + 1,

νxt + o(t) if y = x − 1,

1 − (λx + νx)t + o(t) if y = x,

where limt→0 t−1o(t) = 0. The transition rates λ and ν are respectively called the birth
and death rates of the process (Xt)t≥0. The process is irreducible, positive recurrent (or
ergodic), and non-explosive when the rates satisfy to λ > 0 on N and ν > 0 on N

∗ and
ν0 = 0 and

∞
∑

x=1

λ0λ1 · · · λx−1

ν1ν2 · · · νx
< ∞ and

∞
∑

x=1

(

1

λx
+

νx

λxλx−1
+ · · · +

νx · · · ν1

λx · · · λ1λ0

)

= ∞,

respectively. In this case the unique stationary distribution µ of the process is reversible
and is given by

µ(x) = µ(0)
x
∏

y=1

λy−1

νy
, x ∈ N with µ(0) :=

(

1 +
∞
∑

x=1

λ0λ1 · · · λx−1

ν1ν2 · · · νx

)−1

. (1.1)
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Let us denote by F (respectively F+ and Fd) the space of real-valued (respectively positive
and non-negative non-decreasing) functions f on N. The associated semigroup (Pt)t≥0 is
defined for any bounded or non-negative function f as

Ptf(x) = Ex[f(Xt)] =
∞
∑

y=0

f(y)P x
t (y), x ∈ N.

This family of operators is positivity preserving and contractive on Lp(µ), p ∈ [1, ∞].
Moreover, the semigroup is also symmetric in L2(µ) since λxµ(x) = ν1+xµ(1 + x) for any
x ∈ N (detailed balance equation). The generator L of the process is given for any f ∈ F
and x ∈ N by

Lf(x) = λx (f(x + 1) − f(x)) + νx (f(x − 1) − f(x))

= λx ∂f(x) + νx ∂∗f(x),

where ∂ and ∂∗ are respectively the forward and backward discrete gradients on N:

∂f(x) := f(x + 1) − f(x) and ∂∗f(x) := f(x − 1) − f(x).

Our approach is inspired from the remarkable properties of two special birth-death pro-
cesses: the M/M/1 and the M/M/∞ queues. The M/M/∞ queue has rates λx = λ
and νx = νx for positive constants λ and ν. It is positive recurrent and its stationary
distribution is the Poisson measure µρ with mean ρ = λ/µ. If Bx,p stands for the bino-
mial distribution of size x ∈ N and parameter p ∈ [0, 1], the M/M/∞ process satisfies
for every x ∈ N and t ≥ 0 to the Mehler type formula

L (Xt|X0 = x) = Bx,e−νt ∗ µρ(1−e−νt). (1.2)

The M/M/1 queening process has rates λx = λ and νx = ν1N\{0} where 0 < λ < ν
are constants. It is a positive recurrent random walk on N reflected at 0. Its stationary
distribution µ is the geometric measure with parameter ρ := λ/ν given by µ(x) = (1−ρ)ρx

for all x ∈ N. A remarkable common property shared by the M/M/1 and M/M/∞
processes is the intertwining relation

∂L = LV ∂ (1.3)

where LV = L − V is the discrete Schrödinger operator with potential V given by

• V (x) := ν in the case of the M/M/∞ queue
• V (x) := ν1{0}(x) for the M/M/1 queue.

Since V ≥ 0 in these two cases, the operator LV is the generator of a birth-death process
with killing rate V and the associated Feynman-Kac semigroup (P V

t )t≥0 is given by

P V
t f(x) = Ex

[

f(Xt) exp
(

−
∫ t

0
V (Xs)ds

)]

.

The intertwining relation (1.3) is the infinitesimal version at time t = 0 of the semigroup
intertwining

∂Ptf(x) = P V
t ∂f(x) = Ex

[

∂f(Xt) exp
(

−
∫ t

0
V (Xs) ds

)]

. (1.4)

Conversely, one may deduce (1.4) from (1.3) by using a semigroup interpolation. Namely,
if we consider s ∈ [0, t] 7→ J(s) := P V

s ∂Pt−sf with V as above, then (1.4) rewrites as
J(0) = J(t) and (1.4) follows from (1.3) since

J ′(s) = P V
s

(

LV ∂Pt−sf − ∂LPt−sf
)

= 0.

In section 2, we obtain by using semigroup interpolation an intertwining relation similar
to (1.4) for more general birth-death processes. By using convexity as an additional
ingredient, we also obtain sub-commutation relations. These results are new and have
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several applications explored in section 3, including Lipschitz contraction and Wasserstein
curvature (section 3.1), functional inequalities including Poincaré, entropic, isoperimetric
and transportation-information inequalities (section 3.2), hitting time of the origin for the
M/M/1 queue (section 3.3), convex domination and stochastic orderings (section 3.4).

2. Intertwining relations and sub-commutations

Let us fix some u ∈ F+. The u-modification of the original process (Xt)t≥0 is a birth-
death process (Xu,t)t≥0 with semigroup (Pu,t)t≥0 and generator Lu given by

Luf(x) = λu
x ∂f(x) + νu

x ∂∗f(x),

where the birth and death rates are respectively given by

λu
x :=

ux+1

ux
λx+1 and νu

x :=
ux−1

ux
νx.

One can check that the measure λu2µ is symmetric for (Xu,t)t≥0. As consequence, the
process (Xu,t)t≥0 is positive recurrent if and only if λu2 is µ-integrable. From now on, we
restrict to the minimal solution corresponding to the forward and backward Kolmogorov
equations given as follows: for any function f ∈ F with finite support and t ≥ 0,

d

dt
Pu,tf = Pu,tLuf = LuPu,tf,

cf. [Che2, th. 2.21]. In order to justify in all circumstances the computations present in
these notes, we need to extend these identities to bounded functions f . Although it is not
restrictive for the backward equation, the forward equation is more subtle and requires an
additional integrability assumption. From now on, we always assume that the transition
rates λu and νu and also the potential Vu are Pu,t integrable.

We define the discrete gradient ∂u and the potential Vu by

∂u := (1/u)∂ and Vu(x) := νx+1 − νu
x + λx − λu

x.

Let ϕ : R → R be a smooth convex function such that for some constant c > 0, and for
all r ∈ R,

ϕ′(r)r ≥ cϕ(r). (2.1)

In particular, the behavior at infinity is at least polynomial of degree c.
Let us state our first main result about intertwining and sub-commutation relations

between the original process (Xt)t≥0 and its u-modification (Xu,t)t≥0. To the knowledge
of the authors, this result was not known. A connection to Chen’s results on birth-death
processes [Che2] is given in section 3 in the sequel.

