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AN ANALOGUE OF THE HARER-ZAGIER FORMULA FOR

UNICELLULAR MAPS ON GENERAL SURFACES

OLIVIER BERNARDI

Abstract. A unicellular map is the embedding of a connected graph in a surface in
such a way that the complement of the graph is simply connected. In a famous article,
Harer and Zagier established a formula for the generating function of unicellular maps
counted according to the number of vertices and edges. The keystone of their approach
is a counting formula for unicellular maps on orientable surfaces with n edges, and with
vertices colored using every color in [q] (adjacent vertices are authorized to have the same
color). We give an analogue of this formula for general (locally orientable) surfaces.

Our approach is bijective and is inspired by Lass’s proof of the Harer-Zagier formula.
We first revisit Lass’s proof and twist it into a bijection between unicellular maps on
orientable surfaces with vertices colored using every color in [q], and maps with vertex
set [q] on orientable surfaces with a marked spanning tree. The bijection immediately
implies Harer-Zagier’s formula and a formula by Jackson concerning bipartite unicellular
maps. It also shed a new light on constructions by Goulden and Nica, Schaeffer and
Vassilieva, and Morales and Vassilieva. We then extend the bijection to general surfaces
and obtain a correspondence between unicellular maps on general surfaces with vertices
colored using every color in [q], and maps on orientable surfaces with vertex set [q] with
a marked planar submap. This correspondence gives an analogue of the Harer-Zagier
formula for general surfaces. We also show that this formula implies a recursion formula
due to Ledoux for the numbers of unicellular maps with given numbers of vertices and
edges.

1. Introduction

A map is a cellular embedding of a connected graph on a surface considered up to
homeomorphism (see Section 3 for definitions). A planar map is a map on the sphere. A
map is said unicellular if it has a single face. For instance, the planar unicellular maps
are the plane trees. A map is said orientable if the underlying surface is orientable.

In [7] Harer and Zagier considered the problem of enumerating orientable unicellular
maps according to the number of edges and vertices (or, equivalently by Euler formula,
according to the number of edges and the genus). The keystone of their approach is an
enumerative formula for unicellular maps with colored vertices (these colorings are not
necessarily proper, that is, two adjacent vertices can have the same color): they proved
that the number of rooted unicellular maps on orientable surfaces having n edges and
vertices colored using every color in [q] := {1, . . . , q} is

(1) Tn(q) = 2q−1

(

n

q − 1

)

(2n− 1)!!,

where (2n− 1)!! = (2n− 1)(2n − 3) · · · 1.
From (1), it follows that the numbers ǫv(n) of unicellular maps on orientable surfaces

with n edges and v vertices satisfy

(2)
n+1
∑

v=1

ǫv(n)N
v =

n+1
∑

q=1

(

N

q

)

2q−1

(

n

q − 1

)

(2n − 1)!!.
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2 OLIVIER BERNARDI

since both sides of the equation represent the number of unicellular maps with vertices
colored using some of the colors in [N ] (since maps with n edges have at most n+1 vertices,
and the index q on the right-hand-side corresponds to the number of colors really used).
From this equation, Harer and Zagier obtained a recurrence relation for the numbers ǫv(n)
of orientable unicellular maps with n edges and v vertices:

(n + 1)ǫv(n) = (4n− 2)ǫv−1(n− 1) + (n− 1)(2n − 1)(2n − 3)ǫv(n− 2).

The proof of (1) in [7] used a matrix integral argument (see [9] for an accessible presen-
tation). A combinatorial proof was later given by Lass [10], and subsequently a bijective
proof was given by Goulden and Nica [6].

The goal of this paper is to give an analogue of Equation (1) for unicellular maps on
general (i.e. locally orientable) surfaces, and to describe the bijections hiding behind it
(see Equation (4) below). In order to do so, we first simplify slightly the proof of Lass for
the orientable case, and then show how to extend it in order to deal with the general case.

In Section 3, we revisit Lass’s proof of (1) in order to obtain a bijection Φ between
orientable unicellular maps colored using the every colors in [q] and orientable tree-rooted
maps (maps with a marked spanning tree) with vertex set [q]. This bijective twist given
to Lass’s proof turns out to simplify certain calculations because tree-rooted maps are
easily seen to be counted by the right-hand-side of (1). As mentioned above, a bijection
was already exhibited by Goulden and Nica for unicellular maps on orientable surfaces
in [6]. However, this bijection is presented in terms of the permutations (in particular the
image of the bijection is not expressed in terms of maps) which makes its definition and
analysis more delicate. By contrast, it is immediate to see that the bijection Φ satisfies
the following property:

(⋆) for any unicellular map U colored using every colors in [q] and for any colors
i, j ∈ [q], the number of edges of U with endpoints of color i, j is equal to the
number of edges between the vertices i, j in the tree-rooted map Φ(U).

This property leads in particular to a bijective proof of the following formula by Jackson [8]
(closely related to another formula found independently by Adrianov [1]) for the number
Tn(p, q) of orientable bipartite unicellular maps with the sets of vertices colored with colors
{1, . . . , p} and colors {p+1, . . . , p+q} respectively forming the bipartition (the root-vertex
being colored in [p]):

(3) Tn(p, q) = n!

(

n− 1

p− 1, q − 1, n − p− q + 1

)

.

A bijective proof of (3) was already given by Schaeffer and Vassilieva [15]. Again, the pre-
sentation there is in terms of permutations. In [13], Morales and Vassilieva analyzed the
bijection in [15] in order to enumerate bipartite unicellular maps colored in [q] according
to the sum of degrees of the vertices of each color. These refined enumerative results can
be obtained using the property (⋆). Thus, in the orientable case, the bijection Φ gives a
unified ways of obtaining the bijective results in [6, 15, 13].

