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Abstract: Background modeling is often used to detect mowbggct in video acquired by a fixed camera.
Recently, subspace learning methods have beentageddel the background in the idea to represelmen
data content while reducing dimension significaniirie first method using Principal Component Anilys
(PCA) was proposed by Olivet al.[1] and a representative patent using PCA condbnsletection of cars
and persons in video surveillance [2]. Numerousroupments and variants were developed over thenrece
years. The purpose of this paper is to provideraesuand an original classification of these immnments.
Firstly, we classify the improvements of the PCAténm of strategies and the variants in term ofubked
subspace learning algorithms. Then, we presenngamtive evaluation of the variants and evalulagent
with the state-of-art algorithms (SG, MOG, and K@ify)using the Wallflower dataset.

Keywords: Background modeling, subspace learning, prinapatponents analysis

Short Running Title: Subspace learning for background modeling

INTRODUCTION

In many video applications, moving objects must be

detected like in video surveillance [3], opticaltioa capture
[4-6] and multimedia [7-9]. The common way to egtra
moving objects is to use background subtractionhout.
These methods have different steps: background lingde
background initialization, background maintenanced a
foreground detection as shown in Fig).

Fig. (1). Background Subtraction: The pip€eline
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The background modeling describes the kind of modeld

to represents the background. Once the model has be

chosen, the background model is initialized dugdrigarning
step by using N frames. Then, a first foregrounctéon is
made and consists in the classification of the Ipa® a
background or as a foreground pixel. Thus, thediarend
mask is applied on the current frame to obtainrimving

objects. After this, the background is adapted owee
following the changes which have occurred in thengcand
so on. The background modeling is the key choicabse it
determines how the model will adapt to the critsilations
[7, 10]: Noise image due to a poor quality imagerse,
camera jitter, camera automatic adjustments, tifieeoday,
light switch, bootstrapping, camouflage, foregroaperture,
moved background objects, inserted background tshjec
multimodal background, waking foreground objectegling
foreground object and shadows. These critical Sdosa
have different spatial and temporal properties. Tinain
difficulties come from the illumination changes afyhamic
backgrounds:

- lllumination changes appear in indoor and outdoor

scenes. The Fig.2). shows an indoor scene which
presents a gradual illumination change. It causésef
detections in several parts of the foreground nasskan
be seen at the Figd). The Fig. 8). shows the case of a
sudden illumination change due to a light on/o%k all
the pixels are affected by this change, a big armotin
false detections is generated (see RBg))(

Dynamic backgrounds appear in outdoor scenes. The
Fig. @). shows four main types of dynamics



Fig. (2). Gradual illumination changes (Sequence Time of Day from [11])

a) Dark b) Middle c) Clear d) Foregroundsk

Fig. (3). Sudden illumination changes (Sequence Light Switch from [11])

a) Light-on b) Light-off ¢) Foreground mask

backgrounds: Camera jitter, waving trees, watersupport vector regression (SVR) [26] and suppoctaredata
rippling and water surface. The left column shows description (SVDD) [27].

the original images and the right the foreground

mask obtained by the MOG [12]. In each case, thereFig. (4). Dynamic backgrounds

is a big amount of false detections.

In the literature, many background modeling methbdse
been developed [13, 14] to be robust to thesecatiti
situations and can be classified in the followiragegories:
Basic Background Modeling [15-17], Statistical Baakund
Modeling [12, 18, 19], Fuzzy Background Modelin@[21],
Background Estimation [10, 11, 22].

Reading the literature, one remark can be made: Th
statistical models offer more robustness to illustion
changes and dynamic backgrounds. The simplest way t
represent the background is to assume that theristrer
time of pixel's intensity values can be modeled ay
Gaussian. Following this idea, Wreat al. [18] have
proposed to use a single Gaussian (SG). &tiral [23] have
generalized the SG using single general Gaussi@s)3o
alleviate the constraint of a strict Gaussian. Heve a
unimodal model cannot handle dynamic backgroundsnwh
there are waving trees, water rippling or movingaal To
solve this problem, the Mixture of Gaussians (MO@&s
been used to model dynamic backgrounds [12]. InstHmae
idea, Allili et al [24] have proposed the mixture of general
Gaussians (MOGG). This model has some disadvantages
For example, background having fast variations oae
accurately modeled with just a few Gaussians (lsBato
5), causing problems for sensitive detection. Sopoa-
parametric technique was developed for estimating
background probabilities at each pixel from mangerd
samples over time using Kernel density estimatidDE)
[19] but it is time consuming. These five modelsigist in
the first category models which are based on thes&an
models. The second category uses more sophisticated
statistical models as support vector machine (S\IR5)], d) Sequence Water surface from [29]