Theorem 2.1 (Intertwining and sub-commutation). Assume that the process is irre-
ducible, non-explosive and that the potential Vu is lower bounded. Let f ∈ F be such that
supy∈N |∂uf(y)| < ∞, and let x ∈ N and t ≥ 0. Then the following intertwining relation
holds:

∂uPtf(x) = P Vu

u,t ∂uf(x) = Ex

[

∂uf(Xu,t) exp
(

−
∫ t

0
Vu(Xu,s) ds

)]

. (2.2)

Moreover, if Vu ≥ 0 then we have the sub-commutation relation

ϕ (∂uPtf) (x) ≤ Ex

[

ϕ(∂uf)(Xu,t) exp
(

−
∫ t

0
cVu(Xu,s) ds

)]

. (2.3)

Proof. The key point is the following intertwining relation

∂uL = LVu

u ∂u, (2.4)

where Lu is the generator of the u-modification process (Xu,t)t≥0 and LVu

u := Lu − Vu

is the discrete Schrödinger operator with potential Vu. Note that the relation (2.4) is
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somewhat similar to (1.3) and follows by simple computations. To prove (2.2) from (2.4),
we proceed as we did to obtain (1.4) from (1.3). If we define

s ∈ [0, t] 7→ J(s) := P Vu

u,s∂uPt−sf,

then (2.2) rewrites as J(0) = J(t). Hence it suffices to show that J is constant. By
[Che1] we know that if ∂uf is bounded then ∂uPt−sf is also bounded. Hence using the
Kolmogorov equations and (2.4), we obtain

J ′(s) = P Vu

u,s

(

LVu

u ∂uPt−sf − ∂uLPt−sf
)

= 0,

yielding to the intertwining relation (2.2).
Now let us prove the sub-commutation relation (2.3) by adapting the previous interpola-
tion method, under the additional assumption Vu ≥ 0. Denoting

s ∈ [0, t] 7→ Jc(s) := P cVu

u,s ϕ(∂uPt−sf),

then (2.3) rewrites as Jc(0) ≤ Jc(t). Hence let us show that Jc is a non-decreasing
function. Since ϕ(∂uPt−sf) is bounded, we have by the Kolmogorov equations:

J ′
c(s) = P cVu

u,s (T ) where T = LcVu

u ϕ(∂uPt−sf) − ϕ′(∂uPt−sf) ∂uLPt−sf.

Letting gu = ∂uPt−sf , we obtain, by using (2.4),

T = LcVu

u ϕ(gu) − ϕ′(gu)LVu

u gu

= λu (∂ϕ(gu) − ϕ′(gu)∂gu) + νu (∂∗ϕ(gu) − ϕ′(gu)∂∗gu) + Vu (ϕ′(gu)gu − cϕ(gu))

= λuAϕ(gu, ∂gu) + νuAϕ(gu, ∂∗gu) + Vu (ϕ′(gu)gu − cϕ(gu))

where Aϕ(r, s) = ϕ(r + s) − ϕ(r) − ϕ′(r)s is the so-called A-transform of ϕ studied in
[Cha2] also known in convex analysis as the Bregman divergence associated to ϕ [Br].
Note that gu + ∂gu = gu(· + 1) and gu + ∂∗gu = gu(· − 1). Now, since ϕ is convex, we have
Aϕ ≥ 0. Moreover, using (2.1) and Vu ≥ 0 we obtain that T ≥ 0. Finally, we get the
desired result since the Feynman-Kac semigroup (P cVu

u,t )t≥0 is positivity preserving. �

Remark 2.2 (Ergodic condition). The potential Vu in theorem 2.1 is assumed to be lower
bounded. When it is positive, the so-called Chen exponent infy∈N Vu(y) is related to the
exponential ergodicity of the original process (Xt)t≥0, cf. [Che1]. However identity (2.2)
does not require such an ergodic assumption. A nice study of the exponential decay of
birth-death processes was recently studied by Chen in [Che3], with special emphasis on
non-ergodic situations including transient cases.

Remark 2.3 (Case of equality). According to the proof of theorem 2.1, the assumption
Vu ≥ 0 can be dropped if the convex function ϕ realizes the equality in (2.1). Such an
observation was expected since in this case the use of Hölder’s inequality in (2.2) entails
the desired result.

Remark 2.4 (Propagation of monotonicity). The identity (2.2) provides a new proof of
the propagation of monotonicity [S, prop. 4.2.10]: if f ∈ Fd then Ptf ∈ Fd for all t ≥ 0.
See section 3.4 for an interpretation in terms of stochastic ordering.

Remark 2.5 (Other gradients). Theorem 2.1 possesses a natural analogue for the discrete
backward gradient ∂∗. We ignore if there exists a useful “balanced” intertwining relation
involving a combination of both forward and backward gradients.

Remark 2.6 (Higher dimensional spaces). The extension of theorem 2.1 to higher dimen-
sional discrete processes such as queuing networks or interacting particles systems arising
in statistical mechanics is a very natural question, but seems to be technically difficult.
However a first step has been emphasized by Wu in his study of functional inequalities for
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Gibbs measures through the Dobrushin uniqueness condition: see step 1 in the proof of
proposition 2.5 in [W].

Our second new result below complements the previous one for the case u = 1. Let
I be an open interval of R and let ϕ : I → R be a smooth convex function such that
ϕ′′ > 0 and −1/ϕ′′ is convex on I. Following the notations of [Cha2], we define on the
convex subset AI := {(r, s) ∈ R

2 : (r, r + s) ∈ I × I} the non-negative function Bϕ on
AI by

Bϕ(r, s) := (ϕ′(r + s) − ϕ′(r)) s, (r, s) ∈ AI.

By theorem 4.4 in [Cha2], Bϕ is convex on AI. Some interesting examples of such
functionals will be given in section 3.2 below.

Theorem 2.7 (Sub-commutation for 1-modification). Assume that the process is ir-
reducible and non-explosive. If the transition rate λ is non-increasing and ν is non-
decreasing then for any function f ∈ F such that supy∈N

|∂f(y)| < ∞ and for any t ≥ 0,

Bϕ (Ptf, ∂Ptf) ≤ P V1

1,t B
ϕ(f, ∂f) (2.5)

where the non-negative potential is V1 := ∂(ν − λ).