In Section 4, we turn to general surfaces. We extend the bijection Φ into a correspon-
dence between unicellular maps colored using every color in [q] and orientable planar-rooted
maps (maps with a marked spanning connected planar submap1) with vertex set [q]. One
of the new ingredients used to prove the correspondence Φ is a bijection between planar
maps and certain “decorated” plane trees (which is closely related to a bijection by Schaef-
fer [14] for Eulerian planar maps). Proofs concerning this bijection are given in Section 5.

1As recalled in Section 3, orientable maps can be defined in terms of rotation systems. A submap of an
oriented map M is said planar if its rotation system inherited from M defines a planar map.
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The correspondence Φ between colored unicellular maps and planar-rooted maps is not
one-to-one, but rather (2r−1)-to-(r!), where r is the number of faces of the planar submap.
This yields the following formula for the number Un(q) of rooted unicellular maps colored
using every color in [q]:

(4) Un(q) =

n−q+2
∑

r=1

q!r!

2r−1
Pq,r

(

2n

2q + 2r − 4

)

(2n− 2q − 2r + 1)!!,

where Pq,r is the number of (unlabeled) rooted planar maps with q vertices and r faces.
More refined enumerative results (in the spirit of [13]) can be obtained from the corre-
spondence Φ because this bijection satisfies:

(⋆⋆) if a unicellular map U and a planar-rooted map M are in correspondence by Φ,
then for any color i the sum of the degrees of the vertices colored i in U is equal
to the degree of the vertex i in M .

Let us situate our work among some other enumerative results for unicellular maps on
general surfaces. In [5] Goulden and Jackson (using representation theory techniques)
gave a way of expressing the generating functions of maps on general surfaces in terms of
matrix integrals over the Gaussian Orthogonal Ensemble. This expression allowed them
to prove a formula for the number Ûn(N) of unicellular maps on general surfaces with
vertices colored using some of the colors in [N ]:
(5)

Ûn(N) = n!

n
∑

k=0

22n−k
n
∑

r=0

(

n− 1
2

n− r

)(

k + r − 1

k

)(

N−1
2

r

)

+(2n−1)!!

N−1
∑

q=1

2q−1

(

N − 1

q

)(

n

q − 1

)

,

where for any real number x and any integer k the notation
(

x
k

)

stands for x(x−1) · · · (x−

k + 1)/k!. Given that Ûn(N) =
∑N

q=1

(

n
q

)

Un(q), it is natural to try to prove (4) starting

from (5) or the converse, but we have failed to do so. In [11], Ledoux showed that
the matrix integral considered by Goulden and Jackson satisfies a differential equation,
implying a recursion formula for the numbers ηv(n) of unicellular maps with n edges and
v vertices:
(6)

(n+ 1) ηv(n) = (4n − 1) (2 ηv−1(n− 1)− ηv(n− 1))
+(2n− 3)

(

(10n2 − 9n) ηv(n− 2) + 8 ηv−1(n − 2) − 8 ηv−2(n− 2)
)

+5(2n − 3)(2n − 4)(2n − 5) (ηv(n− 3)− 2 ηv−1(n− 3))
−2(2n − 3)(2n − 4)(2n − 5)(2n − 6)(2n − 7) ηv(n− 4),

valid for all n ≥ 2. We explain in Section 6 how to prove this relation starting from (4).
We mention lastly that a different bijective approach for orientable unicellular maps

was introduced by Chapuy [4] (giving (2) and some new results). In [2], this approach was
partially adapted to general surfaces, giving an exact formula for the number of unicellular
precubic maps (maps with vertices of degree either 1 or 3). However, no exact formula for
non-precubic unicellular maps on general surfaces has been derived so far by this method.

2. Unicellular maps and Eulerian tours

In this section we set our definitions and extend the correspondence used in [10] between
colored unicellular maps and certain Eulerian tours on graphs.

Our graphs can have loops and multiple edges. A graph G with n edges is said edge-
labelled if its edges are labelled with distinct numbers in [n]. A map is a cellular embedding
of a connected graph in a (2-dimensional, smooth, compact, boundaryless) surface consid-
ered up to homeomorphism. By cellular we mean that the faces (connected components
of the complement of the graph) are simply connected. Thus, maps are the gluings of
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polygons obtained by identifying the edges of the polygons two by two, considered up to
homeomorphism. In particular, the unicellular maps (maps with a single face) with n
edges are the gluings obtained from a 2n-gon (polygon with 2n edges); see Figure 1. A
polygon is rooted by orienting one of its edges and calling it the root-edge. A rooted-map
is obtained by gluing polygons one of which is rooted; this distinguish one of the edges as
the root-edge and specifies a direction and a side for the root. For instance, the root-edge,
its side and direction are indicated by an arrow labelled 1 in Figure 1. The root-vertex is
the origin of the root-edge.
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Figure 1. An orientable rooted unicellular map seen as a gluing of a poly-
gon (left), and seen as an embedded graph (right). The root is indicated
by the arrow labelled 1.

Given two edges of a polygon, there are two ways of gluing them together: we call
orientable gluing the identification of the edges giving a topological cylinder, and non-
orientable gluing the identification giving a Möbius band. It is easy to see that a unicellular
map obtained by gluing the edges of a polygon in pairs is orientable if and only if each of
the gluing is orientable. Hence there are 2n(2n−1)!! rooted unicellular maps with n edges
and (2n− 1)!! orientable ones (since (2n− 1)!! is the number of ways of partitioning a set
of 2n elements in n non-ordered pairs). Observe that if the edges of the rooted 2n-gon are
oriented into a directed cycle, then the orientable gluings are the one for which any pair
of edges glued together have opposite orientations along the gluing.

We call q-colored a map in which the vertices are colored using every color in [q] =
{1, . . . , q} (adjacent vertices can have the same color). A key observation made in [10]
is that making the tour of the face of a q-colored unicellular map starting from the root
induces a tour on a graph having vertex set [q]. We now make this statement precise. Les
G be an undirected edge-labelled graph. We call bi-Eulerian tour of G a directed path
starting and ending at the same vertex called the origin and using every edge exactly
twice. If G has loops, the convention is that tours can either use the loop twice in the
same direction, or in the two opposite directions (so that there are 2 different bi-Eulerian
tours on the graph consisting of a single loop, and more generally, there are (2n)! bi-
Eulerian tours on an edge-labelled graph consisting of n loops).