Table 1. Statistical Background M odeling: An Overview

Categories M ethods

Authors- Dates

Gaussian Models Single Gaussian (SG) (5)

Single General Gaussian (SGG) (3)
Mixture of Gaussians (MOG) (~100)
Mixture of General Gaussians (MOGG) (3)
Kernel Density Estimation (KDE) (21)

Wrenet al.(1997) [18]

Kim et al (2007) [23]

Stauffer and Grimson (1999) [12]
Allili et al (2007) [24]
Elgammalet al (2000) [19]

Support Vector Models Support Vector Machine (S\B)

Support Vector Regression (SVR) (2)
Support Vector Data Description (SVDD) (5)

Lin et al. (2002) [25]
Wanget al (2006) [26]
Tavakkoliet al (2006) [27]

Subspace Learning Models

Principal Components AmalbL-
Independent Component Analysis (SL-ICA) (2)
Incremental Non Negative Matrix Factorization (S\MF) (2)
Incremental Rank-(RR,,R;) Tensor (SL-IRT) (1)

PCA) (15) Oliver et al. (1999) [1]
Yamazakiet al. (2006) [30]
Bucaket al (2007) [31]

Li et al (2008) [32]

The third category employs Subspace Learning msthiod
[1], Subspace Learning using Principal Componeralysgis
(SL-PCA) is applied on N images to construct a gaaind
model, which is represented by the mean image aed t
projection matrix comprising the first p signifidan
eigenvectors of PCA. In this way, foreground segtaiEm

is accomplished by computing the difference betwten
input image and its reconstruction. In the same,ideany
improvements of SL-PCA [10] were developed to baeno
robust and fast [33-45]. In the same category, Yzaakizet al.
[30] and Tsaiet al [46] have used an Independent
Component Analysis (SL-ICA). In another way, Buelal.
[31, 47] have proposed an Incremental Non-negadilagrix
Factorization (SL-INMF) to reduce the dimension.oler

to take into account the spatial information, dti al. [32]
have used an Incremental Rank;@,Rs;) Tensor (SL-IRT).
The Tablel shows an overview of the statistical background
modeling methods. The first column indicates thtegary
model and the second column the name of each metho
Their corresponding acronym is indicated in thestfir
parenthesis and the number of papers counted foh ea
method in the second parenthesis. The third colgives the
name of the authors and the date of the relatetigatibn.
The Gaussian models and support vector modelsraetly
designed for dynamics backgrounds and subspaceirgar
models for illumination changes.

In this paper, we present a survey on subspace

learning approaches which have attracted much taben
recently to deal with illumination changes. Theppraaches
can be divided into improvements and variants oAPThe
improvements consist to enhance the adaptation taed
robustness by using incremental and robust PCArigthgas
[33-45]. The variants consist to use an other sadEsp
learning algorithms as the Independent Componeiadysis
(ICA) [30, 46], Incremental Non-negative Matrix
Factorization (INMF) [31, 47] and Incremental Rank-
(R1,R,,Rs) Tensor (IRT) [32].

The rest of this paper is organized as followshin
Section 2, we firstly provide a background on salogp
learning methods. Then, in the section 3, we renthnel
original PCA method proposed by Olivetral.[1]. Then, we
classify the modified versions found in the litera Then,

the Sections 4, 5 and 6 review respectively SL-IGA-
INMF and SL-IRT algorithms applied to background
modeling. Finally, in the Section 7, we presenbmparative
evaluation of the SL-PCA’s variants with the stafeart
algorithms (SG, MOG, KDE) by using the Wallflower
dataset.