Proof. Under our assumption, the two processes (Xt)t≥0 and (X1,t)t≥0 are non-explosive.
By using standard approximation procedures, one may assume that f has finite support.
If we define s ∈ [0, t] 7→ J(s) := P V1

1,sB
ϕ(Pt−sf, ∂Pt−sf) we see that (2.5) rewrites as

J(0) ≤ J(t). Denote F = Pt−sf and G = ∂Pt−sf = ∂F . Since Bϕ(F, G) is bounded, the
Kolmogorov equations are available and using (2.4) with the constant function u = 1, we
have J ′(s) = P V1

1,s(T ) with

T = LV1

1 Bϕ(F, G) − ∂

∂x
Bϕ(F, G) LF − ∂

∂y
Bϕ(F, G) LV1

1 G

= λ1∂Bϕ(F, G) − λ
∂

∂x
Bϕ(F, G) ∂F − λ1 ∂

∂y
Bϕ(F, G) ∂G

+ ν1∂∗Bϕ(F, G) − ν
∂

∂x
Bϕ(F, G) ∂∗F − ν1 ∂

∂y
Bϕ(F, G) ∂∗G

+ ∂(ν − λ)

(

∂

∂y
Bϕ(F, G) G − Bϕ(F, G)

)

≥ ∂ν

(

∂

∂y
Bϕ(F, G) G − Bϕ(F, G)

)

− ∂λ

(

∂

∂y
Bϕ(F, G) G − ∂

∂x
Bϕ(F, G) G − Bϕ(F, G)

)

,

and where in the last line we used the convexity of the bivariate function Bϕ. Moreover,
since the birth and death rates λ and ν are respectively non-increasing and non-decreasing
on the one hand, and using once again convexity on the other hand, we get

∂

∂y
Bϕ(F, G) G ≥







∂
∂x

Bϕ(F, G) G + Bϕ(F, G)

Bϕ(F, G)

from which we deduce that T is non-negative and thus J is non-decreasing. �

Remark 2.8 (Diffusion case). Actually, the intertwining relations above have their coun-
terpart in continuous state space, as suggested by the so-called Witten Laplacian method
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used for the analysis of Langevin-type diffusion processes, see for instance Helffer’s book
[H]. Let A be the generator of a one-dimensional real-valued diffusion (Xt)t≥0 of the type

Af = σ2f ′′ + bf ′,

where f and the two functions σ, b are sufficiently smooth. Given a smooth positive
function a on R, the gradient of interest is ∇af = a f ′. Denote (Pt)t≥0 the associated
diffusion semigroup. Then it is not hard to adapt to the continuous case the argument of
theorem 2.1 to show that the following intertwining relation holds:

∇aPtf(x) = Ex

[

∇af(Xa,t) exp
(

−
∫ t

0
Va(Xa,s) ds

)]

.

Here (Xa,t)t≥0 is a new diffusion process with generator

Aaf = σ2f ′′ + baf ′

and drift ba and potential Va given by

ba := 2σσ′ + b − 2σ2 a′

a
and Va := σ2 a′′

a
− b′ +

a′

a
ba.

In particular, if the weight a = σ, where σ is assumed to be positive, then the two processes
above have the same distribution and by Jensen’s inequality, we obtain

|∇σPtf(x)| ≤ Ex

[

|∇σf(Xt)| exp

(

−
∫ t

0

(

σσ′′ − b′ + b
σ′

σ

)

(Xs) ds

)]

.

Hence under the assumption that there exists a constant ρ such that

inf σσ′′ − b′ + b
σ′

σ
≥ ρ,

then we get |∇σPtf | ≤ e−ρt Pt|∇σf |. This type of sub-commutation relation is at the heart

of the Bakry-Émery calculus [B-E, B, L]. See also [M-T] for a nice study of functional
inequalities for the invariant measure under the condition ρ = 0. However, as we will see
in remark 3.6 below, such a choice of the weight is not really adapted when studying the
optimal constant in the Poincaré inequality.

3. Applications

This section is devoted to applications of theorems 2.1 and 2.7.

3.1. Lipschitz contraction and Wasserstein curvature. Theorem 2.1 allows to re-
cover a result of Chen [Che1] on the contraction property of the semigroup on the space
of Lipschitz functions. Indeed, the intertwining (2.2) can be used to derive bounds on the
Wasserstein curvature of the birth-death process, without using the coupling technique
emphasized by Chen. For a distance d on N, we denote by Pd(N) the set of proba-
bility measures ξ on N such that

∑

x∈N d(x, x0)ξ(x) < ∞ for some (or equivalently for
all) x0 ∈ N. We recall that the Wasserstein distance between two probability measures
µ1, µ2 ∈ Pd(N) is defined by

Wd(µ1, µ2) = inf
γ∈Marg(µ1,µ2)

∫

N

∫

N

d(x, y)γ(dx, dy), (3.1)

where Marg(µ1, µ2) is the set of probability measures on N
2 such that the marginal

distributions are µ1 and µ2, respectively. The Kantorovich-Rubinstein duality [V, th. 5.10]
gives

Wd(µ1, µ2) = sup
g∈Lip1(d)

∫

N

g d(µ1 − µ2), (3.2)
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where Lip(d) is the set of Lipschitz function g with respect to the distance d, i.e.

‖g‖Lip(d) := sup
x,y∈N

x 6=y

|g(x) − g(y)|
d(x, y)

< ∞,

and Lip1(d) consists of 1-Lipschitz functions. We assume that the kernel P x
t ∈ Pd(N) for

every x ∈ N and t ≥ 0 so that the semigroup is well-defined on Lip(d). The Wasserstein
curvature of (Xt)t≥0 with respect to a given distance d is the optimal (largest) constant
σ in the following contraction inequality:

‖Pt‖Lip(d)→Lip(d) ≤ e−σt, t ≥ 0. (3.3)

Here ‖Pt‖Lip(d)→Lip(d) denotes the supremum of ‖Ptf‖Lip(d) when f runs over Lip1(d). It
is actually equivalent to the property that

Wd(P x
t , P y

t ) ≤ e−σt d(x, y), x, y ∈ N, t ≥ 0.

If the optimal constant is positive, then the process is positive recurrent and the semigroup
converges exponentially fast in Wasserstein distance Wd to the stationary distribution µ
[Che2, th. 5.23].

Let ρ ∈ F+ be an increasing function and define u ∈ F+ as ux := ρ(x + 1) − ρ(x). The
metric under consideration in the forthcoming analysis is

du(x, y) = |ρ(x) − ρ(y)|.
Hence u remains for the distance between two consecutive points. In particular the space
of functions f for which the intertwining relation of theorem 2.1 is available is actually
Lip(du). Then it is shown in [Che1, J] by coupling arguments that the Wasserstein
curvature σu with respect to the distance du is given by the Chen exponent, i.e.

σu = inf
x∈N

νx+1 − νx
ux−1

ux
+ λx − λx+1

ux+1

ux
.

The following corollary of theorem 2.1 allows to recover this result via an intertwining
relation.