Lemma 1. There is a bijection Ξ between rooted edge-labelled q-colored unicellular maps
with n edges and the set of pairs (G,B), where G is an edge-labelled connected graph with
n edges and vertex set [q], and B is a bi-Eulerian tour of G. Moreover, if (G,B) = Ξ(U)
then

• the unicellular map U is orientable if and only if the tour B never uses an edge
twice in the same direction,

• for any colors i, j in [q] the number of edges in U having endpoints of colors i, j is
equal to the number of edges in G having endpoints i, j.

Lemma 1 is illustrated by Figure 2.
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Figure 2. A gluing of a 3-colored rooted 12-gon (giving a non-orientable
3-colored unicellular map), and the corresponding Eulerian tour. The non-
orientable gluings are marked with a cross.

Proof. A q-colored unicellular map U is obtained by coloring the vertices of a rooted 2n-
gon with every color in [q] and then choosing a gluing of the edges respecting the colors.
We consider the orientation of the 2n-gon into a directed cycle respecting the orientation
of the root-edge. Choosing a coloring of the vertices of the 2n-gon using every colors in [q]

is the same as choosing a connected directed graph ~G with vertex set [q] together with an

Eulerian tour E of ~G (a directed path starting and ending at the same vertex and using
every edge twice). Indeed, the kth edge of the Eulerian tour identifies with the kth edge
around the 2n-gon (starting from the root-edge).

Now, given a colored 2n-gon and the associated pair ( ~G,E), the gluings of the edges of
the polygon respecting the colors are clearly in bijection with the partitions π of the 2n

arcs of ~G into pairs of arcs having the same endpoints, with the convention that two loops
incident to the same vertex can be paired in two ways (either paired “in opposite direction”
or “in the same direction”). Also, labelling the edges of the unicellular map obtained is the

same as labelling the pairs in π. Lastly, the triples ( ~G,E, π) clearly identify with the pairs
(G,B), where G is an edge-labelled connected graph with n edges and vertex set [q], and
B is a bi-Eulerian tour of G. The bijection established has all the claimed properties. �

3. Orientable unicellular maps

In this section, we twist Lass’s proof [10] of (1) into a bijection between colored unicel-
lular maps and tree-rooted maps. The bijection Φ obtained can be seen as the (unified)
“map version” of the bijections presented in terms of permutations in [6] and [15] to prove
respectively (1) and (3).

We first recall the so-called BEST Theorem. An Eulerian tour of a directed graph G is
a directed path starting and ending at the same vertex called the origin and using each
arc exactly once. A spanning tree of G is directed toward a vertex v0 if the path between
any vertex vertex v and v0 in T is directed toward v0.

Lemma 2 (BEST Theorem). Let G be an edge-labelled directed graph such that any vertex
is incident to as many ingoing and outgoing arcs, and let v0 be a vertex. Then, the set of
Eulerian tours of G with origin v0 is in bijection with the set of pairs (T, τ), where T is
a spanning tree directed toward v0, and τ is a choice for each vertex v of a total order of
the outgoing arcs not in T .
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The proof of the BEST Theorem can be found in [16]2. Following the method of Lass
we will now use the BEST Theorem to count bi-Eulerian tours. But we will shortcut this
counting by considering rotation systems of graphs. Let G be a graph. A half-edge is
an incidence between an edge and a vertex (one can think of half-edges as obtained from
cutting an edge at a midpoint); by convention a loop corresponds to two half-edges both
incident to the same vertex. A rotation system of G is a choice for each vertex v of a cyclic
ordering of the half-edges incident to v. A rooted rotation system with root-vertex v0 is a
choice for each vertex v 6= v0 of a cyclic order of the half-edges incident to v and the choice
of a total order of the half-edges incident to v0. We now recall how to associate a rooted
rotation system to a rooted orientable map M . Given a rooted mapM of underlying graph
G on an orientable surface S, one can define the “positive orientation” of the surface S by
requiring that the marked side of the root-edge precedes (the outgoing half-edge of) the
root-edge in counterclockwise order around the root-vertex. Then one defines the rotation
system ρ(M) of G as follows: around any non-root vertex v the rotation system ρ(M) is
the cyclic order of the half-edges in counterclockwise direction around v, and around the
root-vertex v0 the rotation system ρ(M) is the total order obtained by breaking the cyclic
counterclockwise order in order to make the outgoing half-edge of the root-edge be the
smallest element. The proof of the following classical result can be found in [12].

Lemma 3 (Embedding Theorem). For any connected graph G, the mapping ρ is a bijection
between the rooted orientable maps of underlying graph G and the rooted rotation systems
of G.

We are now ready to state the relation between bi-Eulerian tours and tree-rooted maps
(rooted maps with a marked spanning tree).

Lemma 4. Let G be a connected edge-labelled undirected graph. The set of bi-Eulerian
tours of G that never take an edge twice in the same direction are in bijection with pairs
(T, σ) made of a spanning tree T and a rooted rotation system σ. Consequently, this set
of bi-Eulerian tours is in bijection with the set of tree-rooted maps on orientable surfaces
having underlying graph G.

Proof. Let v0 be a vertex of G. We will establish a bijection between the set B0 of bi-
Eulerian tours of G of origin v0 that never take an edge twice in the same direction and
the set T0 of pairs (T, σ) made of a spanning tree T and a rooted rotation system σ with
root-vertex v0.