2. BACKGROUND ON SUBSPACE LEARNING
METHODS

The key problem in many data-analysis tasks isind &
suitable representation of the data. A useful regrtation
can be obtained by reducing the dimensionalithefdata so
that further computational methods can be appfedhspace
learning methods have been developed in this coatek so
consist in reducing the dimension of the spaceifaigmtly.
he different methods have been classified by Skand
eonardis [48] as reconstructive and discriminathethods:

- Reconstructive subspace learning: The reconstructive
methods allow a well approximation of data and so
provide a good reconstruction. Another advantagpat
reconstructive methods are unsupervised techniques.
Furthermore, reconstructive methods enable incréahen
updating which is very suitable for real-time apation.
These methods are task-independents. The most
common reconstructive methods are the following:
Principal Components Analysis (PCA) [49],
Independent Component Analysis (ICA) [50] and Non-
negative Matrix Factorization (NMF) [51]. PCA
transforms a number of possibly correlated data at
smaller number of uncorrelated data called priricipa
components. ICA is a variant of PCA in which the
components are assumed to be mutually statistically
independent instead of merely uncorrelated. The
stronger condition allows to remove the rotational
invariance of PCA, i.e. ICA provides a meaningful
unique bilinear decomposition of two-way data tba

be considered as a linear mixture of a number of
independent source signals.



Table 2. Subspace L earning Methods: An Overview

Categories M ethods Authors - Dates
Reconstructive methods  Principal Components Anal{BCA) Joliffe (2002) [49]
Independent Component Analysis (ICA) Hyvarinen and Oja (2000) [50
Non-negative Matrix Factorization (NMF) Lee and Seung (2000) [51]
Discriminative methods| Linear Discriminant Analy@ifA) Tang and Tao (2006) [52]
Canonical Correlation Analysis (CCA) Hardoon et al. (2004) [53]

Non-negative matrix factorization (NMF) finds are the most adapted for background modeling. Eurtbre,
linear representations of non-negative data. Gaven their unsupervised aspect allows to avoid a manual
non-negative data matriyy , NMF finds an intervention in the learning step.

approximate factorizationV =WH into non-

negative factorsw and H . The non-negativity In the following sections, we survey the subspace
constraints make the representation purely additive l€aning methods applied to background modelingadipal

i.e allowing no subtractions, in contrast to PCAlan Components Analysis, Independent Component Analysis
ICA. Non-negative Matrix Factorization and Incrementank

(R1,R,,R3) Tensor. These four methods are reconstructive

- Discriminative subspace learning:  The ones.

discriminative methods are supervised techniques

and allow a well separation of data and so proside 3 SUBSPACE LEARNING VIA PCA (SL-PCA)

good classification. Furthermore, discriminative

methods are spatially and computationally efficient

These me'tho'ds. are task-dependents. The .mosg'l Principle

common discriminative methods are the following:

Linear Discriminant Analysis (LDA) [52] and _

Canonical Correlation Analysis (CCA) [53]. LDA Oliver et al. [1] have proposed to model each background
projects the data onto a lower-dimensional vectorPiXel using an eigenbackground model. This modelststs
space such that the ratio of the between-clasgn taking a sample of N image$l, l5,...,|y} and

distance tq the With[n-class distance js ma?(imi,zed'computing the mean background image, and its
The goal is to achieve maximum discrimination.

Canonical correlation analysis is a multivariate covariance matrixCg . This covariance matrix is then

statistical model that facilitates the study of diagonalized using an eigenvalue decompositiomlmA's:
interrelationships among sets of multiple dependent

variables and multiple independent variables. Lg :¢BCB¢TB (1)

Canonical correlation simultaneously predicts
multiple dependent variables from multiple

. . where @ is the eigenvector matrix of the covariance of the
independent variables.

data andLg is the corresponding diagonal matrix of its

The Table2 shows an overview of the common subspaceeigenvalues.

learning methods. The first column indicates theegary

and the second column the name of each methodr Thei In order to reduce, the dimensionality of the space
corresponding acronym is indicated in the firstgpéinesis. only M eigenvectors (M<N) are kept in a principal
The third column gives for the related recent syrtee component analysis (PCA). The M largest eigenvakres
name of the author and the date. contained in the matrix,, and the M vectors correspond to