Corollary 3.1 (Contraction and curvature). Assume that the potential Vu is lower bounded.
Then with the notations of theorem 2.1, for any t ≥ 0,

‖Pt‖Lip(du)→Lip(du) = ‖Ptρ‖Lip(du) = sup
x∈N

Ex

[

exp
(

−
∫ t

0
Vu(Xu,s) ds

)]

. (3.4)

In particular, the contraction inequality (3.3) is satisfied with the optimal constant

σu = inf
y∈N

Vu(y). (3.5)

Proof. Let f ∈ Lip1(du) be a 1-Lipschitz function with respect to the distance du. For
any y, z ∈ N such that y < z (without loss of generality), we have by the intertwining
identity (2.2) of theorem 2.1 and Jensen’s inequality,

|Ptf(z) − Ptf(y)| ≤
z−1
∑

x=y

ux |∂uPtf(x)|

≤
z−1
∑

x=y

ux Ex

[

|∂uf(Xu,t)| exp
(

−
∫ t

0
Vu(Xu,s) ds

)]

≤ du(z, y) sup
x∈N

Ex

[

exp
(

−
∫ t

0
Vu(Xu,s) ds

)]

,
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so that dividing by du(z, y) and taking suprema entail the inequality:

‖Pt‖Lip(du)→Lip(du) ≤ sup
x∈N

Ex

[

exp
(

−
∫ t

0
Vu(Xu,s) ds

)]

.

Finally, since by remark 2.4 the semigroup (Pt)t≥0 propagates monotonicity, the right-
hand-side of the latter inequality is nothing but ‖Ptρ‖Lip(du), showing that the supremum
over Lip1(du) is attained for the function ρ. The proof of equation (3.4) is achieved.

To establish (3.5), note that it suffices to get part ≤ since the other inequality follows
from (3.4). Applying (2.2) to the function ρ which is trivially in Lip1(du), we have for all
x ∈ N,

σu ≤ −1

t
log Ex

[

exp
(

−
∫ t

0
Vu(Xu,s) ds

)]

, t ≥ 0,

and taking the limit as t → 0 entails the inequality σu ≤ Vu(x), available for all x ∈ N.
The proof of (3.5) is now complete. �

Remark 3.2 (Pointwise gradient estimates for the Poisson equation). The argument
used in the proof of corollary 3.1 allows also to obtain pointwise gradient estimates for
the solution of the Poisson equation at the heart of Chen-Stein methods [B-H-J, Br-X,
B-X, Sch]. More precisely, let us assume that du is such that ρ ∈ L1(µ). For any
centered function f ∈ Lip1(du), let us consider the Poisson equation −Lg = f , where
the unknown is g. Then under the assumption σu > 0, there exists a unique centered
solution gf ∈ Lip(du) to this equation given by the formula gf =

∫∞
0 Ptf dt. We have for

any x ∈ N the following estimate (compare with [L-M, th. 2.1]):

sup
f∈Lip1(du)

|∂gf (x)| = sup
f∈Lip1(du)

ux

∫ ∞

0
|∂uPtf(x)| dt

= ux

∫ ∞

0
∂uPtρ(x) dt

= ux

∫ ∞

0
Ex

[

exp
(

−
∫ t

0
Vu(Xu,s) ds

)]

dt

≤ ux

σu
.

3.2. Functional inequalities. Theorems 2.1 and 2.7 allow to establish a whole family
of discrete functional inequalities. We define the bilinear symmetric form Γ on F by

Γ(f, g) :=
1

2
(L(fg) − fLg − gLf) =

1

2
(λ ∂f ∂g + ν ∂∗f ∂∗g).

Under the positive recurrence assumption, the associated Dirichlet form acting on its
domain D(Eµ) × D(Eµ) is given by

Eµ(f, g) :=
1

2

∫

N

Γ(f, g) dµ =
∫

N

λ ∂f ∂g dµ

where the second equality comes from the reversibility of the process. Here the domain
D(Eµ) corresponds to the subspace of functions f ∈ L2(µ) such that Eµ(f, f) is finite.
The stationary distribution µ is said to satisfy the Poincaré inequality with constant c if
for any function f ∈ D(Eµ),

c Varµ(f) ≤ Eµ(f, f), (3.6)

where Varµ(f) := µ(f 2) − µ(f)2 and µ(f) :=
∫

N
f dµ. The optimal (largest) constant

cP is the spectral gap of L, i.e. the first non-trivial eigenvalue of the operator −L. The
constant cP governs the L2(µ) exponential decay to the equilibrium of the semigroup: for
all f ∈ L2(µ) and t ≥ 0,

‖Ptf − µ(f)‖L2(µ) ≤ e−cPt ‖f − µ(f)‖L2(µ).



INTERTWINING AND COMMUTATION RELATIONS FOR BIRTH-DEATH PROCESSES 9

Several years ago, Chen used a coupling method which provides the following formula for
the spectral gap:

cP = sup
u∈F+

σu

where σu is the Wasserstein curvature of section 3.1 or, in other words, the Chen expo-
nent. It corresponds to theorem 1.1 in [Che1], equation (1.4). The following corollary of
theorem 2.1 allows to recover the ≥ part of Chen’s formula.

Corollary 3.3 (Spectral gap and Wasserstein curvatures). Assume that there exists some
function u ∈ F+ such that the associated Wasserstein curvature σu is positive. Then the
Poincaré inequality (3.6) holds with constant supu∈F+

σu, or in other words

cP ≥ sup
u∈F+

σu.

Proof. Since there exists some function u ∈ F+ such that the Wasserstein curvature σu is
positive, the process is positive recurrent. By proposition 6.59 in [Che2], the subspace of
D(Eµ) consisting of functions with finite support is a core of the Dirichlet form and thus
we can assume without loss of generality that f has finite support. We have

Varµ(f) = −
∫

N

∫ ∞

0

d

dt
(Ptf)2 dt dµ

= −2
∫

N

∫ ∞

0
Ptf LPtf dt dµ

= 2
∫ ∞

0

∫

N

λ u2 (∂uPtf)2 dµ dt

≤ 2
∫ ∞

0
e−2σut

∫

N

λ u2 Pu,t(∂uf)2 dµ dt,

where in the last line we used theorem 2.1 with the convex function ϕ(x) = x2. Now the
measure λu2µ is invariant for the semigroup (Pu,t)t≥0, so that we have

Varµ(f) ≤ 2
∫ ∞

0
e−2σut

∫

N

λ u2 (∂uf)2 dµ dt

=
1

σu

∫

N

λ (∂f)2 dµ

=
1

σu
Eµ(f, f),

where in the second line we used σu > 0. The proof of the Poincaré inequality is complete.
�

Remark 3.4 (M/M/∞ and M/M/1). The spectral gap of the M/M/∞ and M/M/1
processes is well-known [Che1]. Corollary 3.3 allows to recover it easily. Indeed, in the
M/M/∞ case, the value cP = ν can be obtained as follows: choose the constant weight
u = 1 to get cP ≥ ν, and notice that the equality holds for affine functions. For a positive
recurrent M/M/1 process, i.e. λ < ν, we obtain cP ≥ (

√
λ − √

ν)2 by choosing the weight

ux := (ν/λ)x/2, whereas the equality asymptotically holds in (3.6) as κ →
√

ν/λ for the

functions κx, x ∈ N. We conclude that cP = (
√

λ − √
ν)2.