Let ~G be the directed graph obtained from G by replacing each edge e by two arcs

in opposite directions taking the same label as e. Observe that the arcs of ~G are all
distinguishable except for pairs of arcs corresponding to a loop of G. The set B0 of bi-

Eulerian tours of G is clearly in bijection with the set of Eulerian tours of ~G having origin

v0. Hence, by the BEST Theorem, the set B0 is in bijection with the set ~T0 of pairs (T0, τ),

where T0 is a spanning tree of ~G directed toward v0 and τ is a choice of a total ordering

of the outgoing arcs of ~G not in T0 at each vertex. Again here if two arcs comes from a
loop of G, the total order τ does not distinguish between these two arcs.

It only remains to show that the set ~T0 is in bijection with the set T0. First of all, the
spanning trees of ~G directed toward v0 are in natural bijection with the spanning trees of

G. Moreover, the arcs of ~G and the half-edges of G are in natural correspondence (with

arcs of ~G indistinguishable if and only if they come from the same loop, and half-edges
of G indistinguishable if and only if they come from the same loop). Therefore, for the

vertex v0, the total orderings of the outgoing arcs of ~G incident to v0 correspond bijectively

2To an Eulerian tour with origin v0, the bijection associates the pair (T, τ ), where T is the spanning
tree oriented toward v0 made of the last arcs used to leave each of the vertices v 6= v0, and the total order
τ at a vertex v records the order in which the other arcs leaving v are used during the tour.
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to the total orderings of the half-edges of G incident to v0. Similarly, for any vertex v 6= v0
and any spanning tree T0 directed toward v0, the total orderings of the outgoing arcs of
~G not in T0 (that is, the total orderings of all the outgoing arcs except the one leading v
to its parent in T0) corresponds bijectively to the cyclic orderings of the half-edges of G

incident to v. This gives a bijection between ~T0 and T0. �

We now summarize the consequences of Lemmas 1 and 4.

Theorem 5. There is a bijection Φ between q-colored rooted unicellular maps with n edges
on orientable surfaces and tree-rooted maps with n edges and vertex set [q] on orientable
surfaces. Moreover for all i, j ∈ [q] the number of edges with endpoints of colors i, j in a
q-colored unicellular map U is equal to the number of edges between vertices i and j in the
tree-rooted map Φ(U).
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Figure 3. Bijection between orientable colored unicellular maps and tree-
rooted maps (spanning trees are drawn in thick lines).

Proof. Lemmas 1 and 4 imply a bijection having the claimed properties between edge-
labelled maps. However, the edges of a non-labelled rooted maps are all distinguishable.
Hence each non-labelled rooted maps with n edges correspond to n! different edge-labelled
rooted maps. �

Theorem 5 is illustrated in Figure 3. Before closing this section we explain how to
obtain (1) and (3) from Theorem 5. We start with the proof of (1). By Theorem 5, Tn(q)
is the number of tree-rooted maps with n edges and vertex set [q] on orientable surfaces.
One can think of a tree-rooted maps in terms of its rotation system: one can first choose
the tree together with its rooted rotation system (that is, a rooted plane tree) and then
add the other edges. It is well known that the rooted plane trees with q unlabeled vertices

are counted by the Catalan number (2q−2)!
q!(q−1)! , hence the number of trees with vertex set [q]

is (2q−2)!
(q−1)! . In order to add the n − q + 1 edges not in the tree, we need first to choose

where to insert the 2n− 2q + 2 half-edges around the tree (equivalently, how to complete
the rooted rotation system of the tree with new half-edges). A rooted plane tree with q

vertices has 2q−1 positions where a half-edge can be inserted, hence there are
( 2n
2q−2

)

ways

to add the 2n−2q+2 additional half-edges around the tree. Lastly there are (2n−2q+1)!!
ways of pairing these half edges. This gives (1):

Tn(q) =
(2q − 2)!

(q − 1)!

(

2n

2q − 2

)

(2n − 2q + 1)!! = 2q−1

(

n

q − 1

)

(2n − 1)!!.

We prove (3) in a similar fashion. By Theorem 5, Tn(p, q) is the number of (bipartite)
tree-rooted maps on orientable surfaces with n edges and vertex set [p+ q] such that any
edge joins a vertex in A = [p] to a vertex in B = [p + 1, . . . , p + q], and the root-vertex
is in A. It is well known that the bicolored trees with p black unlabeled vertices, and q
white unlabeled vertices (with a black root-vertex and every edge joining a black vertex

to a white vertex) are counted by the Narayama number (p+q−1)!(p+q−2)!
p!(p−1)!q!(q−1)! . Hence, there
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are (p+q−1)!(p+q−2)!
(p−1)!(q−1)! ways to choose a vertex-labelled tree such that any edge joins a vertex

in A to a vertex in B, and the root-vertex is in A. The n − p − q + 1 other edges have
one half-edge incident to a vertex in A and one half-edge incident to a vertex in B. There
are p + q positions to insert a half-edge around vertices in A, and p + q − 1 positions to
insert a half-edge around vertices in B. Hence, there are

(

n
p+q

)(

n−1
p+q−1

)

ways to add the

2n − 2q + 2 half-edges around the tree. Lastly, there are (n − p − q + 1)! ways of pairing
these half-edges. This gives (3).

4. General unicellular maps

In this section we extend the bijection Φ to unicellular maps on general surfaces. We
start with some definitions. A balanced orientation of an undirected graph G is an orien-
tation of a (possibly empty) subset of edges of G such that for any vertex v the numbers of
ingoing and outgoing half-edges incident to v are equal. If G has a vertex v0 distinguished
as the root-vertex, then we say that a balanced orientation O and a spanning tree T are
compatible if any oriented edge in T has an orientation that coincides with the orientation
of T0 toward v0. The external weight of the pair (O, T ) is the number of oriented edges not
in T . We call compatibly-oriented tree-rooted map, a rooted map with a marked spanning
tree and a compatible balanced orientation. For an edge-labelled graph G, we denote by
T (G) the set of edge-labelled compatibly-oriented tree-rooted maps with underlying graph
G, and we denote by B(G) the set of bi-Eulerian tours of G.