- . ... these M largest eigenvalues in the matti; .
All these methods are originally implemented with g g %

batch algorithms which require that the data must b . . .
available in advance and be given once altogeth@never, ~ Once the eigenbackground images stored in the
this type of batch algorithms is not adapted foe th Matrix @y are obtained and the mean, too, the input
application of background modeling in which theadate  imagel, can be approximated by the mean background and
mcrer_nental_ly received from thg camera. Furtherr,nwfgen weighted sum of the eigenbackgrountls,

the dimension of the dataset is high, both the adgatpn
and storage complexity grow dramatically. Thus,
incremental methods are highly needed to computealt
time the adaptive subspace for the data arrivingieetially
[54]. Following these constraints, the reconstuectnethods



A daptivity
|

SL-PCa (1] SLIPCE [31]

SL-IRPCA [32, 33]

| »
SL-WIRFCA [34, SL-AWIRPCA
33] (28]

Fig. (5). Adaptivity of the SL-PCA Algorithms

So, the coordinate in eigenbackground space oftinpu
image |, can be computed as follows:

w = (1 _,UB)TCDM (2

When w, is back projected onto the image space, a
reconstructed background image is created as fellow

B =Py W + Mg (3)
Then, the foreground object detection is made k®is:
I -B>T @)

where T is a constant threshold.

3.2 Improvements

The eigenbackground model which we have called SL-
PCA provides a robust model of the probability
distribution function of the background, but not thfe
moving objects while they do not have a significant
contribution to the model. So, the first limitatiaf this
model is that the size of the foreground object trhes
small and don'’t appear in the same location duargng
period in the training sequence. The second liitat
appears for the background maintenance. Indeeds it
computationally intensive to perform model updatirsing

the batch mode PCA. Moreover without a mechanism of
robust analysis, the outliers or foreground objects/ be
absorbed into the background model [55-57]. Thedthi
limitation is that the application of this model nisostly
limited to the gray-scale images since the intégmabf
multi-channel data is not straightforward. It ilwes much
higher dimensional space and causes additiorfficuliy

to manage data in general. Thus, the different
improvements founds in the literature attempt tdveso
these three limitations:

- Alleviate the limitation of the size of the foreground
object: Xu et al [33, 34] proposed to apply recursively
an error compensation process which reduces the
influence of foreground moving objects on the
eigenbackground model. An adaptive threshold
method is also introduced for background subtragtio
where the threshold is determined by combining a

fixed global threshold and a variable local thrédho
Results show more robustness in presence of moving
objects. Another approach developed by Kawakata
al. [35] consists in an iterative optimal projection
method to estimate a varied background in real time
from a dynamic scene with foreground. Firstly,
background images are collected for a while and the
the background images are compressed using
eigenspace method to form a database. After this
initialization, a new image is taken and projectetb

the eigenspace to estimate the background. As the
estimated image is much affected by the foreground,
the foreground region is calculated by using
background subtraction with former estimated
background to exclude the region from the projectio
Thus the image whose foreground region is replaced
by the former background is projected to eigenspace
and then the background is updated. Kawabata et al.
[35] proved that the cycle converges to a correct
background image.

Dealing with the time requirement and the
robustness: For the maintenance, some authors [36-44]
have proposed different algorithms of incremental
PCA. The incremental PCA proposed by [36] need
less computation but the background image is
contamined by the foreground object. To solve this,

et al [37, 38] have proposed an incremental PCA
which is robust in presence of outliers. However,
when keeping the background model updated
incrementally, it assigned the same weights to the
different frames. Thus, clean frames and frameghvhi
contain foreground objects have the same contdhuti
The consequence is a relative pollution of the
background model. In this context, Skoeajal. [39,