Remark 3.5 (Alternative method for M/M/1). In the M/M/1 case, let us recover the

bound cP ≥ (
√

λ − √
ν)2 by using a different method. Letting ρ(x) := x for x ∈ N and
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g = f − f(0) for a given function f ∈ D(Eµ), we have
∫

N

g2 dµ =
1

ν − λ

∫

N

g2 (−Lρ) dµ

=
1

ν − λ
Eµ(g2, ρ)

=
λ

ν − λ

∫

N

∂(g2) ∂ρ dµ

=
λ

ν − λ

∫

N

(

2g ∂f + (∂f)2
)

dµ

≤ λ

ν − λ

(

2

√

∫

N

g2 dµ

√

∫

N

(∂f)2 dµ +
∫

N

(∂f)2 dµ

)

,

where in the last inequality we used Cauchy-Schwarz’ inequality. Solving this polynomial
of degree 2 entails the inequality

∫

N

g2 dµ ≤ λ

(
√

λ − √
ν)2

∫

N

(∂f)2 dµ.

Finally using the inequality Varµ(f) ≤ ∫

N
g2 dµ, we get the result.

Remark 3.6 (Diffusion case). As mentioned in remark 2.8, the argument above leading
to the Poincaré inequality might be extended to the positive recurrent diffusion case. In
particular, under the same notation we obtain the following lower bound on the Poincaré
constant

cP ≥ sup
a

inf
x∈R

Va(x),

where the supremum is taken over all positive C
2 function a on R. Note that up to the

transformation a → 1/a, such a formula was already obtained by Chen and Wang in
[C-W] through their theorem 3.1, equation (3.4), by using a coupling approach somewhat
similar to that emphasized by Chen in the discrete case.

Theorem 2.7 allows to derive functional inequalities more general than the Poincaré
inequality. Let I be an open interval of R and for a smooth convex function ϕ : I → R

such that ϕ′′ > 0 and −1/ϕ′′ is convex on I, we define the ϕ-entropy of a sufficiently
integrable function f : N → I as

Entϕ
µ(f) = µ (ϕ(f)) − ϕ (µ(f)) .

Following [Cha1], we say that the stationary distribution µ satisfies a ϕ-entropy inequality
with constant c > 0 if for any I-valued function f ∈ D(Eµ) such that ϕ′(f) ∈ D(Eµ),

c Entϕ
µ(f) ≤ Eµ (f, ϕ′(f)) . (3.7)

See for instance [Cha2] for an investigation of the properties of ϕ-entropies. The ϕ-
entropy inequality (3.7) is satisfied if and only if the following entropy dissipation of the
semigroup holds: for any sufficiently integrable I-valued function f and every t ≥ 0,

Entϕ
µ(Ptf) ≤ e−ct Entϕ

µ(f).

We have the following corollary of theorem 2.7.

Corollary 3.7 (Entropic inequalities and Wasserstein curvature). If the birth rate λ is
non-increasing and the Wasserstein curvature σ1 (with the constant weight u = 1) is
positive, then the ϕ-entropy inequality (3.7) holds with constant σ1.
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Proof. As in the proof of corollary 3.3 the assertion σ1 > 0 entails the positive recurrence
of the process. Moreover, we assume once again that the I-valued function f has finite
support. By reversibility, we have

Entϕ
µ(f) =

∫

N

(ϕ(P0f) − ϕ(µ(f))) dµ

= −
∫

N

∫ ∞

0

d

dt
ϕ(Ptf) dt dµ

= −
∫ ∞

0

∫

N

ϕ′(Ptf) LPtf dµ dt

=
∫ ∞

0

∫

N

λ ∂Ptf ∂ϕ′(Ptf) dµ dt

=
∫ ∞

0

∫

N

λ Bϕ (Ptf, ∂Ptf) dµ dt,

where Bϕ is as in theorem 2.7 (the identity ∂g ∂ϕ′(g) = Bϕ(g, ∂g) comes from g + ∂g =
g(· + 1)). Using now theorem 2.7 together with the invariance of the measure λµ for the
1-modification semigroup (P1,t)t≥0, we obtain

Entϕ
µ(f) ≤

∫ ∞

0

∫

N

e−σ1t λ P1,tB
ϕ (f, ∂f) dµ dt

=
∫ ∞

0

∫

N

e−σ1t λ Bϕ (f, ∂f) dµ dt

=
1

σ1

∫

N

λ Bϕ (f, ∂f) dµ

=
1

σ1

Eµ (f, ϕ′(f)) .

�

Remark 3.8 (Examples of entropic inequalities). The constant in the ϕ-entropy in-
equality provided by corollary 3.7 is not optimal in general (compare for instance with
the Poincaré inequality of corollary 3.3 when ϕ(r) = r2 with I = R). The choice
ϕ(r) = r log r with I = (0, ∞) allows us to recover the modified log-Sobolev inequality of
[C-DP-P, th. 3.1]: for any positive function f ∈ D(Eµ) such that log f ∈ D(Eµ),

σ1 Entϕ
µ(f) ≤ Eµ(f, log f). (3.8)

Note that beyond this entropic inequality, it is proved in [C-DP-P] that the entropy is
convex along the semigroup (a careful reading of the proof in [C-DP-P] suggests that it
simply boils down to commutation and convexity of A transforms!). For the M/M/∞
process, the estimate of corollary 3.7 is sharp since σ1 = ν and the equality in (3.8) holds
as α → ∞ for the function x ∈ N 7→ eαx. Note that the M/M/1 process and its invariant
distribution, which is geometric, do not satisfy a modified log-Sobolev inequality. Another
ϕ-entropy inequality of interest is that obtained when considering the convex function
φ(r) := rp, p ∈ (1, 2], with I = (0, ∞): for any positive function f ∈ D(Eµ) such that
f p−1 ∈ D(Eµ),

µ(f p) − µ(f)p ≤ p

σ1

Eµ(f, f p−1). (3.9)

Such an inequality has been studied in [B-T] in the case of Markov processes on a finite
state space and also in [Cha2] for the M/M/∞ queuing process. In particular, it can be
seen as an interpolation between Poincaré and modified log-Sobolev inequalities.

Under the positive recurrence assumption, theorem 2.1 implies also other type of func-
tional inequalities such as discrete isoperimetry and transportation-information inequal-
ities. Given a positive function u, we focus on the distance du constructed in section 3.1,
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where we assume moreover that ρ ∈ D(Eµ), i.e. λu2 is µ-integrable or, in other words, the
u-modification process (Xu,t)t≥0 is positive recurrent. The invariant measure µ is said to
satisfy a weighted isoperimetric inequality with weight u and constant hu > 0 if for any
absolutely continuous probability measure π with density f ∈ D(Eµ) with respect to µ,

hu Wdu
(π, µ) ≤

∫

N

λ u |∂f | dµ, (3.10)

where the Wasserstein distance Wdu
is defined in (3.1) with respect to the distance du.