Lemma 6. Let G be a connected edge-labelled undirected graph. There exists a surjective
mapping Θ between T (G) and B(G) satisfying: for any bi-Eulerian tour B in B(G) there
is an integer w = w(B) ≥ 0 such that the preimage Θ−1(B) consists of 2w compatibly-
oriented tree-rooted maps of external weight w. Moreover w(B) = 0 if and only if the
bi-Eulerian tour B never takes an edge twice in the same direction

Proof. Observe that to any bi-Eulerian tour B of G, one can associate a balanced orien-
tation O(B) of G by orienting the edges of G which are taken twice in the same direction
during the tour B according to this direction. We now fix a vertex v0 and a balanced
orientation O and show that there is a mapping Θ with the desired properties between set
T0(O) ⊂ T (G) of compatibly-oriented tree-rooted maps with root-vertex v0 and balanced
orientation O, and the set B0(O) ⊂ B(G) of bi-Eulerian tours with origin v0 such that
O(B) = O.

Let ~GO be the directed graph obtained by replacing each edge e of G by two arcs with
the same label as e: the non-oriented edges of O are replaced by two arcs in opposite
directions, while the oriented edges of O are replaced by two arcs in the direction of

e. In ~GO the two arcs that come from a loop of G or from an oriented edge of O are
indistinguishable. Clearly the set B0(O) of bi-Eulerian tours of G is in bijection with the

set of Eulerian tours of origin v0 on ~GO. Hence, by the BEST Theorem, the set B0(O) is

in bijection with the set ~T0(O) of pairs (T0, τ) made of a spanning tree T0 of ~GO directed
toward v0 and a choice τ for each vertex v of a total order on the outgoing arcs not in T0

incident to v. Again here if two arcs comes from a loop of G or from a directed edge of
G, the spanning tree T0 and total orders τ do not distinguish between these two arcs.

It remains to establish the relation between T0(O) and ~T0(O). Observe first that the

spanning trees of ~GO directed toward v0 are in bijection with the spanning trees of G

that are compatible with O. Let T0 be a spanning tree of ~GO directed toward v0 and
let w be the external weight of the associated spanning tree T of G. We only need to
show that the number of rooted rotation systems of G with root-vertex v0 is 2w times
the number of choices τ for each vertex v of G of a total order on the outgoing arcs
not in T0. We first consider a vertex v 6= v0. The half-edges of G incident to v are all
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distinguishable, except for pairs of half-edges belonging to a non-oriented loop. Hence,
there are (deg(v)−1)!/2nl(v) different cyclic orderings of the half-edges incident to v, where
deg(v) is the degree of v and nl(v) is the number of incident non-oriented loops. On the
other hand, there are deg(v)− 1 outgoing arcs incident to v not in T0, and these arcs are
all distinguishable except for pairs of half-edges belonging to a loop or to an oriented edge
of O not in T0. Hence, there are (deg(v)− 1)!/2nl(v)+out(v) different total orderings of the
outgoing arcs not in T0 incident to v, where out(v) is the number of edges of O not in T0

oriented away from v. A similar reasoning applies for the root-vertex v0, and shows that
there are 2

∑
v out(v) times more rooted rotation systems of G with root-vertex v0 than of

choices τ for each vertex of a total order on the outgoing arcs not in T0. Moreover, the
sum

∑

v out(v) is equal to the external weight w. Lastly, the external weight is 0 if and
only if there is no oriented edge in O (equivalently the tours in B0(O) never take an edge
twice in the same direction). �

Putting Lemmas 1 and 6 together (and getting rid of the edge-labellings as in the
previous section) one gets:

Theorem 7. Let q be a positive integer. There is a surjective mapping Υ from the set of
compatibly-oriented tree-rooted maps with vertex set [q] on orientable surfaces to the set of
q-colored unicellular maps on general surfaces satisfying: for all q-colored unicellular map
U ,

• there is an integer w = w(U) ≥ 0 such that the preimage Υ−1(U) consists of 2w

compatibly-oriented tree-rooted maps of external weight w; moreover w(U) = 0 if
and only if U is orientable,

• for all i, j ∈ [q] the number of edges with endpoints of colors i, j in U is equal to
the number of edges with endpoints i, j in any compatibly-oriented tree-rooted map
in Υ−1(U).

We now proceed to count compatibly-oriented tree-rooted maps according to their exter-
nal weight. We first focus on the simpler structure of near-Eulerian trees. A near-Eulerian
tree is a rooted plane tree with a (possibly empty) subset of edges oriented toward the
root-vertex, together with some dangling half-edges, called buds, which are either ingoing
or outgoing (at each vertex the rotation system includes both the half-edges in the tree and
the buds) such that that at any vertex v the numbers of ingoing and outgoing half-edges
(including the buds) are equal. An example of near-Eulerian tree is given in Figure 4(left).
It is easily seen that near-Eulerian trees have the same numbers of ingoing and outgoing
buds; we call external weight this number.

Observe that near-Eulerian trees of external weight w are the maps obtained from
compatibly-oriented tree-rooted maps by deleting all the non-oriented edges not in the
spanning tree, and cutting in two halves the oriented edges not in the spanning tree. We
will now exhibit a bijection Γ between near-Eulerian trees and rooted plane maps, that is,
rooted planar maps (in the sphere) with a marked face3. It will be convenient to identify
rooted plane maps with rooted maps embedded in the plane (the marked face become
the infinite face of the plane). If a near-Eulerian tree T is embedded in the plane, an
edge drawn from an outgoing bud to an ingoing bud of T is said counterclockwise around
T if it has the infinite face on its right. There is a unique way to draw a set of non-
crossing counterclockwise edges around T joining each outgoing bud to an ingoing bud;
see Figure 4. We call this process the closure of T , and denote by Γ(T ) the rooted plane
map obtained.

3The bijection Γ can be thought as an extension of a bijection due to Schaeffer [14] between Eulerian
trees (near-Eulerian trees in which all the edges of the tree are oriented) and rooted planar maps with
vertices of even degree. However, there is a slight difference in the presentation, since the bijection of
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Figure 4. The closure Γ: ingoing and outgoing buds are joined counter-
clockwise around T .