40] used a weighted incremental and robust. The
weights are different following the frame and this
method achieved a better background model. However,
the weights were applied to the whole frame without
considering the contribution of different imagetpano
building the background model. To achieve a pixel-
wise precision for the weights, Zhang and Zhuarig [4
have proposed an adaptive weighted selection for an
incremental PCA. This method performs a better
model by assigning a weight to each pixel at eash n
frame during the update. Experiments [41] show that
this method achieves better results than the SICURP
[37, 38]. Wanget al. [42, 43] used a similar approach



using the sequential Karhunen-Loeve algorithm. All

these incremental methods avoid the eigen-
decomposition of the high dimensional covariance
matrix using approximation of it and so a low

decomposition is allowed at the maintenance stejp wi

less computational load. However, these incremental
methods maintain the whole eigenstructure including
both the eigenvalues and the exact matbiy . To

solve it, Liet al. [44] have proposed a fast recursive
and robust eigenbackground maintenance avoiding
eigen-decomposition. This method achieves similar
results than the SL-IPCA [36] and the SL-IRPCA [37,
38] at better frames rates. The Fid).(shows a
classification of these algorithms following their
robustness and their adaptivity.

- Dealing with the grey scale & the pixd-wise
limitations: Han and Jain [45] have proposed an
efficient algorithm using a weighted incremental 2-
Dimensional Principal Component Analysis. It is
shown that the principal components in 2D PCA are
computed fficiently by transformation to standard
PCA. To perform the computational time, Han and
Jain [45] have used an incremental algorithm tcatgpd
eigenvectors to handle temporal variations of
background. The proposed algorithm was applied to 3
channel (RGB) and 4-channel (RGB+IR) data. Results
[45] show noticeable improvements in presence of
multimodal backgrounds and shadows. To solve the
pixel-wise limitation, Zhacet al. [58] have employed
spatio-temporal block instead of pixel. It is more
robust to noise than the pixel wise approach [59].
Furthermore, their method consists in applying the
candid covariance free incremental principal
components analysis algorithm (CCIPCA) [60] which
is fast in convergence rate and low in computationa
complexity than classical IPCA algorithms. Results
[58] show more robustness robust to noise and fast
lighting changes.

The Table3, Table4 and Table5 group by type these
different improvements of the SL-PCA.

Table 3. Size of theforeground objects

M ethods Authors - Dates
Recursive Error Xu et al. (2006) [33,
Compensation 34]

(SL-REC-PCA)
Iterative Optimal
Projection
(SL-IOP-PCA)

Kawabateet al. (2006)
(35]

Table 4. Timerequirement and the robustness

M ethods Authors - Dates
Incremental PCA Rymelet al (2004)
(SL-IPCA) [36]

Incremental and robust | Li et al.(2003) [37, 38]
PCA
(SL-IRPCA)

Weighted Incremental and Skocajet al. ( 2003)
Robust PCA [39, 40]
(SL-WIRPCA)

Adaptive Weight
Selection for Incremental
PCA

(SL-AWIPCA)
Sequential Karhunen-
Loeve algorithm
(SL-SKL-PCA)

Fast Recursive
Maintenance
(SL-FRM-PCA)

Zhang and Zhuang
(2007) [41]

Wanget al. (2006) [42,
43]

Li et al.(2006) [44]

Table 5. Dealing with the grey scale & the pixel-wise
limitations

M ethods

Weighted Incremental 2D
PCA

(SL-WI2DPCA)

Candid Covariance
Incremental PCA
(SL-CCIPCA)

Authors- Dates

Han and Jain (2007)
[45]

Zhaoet al (2008) [58]

4. SUBSPACE LEARNING VIA ICA (SL-ICA)
4.1 Principle

ICA generalizes the technique of PCA and has prdeen
be a good tool of feature extraction. When sometuns

of probabilistically independent source signals are
observed, ICA recovers the original source sigfral® the
observed mixtures without knowing how the sources a
mixed. The assumption made is that the observation

vectors X = (X, Xo,....Xy ) ' can be represented in terms of
a linear superposition of unknown independent wscto

SEIC- N L
X = AS (5)

where A is an unknown mixing matrix (MxN). The goal
of ICA is to find a matriXW , so that the resulting vectors:

Y =WX (6)



recover the independent vectoiS , probabilistically
permuted and rescaled is roughly the inverse matrix of
A.