The terminology of isoperimetry is employed here because it is a generalization of the
classical isoperimetry, which states that the centered L1-norm is dominated by an energy
of L1-type. Indeed, if the weight u is identically 1, then the distance d1 between two
different points is at least 1, so that (3.10) entails

2h1

∫

N

|f − 1| dµ = h1 Wd(π, µ) ≤ h1 Wd1
(π, µ) ≤

∫

N

λ |∂f | dµ,

where d is the trivial distance 0 or 1. Note that the L1-energy emphasized above differs
from the discrete version of the diffusion case, since our discrete gradient does not derive
from Γ.

On the other hand, let us introduce the transportation-information inequalities em-
phasized in [G-L-W-Y]. Let α be a continuous positive and increasing function on [0, ∞)
vanishing at 0. The invariant measure µ satisfies a transportation-information inequality
with deviation function α if for any absolutely continuous probability measure π with
density f with respect to µ, we have

α (Wdu
(π, µ)) ≤ I(π, µ), (3.11)

where the so-called Fisher-Donsker-Varadhan information of π with respect to µ is defined
as

I(π, µ) :=

{

Eµ(
√

f,
√

f) if
√

f ∈ D(Eµ);
∞ otherwise.

Note that I(·, µ) is nothing but the rate function governing the large deviation principle
in large time of the empirical measure Lt := t−1

∫ t
0 δXs

ds, where δx is the Dirac mass
at point x. In other words, the Fisher-Donsker-Varadhan information rewrites as the
variational identity [Che2, th. 8.8]:

I(π, µ) = sup
V ∈F+

∫

N

−LV

V
dπ.

The interest of the transportation-information inequality resides in the equivalence with
the following tail estimate of the empirical measure [G-L-W-Y, th. 2.4]: for any absolutely
continuous probability measure π with density f ∈ L2(µ) with respect to µ, and any
g ∈ Lip1(du),

Pπ (Lt(g) − µ(g) > r) ≤ ‖f‖L2(µ) e−α(r), r > 0, t > 0.

We have the following corollary of theorem 2.1.

Corollary 3.9 (Weighted isoperimetry and transportation-information inequality). With
the notations of theorem 2.1, assume that the process is positive recurrent and that the
following quantity is well-defined:

κu :=
∫ ∞

0
sup
x∈N

Ex

[

exp
(

−
∫ t

0
Vu(Xu,s) ds

)]

dt < ∞.

Then the weighted isoperimetric inequality (3.10) is satisfied with constant hu = 1/κu.
If moreover there exists two constants ε > 0 and θ > 1 such that

(1 + ε)λxu2
x + (1 + 1/ε)νxu2

x−1 ≤ −a (λx(θ − 1) + νx(1/θ − 1)) + b, x ∈ N, (3.12)
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where a := aε,θ ≥ 0 and b := bε,θ > 0 are two other constants depending on both ε and θ,
then the transportation-information inequality (3.11) is satisfied with deviation function

α(r) := sup
ε>0,θ>1

√

b2 + 2a(r/κu)2 − b

2a
.

Remark 3.10 (The case of positive Wasserstein curvature). In particular if the Wasser-
stein curvature σu with respect to the distance du is positive, then the process is positive
recurrent and we have

σu Wdu
(π, µ) ≤

∫

N

λ u |∂f | dµ and α (Wdu
(π, µ)) ≤ I(π, µ),

with the deviation function

α(r) := sup
ε>0,θ>1

√

b2 + 2a(rσu)2 − b

2a
.

Proof. For every f, g ∈ D(Eµ) we have, by reversibility,

Covµ(f, g) :=
∫

N

(

g −
∫

N

g dµ
)

f dµ

=
∫

N

(

−
∫ ∞

0
LPtg dt

)

f dµ

=
∫ ∞

0

(

−
∫

N

Ptg Lf dµ
)

dt

=
∫ ∞

0
Eµ(Ptg, f) dt. (3.13)

Now, for every probability measure π ≪ µ with dπ = fdµ, f ∈ D(Eµ), we get, using
(3.13),

Wdu
(π, µ) = sup

g∈Lip1(du)
Covµ(f, g)

= sup
g∈Lip1(du)

∫ ∞

0
Eµ(Ptg, f) dt

= sup
g∈Lip1(du)

∫ ∞

0

∫

N

λ u ∂f ∂uPtg dµ dt

=
∫ ∞

0

∫

N

λ u |∂f | ∂uPtρ dµ dt

≤
∫ ∞

0
sup
x∈N

Ex

[

exp
(

−
∫ t

0
Vu(Xu,s) ds

)]

dt
∫

N

λ u |∂f | dµ,

where in the last inequality we used theorem 2.1. This concludes the proof of the weighted
isoperimetric inequality.

Using now Cauchy-Schwarz inequality, reversibility and then (3.12) with Vθ(x) := θx,
x ∈ N,

Wdu
(π, µ) ≤ κu

√

I(π, µ)

√

∫

N

λ u2

(

√

f(· + 1) +
√

f
)2

dµ

≤ κu

√

I(π, µ)

√

∫

N

((1 + ε)λu2 + (1 + 1/ε)νu2
·−1) f dµ

≤ κu

√

I(π, µ)

√

∫

N

(

−a
LVθ

Vθ
+ b

)

f dµ

≤ κu

√

I(π, µ)
√

aI(π, µ) + b,
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from which the desired transportation-information inequality holds. �

Remark 3.11 (M/M/∞ and M/M/1 revisited). Corollary 3.9 exhibits optimal func-
tional inequalities, at least in the M/M/∞ case and its stationary distribution, the Pois-
son measure of mean λ/ν. Choosing the weight u = 1, we obtain the optimal constant
~1 = ν in the isoperimetric inequality. Indeed, corollary 3.9 entails ~1 ≥ ν, whereas the
other inequality is obtained by choosing π a Poisson measure of different parameter. For
the transportation-information inequality, we recover theorem 2.1 in [M-W-W] since the
choice of a := θ(1 + 1/ε)/(θ − 1) and b := λ(1 + ε + (1 + 1/ε)θ) allows us to obtain the

deviation function α(r) := λ(
√

1 + νr/λ − 1)2, r > 0. Note that it is optimal in view

of example 4.5 in [G-G-W]: for any absolutely continuous probability measure π with
square-integrable density with respect to µ,

lim
t→∞

1

t
logPπ

(

1

t

∫ t

0
Xs ds − λ

ν
> r

)

= −λ
(
√

1 +
νr

λ
− 1

)2

, r > 0.