Theorem 8. The closure Γ is a bijection between near-Eulerian trees and rooted plane
maps.

The proof of Theorem 8 is delayed to the next section. We now state its consequences
for unicellular maps. A spanning submap of a map is a subset of edges giving a connected
subgraph containing every vertex. A spanning submap S of an orientable map M is said
planar if the rotation system of S inherited fromM makes S a planar map. A planar-rooted
map is a rooted map on an orientable surface with a marked spanning planar submap. A
r-externally-labelled planar-rooted map is a pair (P, π) where P is a planar-rooted map
whose marked submap has r faces, and π is a permutation of [r].

Theorem 9. Let q be a positive integer. There exists a surjective mapping Ψ from the
set of externally-labelled planar-rooted maps with vertex set [q] on orientable surfaces, to
the set of q-colored rooted unicellular maps on general surfaces satisfying: for all q-colored
unicellular map U ,

• there is an integer w = w(U) ≥ 0 such that the preimage Ψ−1(U) consists of 2w

(w + 1)-externally-labelled planar-rooted maps; moreover w(U) = 0 if and only if
U is orientable,

• for all i ∈ [q] the sum of degrees of the vertices of U colored i is equal to the degree
of the vertex i in any planar-rooted map in Ψ−1(U).

Theorem 9 is illustrated in Figure 5. Observe that tree-rooted maps can be seen as 1-
externally-labelled planar-rooted maps, and that the mapping Ψ given in Theorem 9 can
be seen as the extension of the bijection Φ−1 given in Theorem 5 for orientable unicellular
maps.

Proof. Let us call near-Eulerian tree-rooted maps of external weight w a map obtained
by adding some non-oriented edges to a near-Eulerian tree of external weight w. Near-
Eulerian tree-rooted maps are obtained from compatibly-oriented tree-rooted maps by
cutting in two halves the oriented edges not in the spanning tree. This cutting process λ
is w!-to-1 between compatibly-oriented tree-rooted of external weight w and near-Eulerian
tree-rooted maps of external weight w (since there is w! of pairing w ingoing buds with w
outgoing buds). Moreover, the cutting process λ is degree preserving (the degree of any
vertex is preserved).

The bijection Γ between near-Eulerian trees and plane maps can be seen as a (w +
1)-to-1 correspondence between near-Eulerian trees with external weight w and rooted
planar maps with (w + 1) faces (since plane maps are planar maps with a marked face).
Moreover, the correspondence Γ can easily be extended to a degree-preserving (w + 1)-
to-1 correspondence Γ′ between near-Eulerian tree-rooted maps of external weight w and

Schaeffer was actually mapping a subset of Eulerian trees (called balanced Eulerian trees) to the set of
rooted planar maps with vertices of even degree but no marked face.
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1-to-2w (w+1)!-to-1

Figure 5. Some of the steps of the correspondence between q-colored uni-
cellular maps and (non-externally-labelled) planar-rooted maps. Here q = 3
and the planar submap has w + 1 = 3 faces.

planar-rooted maps whose planar submap has w+1 faces. Indeed, one can just apply the
closure Γ to the near-Eulerian tree-rooted maps by ignoring the non-oriented edges not in
the spanning tree (see Figure 5). Hence combining the cutting process λ and the closure
Γ′ gives a degree-preserving (w + 1)!-to-1 correspondence between compatibly-oriented
tree-rooted maps of external weight w and planar-rooted maps whose planar submap has
w + 1 faces. Combining this correspondence with Theorem 7 completes the proof. �

Theorem 9 gives the following enumerative results.

Corollary 10. The number of q-colored rooted unicellular maps with n edges on general
surfaces is

(7) Un(q) =

n−q+2
∑

r=1

q! r!Pq,r

2r−1

(

2n

2q + 2r − 4

)

(2n− 2q − 2r + 3)!!,

where Pq,r is the number of unlabeled rooted planar maps with q vertices and r faces. Con-

sequently, the series U(t, w) :=
∑

n,q≥0

Un(q)

(2n)!
tnwq and Q(t, w) =

∑

q,r>0

q! r!Pq,r

(2q + 2r − 4)!
tq+r−2wq

are related by:

(8) U(t, w) =
1

2
exp

(

t

2

)

Q

(

t

2
, 2w

)

.

Proof. By Theorem 9, the proof of (7) amounts to showing that there are q!Pq,r

( 2n
2q+2r−4

)

(2n−

2q − 2r + 3)!! planar-rooted maps with n edges, vertex set [q] and such that the submap
has r faces. One can first choose the planar submap, and then insert the additional edges.
There are q!Pq,r choice for the planar submap with vertex set [q] and r faces. The planar
submap has q+ r−2 edges by Euler relation, hence there are 2q+2r−3 position to insert
a half-edge around it. Thus there are

( 2n
2q+2r−4

)

ways of inserting the 2n − 2q − 2r + 4

additional half-edges around the submap and then (2n − 2q − 2r + 3)!! ways of pairing
them together. This proves (7). From this equation, one gets

U(t, w) =
∑

n≥0,q>0

tnwq

n+q−2
∑

r=1

q! r!Pq,r

2n−q+1(2q + 2r − 4)!(n − q − r + 2)!

=
1

2

∑

q>0

wq
∑

r>0

q! r! 2q Pq,r

(2q + 2r − 4)!

∑

n≥q+r−2

tn

2n(n− q − r + 2)!
.
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Using
∑

n≥q+r−2

tn

2n(n− q − r + 2)!
=

(

t

2

)q+r−2
∑

m≥0

tm

2mm!
=

(

t

2

)q+r−2

exp

(

t

2

)

gives (8).