4.2 Application to background modeling

In the context of background modeling, the ICA nlade
given by:

Y =WX, @)

where X, =(xg,X¢)' is the mixture data matrix of size

2*K in which K=M*N where M and N are the column and
the row of the images of the sequence.
Xq = (Xq15 Xq2,--: X ) IS the first frame which can contain

or not foreground objects and, = (Xy1, X52,...,Xox ) IS the
second frame which contains foreground objects.
W =(w,w,)" is the de-mixing matrix, in which
W, = (Wiy,Wi,) with i=1,2.Y =(y,,y,)" is the estimated
source signals in whicly; = (Y1, Viz.....Yi ) - Several ICA

algorithms can be used to determife Yamazakiet al.
[30] used a neural learning algorithm [61]. Tsail &ai [46]
used a Particle Swarm Algorithm (PSO) [62]. Oieis
determined, there are two cases in the literature:

- The first case whereq contains foreground object

like in Yamazaki et al. [30]. Then, the foreground
mask for the framesx, and x, is obtained by

thresholding respectively, andy, . The background

image is obtained by replacing regions representing
foreground objects irx; by the corresponding regions

representing background ix, .

- The second case wheng contains no foreground

object like in Tsai and Lai [46]. Then, the foregnal
mask for the frames, is obtained by thresholding, .

The background image ig; .

The ICA model has been evaluated on traffic scanf&0]

and has shown robustness in changing backgroumd lik
illumination changes. In [46], the algorithm hasbeested

on indoor scenes which present illumination charges

5. SUBSPACE LEARNING VIA INMF (SL-INMF)
5.1 Principle

The aim of non-negative matrix factorization (NMH®&jith
rank r, is to decompose the data maXixl RP*? into two
matrices which ar&v O RP*" called the mixing matrix,
and H OR"™ named as the encoding matrix:

V =WH (8)

So, the goal of the NMF consists in finding an appnate

factorization that minimizes the reconstruction oerr
Different cost functions based on the reconstraucgoror

have been defined in the literature, but becauseétsof
simplicity and effectiveness, the squared errahe most

used:

P g
F=|v _WHHZ :ZZ(Vij -WH);)*>  (9)

i=1 i=1

where subscription ij stands for th8 ijpatrix entity.

5.2 Application to background modeling

Bucaket al.[31, 47] have proposed an incremental NMF
algorithm to model the background. The initialipatiis
made using N training frames. Sé,is a vector column
corresponding to a matrix of sigexq)x N where p and q

are respectively the column and the row of the iesaghe
matrices W and H are updated incrementally. The
foreground detection is made by thresholding trsedrel
error which corresponds to the deviation betweea th
background model and the projection of the curfearhe
onto the background model. The SL-INMF has similar
performance to dynamic background and illumination
changes than the SL-IPCA proposed by Li et al [37].

6. SUBSPACE LEARNING VIA INCREMENTAL
RANK-(R1, R2, R3) TENSOR (SL-IRT)

The different previous subspace learning methodsider
image as a vector. So, the local spatial infornmati®
almost lost. To solve this problem, ket al. [32] have
proposed to use a high-order tensor learning dhgari
called incremental rank-¢iR,,Rs) tensor based subspace
learning. This online algorithm builds a low-ordensor
eigenspace model in which the mean and the eigendees

updated adaptively. Denoi@:{BMG| ORMN }q:lz , @s

a scene’s background appearance sequence with-tthe g
frame beingBM,. M and N are respectively the column

and the row of the images. Denopg, as the u-th and the
v-th pixel of the scene. The tensor-based eigerspaxiel

Lo _ uv %], %t
for an  existing A—{BMq R }q=12,...1

(1, =1, =5corresponding to & neigborhood ofp,,
with K =1,1,-1=24 ) consists of the maintained

eigenspace dimensions ((R,,R;) corresponding to the
three tensor unfolding modes, the mode-n column

projection matricesU ™ OR'" %™ | the mode-3 row
projection matrixV @ gR(»12>Rs  the column means

L® and L@ of the mode-(1,2) unfolding matricesy,)

and A, and the row mean® of the mode-3 unfolding



matrix Ag . Given the K-neighbor image region

|1 OR'"2? centered at the u-th and v-th pixg|, of the

current incoming framd,,; DR ™, the distanceRM,,,
(determined by the three reconstruction error noofmthe
three modes) betweeh}; and the learned tensor-based

eigenspace model is computed.
Then, Liet al.[32] made the foreground detection
as follows:

2
p,, is classified as backgroundéb(p(——F;Mlz‘V) >T
o

p,, is classified as foreground otherwise

where g is a scaling factor and T denotes a threshold.
Thus, the new background mod8M,, (u,v) at time t+1
is defined by Liet al.[32] as follows:

BM,,,(u,v) =H,, if p,, is classified as foreground
BM,;(u,v) =1, (u,v) otherwise

where H,, = 1-a)MB,(u,v) +al,,(u,v) , MB, is the
mean matrix ofBM,, at time t anda is a learning rate

factor.

Then, the tensor eigenspace model is updated
incrementally and so on. The SL-IRT shows more
robustness to noise than the SL-IPCA proposed &} hl.

[37].

7. PERFORMANCE EVALUATION

For the performance evaluation, we have compared th
original version of the subspace learning modekh whe
state-of-art algorithms which are composed by three
gaussian models:

- Single Gaussian: The mean and covariance of pixel
values are updated continuously [18]. Foreground
detection is made by thresholding the difference
between the current mean and the current value.

- Mixture of Gaussans: A mixture of K Gaussians
models the background [12]. Each Gaussian is
weighted according to the frequency with which it
represents the observed background. The most kieavil
weighted Gaussians that together gives a sum over
50% of past data are considered background.

- Kernel Density Edtimation: This model keeps a
sample of intensity values for each pixel in thega
and uses this sample to estimate the probabilitgitie
function of the pixel intensity [19]. The density
function

- is estimated using kernel density estimation tegren
The foreground detection is made by thresholdireg th
probability.

7.1 Wallflower dataset

For a comparative evaluation, several datasets$ axdsthe
most used is the Wallflower dataset provided byaroget
al. [11]. It consists in a set of image sequences &kach
sequence presents a different type of difficultattia
practical task may meet. The performance is evetuat
against hand-segmented ground truth. Three terenasad
in evaluation: The false positive (FP) is the numbé
background pixels that are wrongly marked as faregd.
The false negative (FN) is the number of foregropixels
that are wrongly marked as background. The totedrer
(TE) is the sum of FP and FN. A brief descriptidntte
Wallflower image sequences can be made as follows:

- Moved Object: A person enters into a room, makes a
phone call, and leaves. The phone and the chalefire
in a different position.

- Time of Day: The light in a room gradually changes
from dark to bright. Then, a person enters the room
and sits down.

- Light Switch: A room scene begins with the lights on.
Then a person enters the room and turns off thdlig
for a long period. Later, a person walks in thempo
switches on the light, and moves the chair, wHile t
door is closed.

- Waving Trees. A tree is swaying and a person walks
in front of the tree.

- Camouflage: A person walks in front of a monitor,
which has rolling interference bars on the scrédme
bars include similar color to the person’s clothing

- Bootstrapping: The image sequence shows a busy
cafeteria and each frame contains people.

- Foreground Aperture: A person with uniformly
colored shirt wakes up and begins to move slowly.

7.2 Experiments and results

The Table6 shows the performance in term of FP, FN and
TE for each algorithm. The corresponding resulte ar
shown in Tabler. The Fig. 6). shows the performance in
term of FP and FN for each algorithm.

7.2.1 Gaussians models versus subspace learning models

From Table7, we can see that the Gaussian models give
the biggest total errors with TE>20 000 instead tloé
subspace learning models with TE<20 000.
performance of the Gaussian models is due to {i@ir
results on the sequence Light Switch. This is icor&d by
the Fig. ). which shows the performance without the
sequence Light Switch. In this case, the best tesarke
given by the MOG and the KDE which are better for
multimodal backgrounds as shown for the sequence
Waving Trees in Tabl6.