For the M/M/1 process, we have the following inequalities for the optimal isoperimetric
constant ~u, with ux = (ν/λ)x/2 (a quantity that will appear again in section 3.3):

(
√

λ −
√

ν)2 ≤ ~u ≤ (
√

ν −
√

λ)
√

ν.

To get the second inequality, we choose the density f = (ν/λ)(1−1{0}) and the 1-Lipschitz
test function g = ρ. In particular as the ratio λ/ν is small, we obtain ~u ≈ ν. However,
we ignore if such a process satisfies a transportation-information inequality.

3.3. Hitting time of the origin by the M/M/1 process. Recall that we consider
the ergodic M/M/1 process (λ < ν) for which the stationary distribution is geometric
of parameter λ/ν. Since the process behaves as a random walk outside 0, the ergodic
property relies essentially on its behavior at point 0. Using the notation of theorem 2.1,
the intertwining relation (2.2) applied with a positive function u entails the identity

∂uPtf(x) = Ex

[

∂uf(Xt) exp
(

−
∫ t

0
Vu(Xu,s) ds

)]

where the potential is given for every x ∈ N by

Vu(x) := ν − ux−1

ux

ν1{x 6=0} + λ − ux+1

ux

λ.

Following Robert [R], the process (Xy
t )t≥0 is the solution of the stochastic differential

equation

Xy
0 = y and dXy

t = dN
(λ)
t − 1{Xy

t−>0} dN
(ν)
t , t > 0, (3.14)

where (N
(λ)
t )t≥0 and (N

(ν)
t )t≥0 are two independent Poisson processes with parameter λ

and ν, respectively. Since the process is assumed to be positive recurrent, the hitting
time of 0,

T y
0 := inf{t > 0 : Xy

t = 0}
is finite almost surely. We have the following corollary of theorem 2.1.

Corollary 3.12 (Hitting time of the origin for the ergodic M/M/1 process). Given
x ∈ N, consider a positive recurrent M/M/1 process (Xx+1

t )t≥0 starting at point x + 1,
and denote (Xx

u,t)t≥0 its u-modification process starting at point x, where

ux :=
(

ν

λ

)
x

2 ≥ 1.
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Then we have the following tail estimate: for any t ≥ 0,

P(T x+1
0 > t) = ux e−t (

√
λ−√

ν)
2

E

[

1

u(Xx
u,t)

exp
(

−
√

λν
∫ t

0
1{0}(Xx

u,s) ds
)

]

≤ ux e−t (
√

λ−√
ν)

2

.

Proof. Let us use a coupling argument. Let (Xx
t )t≥0 be a copy of (Xx+1

t )t≥0, starting at
point x. We assume that it constructed with respect to the same driving Poisson pro-

cesses (N
(λ)
t )t≥0 and (N

(ν)
t )t≥0 as the process (Xx+1

t )t≥0. Hence the stochastic differential
equation (3.14) satisfied by the two coupling processes entails that the difference between
(Xx+1

t )t≥0 and (Xx
t )t≥0 remains constant, equal to 1, until time T x+1

0 , the first hitting
time of the origin by (Xx+1

t )t≥0. After time T x+1
0 , the processes are identically the same,

so that the following identity holds:

Xx+1
t = Xx

t + 1{T x+1

0
>t}, t ≥ 0.

Since the original process is assumed to be positive recurrent, the coupling is successful,
i.e. the coupling time is finite almost surely. Therefore we have for any function f ∈
Lip(d1), where d1 is the distance d1(x, y) = |x − y|,

∂Ptf(x) = Ptf(x + 1) − Ptf(x) = E

[

f(Xx+1
t ) − f(Xx

t )
]

= E

[

∂f(Xx
t ) 1{T x+1

0
>t}
]

so that if we denote the function ρ(x) = x, we obtain

P(T x+1
0 > t) = ∂Ptρ(x) = ux ∂uPtρ(x).

Using now (2.2) with the function u, we get

P(T x+1
0 > t) = ux E

[

1

u(Xx
u,t)

exp
(

−
∫ t

0
Vu(Xx

u,s) ds
)

]

,

where Vu := (
√

λ − √
ν)2 +

√
λν 1{0}. �

Remark 3.13 (Sharpness). Using a completely different approach, Van Doorn established
in [VD], through his theorem 4.2 together with his example 5, the following asymptotics

lim
t→∞

1

t
log P(T x+1

0 > t) = −(
√

λ −
√

ν)2, x ∈ N.

Hence one deduces that the exponential decay in the result of corollary 3.12 is sharp. On
the other hand, proposition 5.4 in [R] states that T x+1

0 has exponential moment bounded
as follows:

E

[

e(
√

λ−√
ν)2T x+1

0

]

≤
(

ν

λ

)(x+1)/2

,

so that Chebyshev’s inequality yields a tail estimate somewhat similar to ours - although
with a worst constant depending on the initial point x + 1.

Remark 3.14 (Other approach). The proof of corollary 3.12 suggests also a martingale
approach. First, note that we have the identity

−ν 1{0} = −Lu

u
− Vu
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which entails as in the previous proof and since u ≥ 1, the following computations:

P(T x+1
0 > t) = ∂Ptρ(x)

= E

[

exp
(

−
∫ t

0
ν 1{0}(Xx

s ) ds
)]

≤ E

[

u(Xx
t ) exp

(

−
∫ t

0

(Lu

u
+ Vu

)

(Xx
s ) ds

)]

≤ ux e−t (
√

λ−√
ν)2

,

since the process (Mu
t )t≥0 given by

Mu
t := u(Xx

t ) exp
(

−
∫ t

0

Lu

u
(Xx

s ) ds
)

, t ≥ 0,

is a supermartingale. Indeed, denoting

Zu
t := exp

(

−
∫ t

0

Lu

u
(Xx

s ) ds
)

,

we have by Ito’s formula:

dMu
t = Zu

t du(Xx
t ) + u(Xx

t ) dZu
t

= Zu
t (dMt + Lu(Xx

t )dt) − u(Xx
t )

Lu

u
(Xx

t ) Zu
t dt

= Zu
t dMt,

where (Mt)t≥0 is a local martingale. Therefore, the process (Mu
t )t≥0 is a positive local

martingale and thus a supermartingale.