�

We do not know any closed formula for the numbers Pq,r. However, standard techniques
dating back to Tutte [17] (recursive decompositions of maps and the quadratic method;
see e.g. [3]) give the following algebraic equation:
(9)
27P 4 − (36x+ 36y − 1)P 3 + (24x2y + 24xy2 − 16x3 − 16y3 + 8x2 + 8y2 + 46xy − x− y)P 2

+xy(16x2 + 16y2 − 64xy − 8x− 8y + 1)P − x2y2(16x2 + 16y2 − 32xy − 8x− 8y + 1) = 0

characterizing the series P ≡ P (x, y) =
∑

q,r>0

Pq,rx
qyr. As explained in Section 6, the alge-

braic equation (9) yields differential equations characterizing the seriesQ(t, w) and U(t, w).

5. Proof of the bijectivity of Γ.

This section is devoted to the proof of Theorem 8. Recall that a rooted plane map is
a rooted map drawn in the plane (this is equivalent to a planar map on the sphere with
a marked face). The infinite face of a plane map is called outer face and the others are
called inner faces. A dual-path for a face f of a plane map M is a path in the plane
starting inside f and ending in the outer face which avoids the vertices of M ; its length
is the number of edges of M crossed by the path. The dual-distance of a face f is the
minimal length of a dual-path for f . The dual distance of the inner faces are represented in
Figure 6. The dual-distance orientation of M is defined as the orientation of the subset of
edges e of M which are incident to two faces of different dual-distances in such a way that
the face with largest dual-distance lies on the left of the oriented edge e. The dual-distance
orientation is shown in Figure 6.

Lemma 11. The dual-distance orientation of a plane map is such that, at any vertex the
numbers of incident ingoing and outgoing half-edges are equal.

Proof. Turning around v in counterclockwise direction the dual-distance increases by 1
each time an outgoing half-edge is crossed and decreases by 1 each time an ingoing half-
edge is crossed. Hence the number of ingoing and outgoing half-edges crossed must be
equal for a complete tour around v. �

Let M be a rooted plane map. For a face f of dual-distance 1, we consider the k ≥ 1
edges incident to both f and the outer face. By deleting these edges one gets k connected
components, one of which C contains the root-vertex. We call breakable the edge incident
to both f and the outer face that follows C when turning around f in counterclockwise
direction. The breakable edges of a map M are represented in Figure 6. We now consider
the dual-distance orientation of M . Observe that all the breakable edges of M are oriented,
hence cutting the breakable edges in two halves produces an ingoing and an outgoing bud.
Moreover, cutting all the breakable edges of M does not disconnects M . Indeed, no
cocycle of M contains only breakable edges since a cocycle containing a breakable edge
e of a face f also contains another edge e′ of f which is either not incident to the outer
face (hence not breakable) or incident to the outer face but not breakable (since it is not
the breakable edge of f). Thus cutting all the breakable edges of M produces a connected
map M1 with some ingoing and outgoing buds and decreases by 1 the dual-distance of
every inner face. If M1 has some inner faces, then we can define the breakable edges of M1

as before and consider the map M2 with buds resulting from cutting these edges, etc. We
denote by ∆(M) the rooted plane tree with partial orientation and buds resulting from
this “opening” process.
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Figure 6. The opening process ∆. The root-vertex is indicated by a large
dot. At each step the dual distance and the breakable edges are indicated.

Lemma 12. For any rooted plane map M , the opened map ∆(M) is a near-Eulerian tree
and Γ(∆(M)) = M .

Proof. Let T = ∆(M). By Lemma 11, each vertex of T is incident to as many ingoing
and outgoing half-edges. We now consider an edge of T , and want to prove that it is not
oriented in the wrong direction in T . By definition, if e is oriented, then is is incident to
two faces of different dual distances in M . We consider the step of the opening process ∆
at which both sides of e became equal to the outer face. Just before this step, the edge e
was incident to the outer face and to an inner face f of dual-distance 1 (and e had f on its
left by definition of the dual-distance orientation). Since e is in T , it means that e is not
the breakable edge of f . Therefore, the definition of the breakable edge of f implies that
cutting this breakable edge makes e a bridge oriented toward the component containing
the root-vertex. Hence the orientation of e coincides with the orientation toward the
root-vertex of T . Thus, T = ∆(M) is a near-Eulerian tree.

We now need to show that Γ(T ) = M . Clearly the pairs of outgoing and ingoing buds
of T which came from cutting breakable edges of M can all be joined in a non-crossing
way (since M is planar). Moreover, it is clear from the definition of the dual-distance
orientation that any breakable edge is counterclockwise around T . Thus Γ(T ) = M by
definition of the closure Γ. �

To complete the proof of Theorem 8 it only remains to prove that the closure Γ is
injective. Let M be a plane map and let T be a near-Eulerian tree such that M = Γ(T ).
The tree T induces an orientation of a subset of edges of M : the subset of oriented
edges of T (oriented toward the root-vertex of T ), together with the set of edges formed
during the closure (oriented from the outgoing bud to the ingoing bud). We call this
partial orientation the orientation of M induced by T . We now show that any induced
orientation of M is equal to the dual-distance orientation.

Lemma 13. Let T be a near-Eulerian tree and let M = Γ(T ) be its closure. The orien-
tation induced by T coincide with the dual-distance orientation of M . Moreover, for any
inner face f of M , there is a dual-path for f of minimal length (equal to the dual-distance
of f) which does not cross any edge of T .

Proof. We call T -distance of a face f of M the minimal length of a dual-path for f which
does not cross any edge of T . We also define the T -distance orientation of M as the
orientation of the subset of edges e of M which are incident to two faces of different T -
distances in such a way that the face with largest T -distance lies on the left of the oriented
edge e.