The



Table 6. Results on the Wallflower dataset

Sequence Moved | Time of Light Waving | Camou Boot Foreg.
Objects Day Switch Aperture
Test image i ™ AREs 2 TS | T | g

Ground truth

SG
Wrenet al.[18]

MOG
Staufferet al.[12]

KDE
Elgammalet al.[19]

SL-PCA
Oliveret al.[1]

SL-ICA
Tsai and Lai [46]

SL-INMF
Bucaket al.[31]

SL-IRT
Li et al.[32]

Table 7. Performance Evaluation on the Wallflower dataset

Problem Type

Error | Moved Timeof Light Waving Camou- Bootstrap Foreground | Total TE TE
Algorithm | Type | Object Day Switch Trees flage Aperture | Errors|without LS| without C
SG FN 0 949 1857 3110 4101 2215 3464
Wrenet al.
[18] FP 0 535 15123 357 2040 92 1290| 35133 18153 28992
MOG FN 0 1008 1633 1323 398 1874 2442
Staufferet al.
[12] FP 0 20 14169 341 3098 217 530| 27053 11251 23557
KDE FN 0 1298 760 170 238 1755 2413
Elgammalet
al. [19] FP 0 125 14153 589 3392 933 624| 26450 11537 22175
SL-PCA EN 0 879 962 1027 350 304 2441
Oliver et al. 1065 16 362 2057 1548 6129 537
[1] FP 17677 16353 15779
SL-ICA FN 0 1199 1557 3372 3054 2560 2721
Tsai and Lai
[46] FP 0 0 210 148 43 16 428| 15308 13541 12211
SL-INMF FN 0 724 1593 3317 6626 1401 3412
Bucaket al
[31]. FP 0 481 303 652 234 190 165 19098 17202 12238
SL-IRT FN 0 1282 2822 4525 1491 1734 2438
Li et al[47]. FP 0 159 389 7 114 2080 12| 17053 13842 15448




Fig. (6). Overall performance
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7.2.2 Subspace learning models

The subspace learning algorithms have
performances in term of TE. From Tablewe can see that
the SL-ICA gives the smallest TE followed by the-IRT,

SL-PCA and SL-INMF. This ranking has to be takerhwi

precaution because a poor performance on one vide

influences the TE and then modifies the rank. Thenm
interpretation is that some of them are more s bapted
for specific situations. For example, only the SCAPgives
FP in the sequence Moved Objects due the fact tteat
model is not update overtime. In the same way, She
INMF gives the biggest total error due to its réesun the
sequence Camouflage. This is confirmed by the @p.
which shows the performance without this sequenc
Camouflage. In this case, the SL-INMF is the sedonérm
of performance. Furthermore, the SL-INMF is morbust
than the SL-IPCA [37] in the case of illuminatiohanges
(see [31, 47]). The SL-ICA has globally good perfance
except for the sequence Booststrap by giving less t
detection. The SL-IRT seems to be more efficierthancase
of camouflage. The SL-PCA gives less FN than FR.tk®
SL-ICA, SL-INMF and SL-IRT, it is the contrary. Wean
remark that the SL-ICA provides very less FP thah Eis

different

interesting in video-surveillance because it desgeafalse
alarms.

Fig. (8). Overall performance without Camouflage
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In resume, the actual subspace learning methodshvdre
used in background modeling outperform the statarbf
algorithms in the case of illumination changes d¢an't deal
with multimodal backgrounds. So, it will be inteiag to
investigate how to take into account robustly
multimodality with a subspace learning methods.

the

CURRENT & FUTURE DEVELOPMENTS

In this paper, we have attempted to provide a
complete survey on background modeling methodscase
subspace learning. Thus, we have proposed afidatisin
of improvements and variants of the PCA algorithm
proposed by Oliveet al [1]. This survey has shown that
subspace learning via PCA and its improvementstiaee
most used. ICA, INMF and IRT have proved theiraéicy
in the case of illumination changes. The perforneanc
evaluation has shown that subspace learning models
outperform some state-of art algorithms in the ca$e
illumination changes.

For future investigations, discriminative subspace
?earning methods like LDA and CCA seem to be very
interesting approaches. For example, LDA existseaneral
incremental versions as incremental LDA using maxim
margin criterion [63] or using fixed point metho64] or
sufficient spanning set approximations [65]. In sagne way,
Partial Least Squares (PLS) methods [66] give & nic
perspective to model robustly the background.
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