3.4. Convex domination of birth-death processes. Let (Xx
t )t≥0 be the M/M/∞

process starting from x ∈ N. The Mehler-type formula (1.2) states that the random
variable Xx

t has the same distribution as the independent sum of the variable X0
t , which

follows the Poisson distribution of parameter (λ/ν)(1 − e−νt), and a binomial random

variable B
(x)
t of parameters (x, e−νt). By convention, B

(0)
t is assumed to be 0. Hence we

have for any non-negative function f and any x ∈ N,

E [f(Xx
t )] = E[f(X0

t + B
(x)
t )], t ≥ 0. (3.15)

Such an identity can be provided by using the commutation relation (1.4). Indeed we
have

E

[

f(Xx+1
t )

]

= (1 − e−νt)E [f(Xx
t )] + e−νt

E[f(Xx
t + 1)],

so that a recursive argument on the initial state provides the required result. An inter-
esting consequence of (3.15) appears in terms of concentration properties. For instance
a straightforward computation entails that for any θ ≥ 0, we get the following inequality
on the Laplace transforms

E

[

eθXx
t

]

≤ E

[

eθNx
t

]

,

where Nx
t is a Poisson random variable with the same mean as Xx

t . Therefore, using
the exponential Chebyshev inequality entails an upper bound on the tail of the centered
random variable Xx

t − E[Xx
t ], which is sharp as t → ∞ (recall that the stationary distri-

bution is Poisson with parameter λ/ν).
Actually, one may ask if for a more general birth-death process, the intertwining relation
of type (2.2) may imply a relation similar to (3.15). This leads to the notion of stochastic
ordering.
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Following the presentation enlighten by Stoyan in [S], let us start with the classical
notion of stochastic ordering for integer-valued random variables. We say that X is
stochastically smaller than Y , and we note X ≤d Y , if for any function f ∈ Fd,

E[f(X)] ≤ E[f(Y )].

Such a relation, as the convex domination introduced below, is a partial ordering on the
set of distribution functions. The interesting feature of this stochastic ordering resides
in its characterization in terms of coupling: we have X ≤d Y if and only if there exist
random variables X1 and Y1, both defined on the same probability space and with the
same distribution as X and Y respectively, such that P(X1 ≤ X2) = 1. Moreover, it
is equivalent to the following comparison between tails: we have X ≤d Y if and only
P(X ≥ x) ≤ P(Y ≥ x) for any x ∈ R. In other words, the random variable X takes small
values with a higher probability than Y does.

Another stochastic ordering of interest is the convex ordering, or convex domination.
Denote Fc the subset of Fd consisting of non-negative non-decreasing convex functions,
where in our discrete setting the convexity of a function f : N → R is understood as
∂2f ≥ 0. We say that X is convex dominated by Y , and we note X ≤c Y , if for any
function f ∈ Fc,

E[f(X)] ≤ E[f(Y )].

It is known to be equivalent to the inequality

E

[

(X − x)+
]

≤ E

[

(Y − x)+
]

, x ∈ R,

where a+ := max{a, 0}. Typically, one may deduce from the convex domination concen-
tration properties like a comparison of moments or Laplace transforms as in the M/M/∞
case above. Moreover, this refined ordering might appear for instance when using de-
la-Vallée-Poussin’s lemma about uniform integrability of a family of random variables.
However, in contrast to the ≤d ordering, the authors ignore if there exists a genuine
interpretation of the convex domination in terms of coupling.

Coming back to our birth-death framework, we observe that if we want to use the
intertwining relation (2.2) of theorem 2.1 in order to obtain stochastic domination, then
a first difficulty arises. Indeed, another birth-death process appears in the right-hand-
side of (2.2), namely the u-modification of the original process. Therefore, let us provide
first a lemma which allows us to compare two birth-death processes with respect to the
≤d ordering. Although the result below is somewhat obvious from the point of view of
coupling, we give an alternative proof based on the interpolation method emphasized in
the proof of theorem 2.1. See also [S, prop. 4.2.10].

Lemma 3.15 (Stochastic comparison of birth-death processes). Let (Xx
t )t≥0 and (X̃x

t )t≥0

be two birth-death processes both starting from x ∈ N. Denoting respectively λ, ν and λ̃, ν̃
the transition rates of the associated generators L and L̃, we assume that they satisfy the
following assumption:

λ̃ ≤ λ and ν̃ ≥ ν

Then for every t ≥ 0, the random variable X̃x
t is stochastically smaller than Xx

t . In other
words, we have X̃x

t ≤d Xx
t .

Proof. Let g ∈ Fd and define the function s ∈ [0, t] 7→ J(s) := P̃sPt−sg where (Pt)t≥0 and
(P̃t)t≥0 are the semigroups of (Xx

t )t≥0 and (X̃x
t )t≥0 respectively. By differentiation, we

have

J ′(s) = P̃s

(

L̃Pt−sg − LPt−sg
)

= P̃s

(

(λ̃ − λ) ∂Pt−sg + (ν̃ − ν) ∂∗Pt−sg
)

,
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which is non-positive since the semigroup (Pt)t≥0 satisfies the propagation of monotonicity,
cf. remark 2.4. Hence the function J is non-increasing and the desired result holds. �

Now we are able to state the following corollary of theorem 2.1, which states a new con-
vex domination involving decoupled random variables in the right-hand-side. However,
despite some particular cases like the M/M/1 case for which the convenient coupling
appearing in the proof of corollary 3.12 allows us to extend the next result to the ≤d

ordering, we ignore if it can be done in full generality.

Corollary 3.16 (Convex domination). Denote (Xy
t )t≥0 a birth-death process starting at

some point y ∈ N. We assume that the birth rate λ is non-increasing and that there exists
κ ≥ 0 such that

∂(ν − λ) ≥ κ.

Then for any t ≥ 0 and any x ∈ N, the random variable Xx+1
t is convex dominated by the

independent sum of Xx
t and a Bernoulli random variable Yt of parameter e−κt ∈ (0, 1].

In other words, we have
Xx+1

t ≤c Xx
t + Yt.

Proof. We have to show that for any function f ∈ Fc,

E

[

f(Xx+1
t )

]

≤ E[f(Xx
t + Yt)]. (3.16)

Using the intertwining relation (2.2) of theorem 2.1, we have since f is non-decreasing:

E

[

f(Xx+1
t )

]

≤ E[f(Xx
t )] + e−κt

E

[

∂f(Xx
1,t)
]

≤ E[f(Xx
t )] + e−κt

E[∂f(Xx
t )]

= (1 − e−κt)E[f(Xx
t )] + e−κt

E[f(Xx
t + 1)]

= E[f(Xx
t + Yt)],

where to obtain the second inequality we used lemma 3.15 with the 1-modification process
(Xx

1,t)t≥0 playing the role of (X̃x
t )t≥0 since ∂f is non-decreasing (recall that f ∈ Fc). �

Remark 3.17 (More on convex domination). By an easy recursive argument one obtains
from the latter result the following convex domination:

Xx
t ≤c X0

t + B
(x)
t ,

where B
(x)
t is a binomial random variable of parameters (x, e−κt), independent from X0

t ,
as in the case of the M/M/∞ queuing process.
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