We first show that the T -distance orientation coincides with the orientation induced by
T . Let e be an edge not in T . Clearly, the edge e separates two faces whose T -distances
differ by 1. Moreover, the T -distance orientation of e coincides with the orientation induced
by T : in both of these orientations the face with largest T -distance is on the left of e (since
e is counterclockwise around T ). We now consider an edge e in the tree T . Deleting e
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gives two subtrees with buds, say T1 an T2 with T1 containing the root-vertex. Let d ≥ 0
be the number of outgoing buds in T2 paired with ingoing buds in T1 during the closure of
T . The number d′ of outgoing buds in T1 paired with ingoing buds in T2 is equal to d if e
is non-oriented and is equal to d+ 1 if e is oriented in T (since e is oriented toward T1 in
this case). Since all the pairing are counterclockwise around T , the T -distance of the two
faces of M incident to M are respectively d and d′. Hence the T -distance orientation of e
coincides with the orientation induced by T : the edge e is oriented if and only if d′ = d+1,
and in this case the face of largest T -distance d′ is on the left of e.

We have shown that the orientation induced by T coincides with the T -distance orien-
tation. Thus it only remain to show that T -distance is equal to the dual-distance. Let f
be a face of M and let d, d′ be respectively its dual-distance and its T -distance. Clearly,
d ≤ d′. We now consider a dual-path P of minimal length d for f . The dual-path P starts
inside the face f which has T -distance d′ and ends in the outer face which has T -distance
0. Moreover, we have shown above that for any edge e of M the difference of T -distance
between the two faces separated by e is at most 1. Hence, the T -distance decreases by at
most 1 each time the path P crosses an edge. This shows that P crosses at least d′ edges,
so that d ≥ d′. �

We now complete the proof of the injectivity of Γ. Let M be a plane rooted map, and
let T be a near-Eulerian tree such that Γ(T ) = M . We want to prove that T = ∆(M).
Given Lemma 13, it suffices to prove that T and ∆(M) have the same edges (since the
orientation of the edges and buds of T are uniquely determined by the dual-orientation of
M). We denote M0 = M , and for i > 0 we denote by Mi the map with buds obtained
after i steps of the opening process. We will now show by induction on i that the edges
of T are in Mi for all i (hence that T has the same edges as ∆(M)). The case i = 0 is
obvious, and to prove the induction step we can suppose that the edges of T are in Mi

and show that none of breakable edges of Mi is in T . Let f be a face of dual-distance
1 in Mi. Let E be the set of edges incident to both f and the outer face of Mi. The
second statement in Lemma 13 shows that at least one edge in E is not in T (because E
is the set of edges incident to f and faces of smaller dual-distance, so that any dual-path
for f of minimal length crosses one of these edges). We call e the edge which is not in
T and observe that the edges in E \ {e} are all in T (because cutting two edges in E
would disconnect Mi hence also T ). Moreover, the first statement in Lemma 13 shows
that the dual-distance orientation of the edges in E \ {e} coincide with the orientation
of T toward its root-vertex. Therefore, the only possibility is that e is the breakable
edge of f . This shows that the breakable edge of f is not in T . This proves the induction
step, thus T = ∆(M). This completes the proof of the injectivity, hence bijectivity of Γ. �

6. Recursion formula for unicellular maps

In this section we sketch a proof of Ledoux’s recursion formula (6) starting from (8).
Some of the calculations require a computer algebra system (or a lot of patience).

The number Ûn(N) of unicellular maps with n edges and vertices colored using some

colors in [N ] can be seen as a polynomial whose coefficients are the numbers ηv(n): Ûn(x) =
∑n+1

v=1 ηv(n)x
v. Hence, proving (6) amounts to proving for all n ≥ 2.

(n+ 1)Ûn(x)= (4n− 1)(2x − 1)Ûn−1(x) + (2n− 3)(10n2 − 9n+ 8x− 8x2)Ûn−2(x)

+5(2n − 3)(2n − 4)(2n − 5)(1 − 2x)Ûn−3(x)

−2(2n − 3)(2n − 4)(2n − 5)(2n − 6)(2n − 7)Ûn−4(x).
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Equivalently, one has to prove for all n ≥ 0,

(10)
−(2n)(2n − 1)(2n − 2)(n + 1)V̂n(x) + (4n − 1)(2n − 2)(2x − 1)V̂n−1(x)

+(10n2 − 9n+ 8x− 8x2)V̂n−2(x) + 5(1− 2x)V̂n−3(x)− 2V̂n−4(x)= 0,

where V̂k(x) = Ûk(x)/(2k)! for all k. We now translate (10) in terms of the numbers Un(q).

Recall that V̂n(x) = Ûn(x)/(2n)! =
∑

q∈N

(

x
q

)Un(q)
(2n)! (because for any positive integer N ,

∑

q∈N

(

N
q

)

Un(q) = Ûn(N) counts unicellular maps with n edges and vertices colored using

some colors in [N ], the index q representing the number of colors really used).

Lemma 14. Let Rn(x), n ∈ N be polynomials in x. The polynomial Rn decomposes on
the basis

(

x
q

)

, q ∈ N and we denote by Rn,q the coefficients: Rn(x) =
∑

q∈N

(

x
q

)

Rn,q. Let

ci(x, y), i = 1 . . . k be bivariate polynomials. Then, the polynomials Rn(x), n ∈ N satisfy a
recursion formula

(11) for all n ≥ 0,
k

∑

i=0

ci(n, x)Rn−i(x) = 0,

(with the convention Rn(x) = 0 for n < 0) if and only if the formal power series R(t, w) =
∑

n,q∈NRn,qt
nwq satisfies

(12)
k

∑

i=0

ci(∆t,∆w)(t
iR(t, w)) = 0,

where ∆t and ∆w are the operators on formal power series defined by

∆t : F (t, w) 7→ t
∂

∂t
F (t, w), ∆w : F (t, w) 7→ w

∂

∂w
((1 + w)F (t, w)),

and ci(∆t,∆w) is the operator obtained by composing these two commuting operators ac-
cording to ci.

Proof. Pascal’s rule for binomial coefficients implies that for any polynomial Q(x) =
∑

q≥0 Pq

(

x
q

)

, one has xQ(x) =
∑

q≥0 q(Pq + Pq−1)
(

x
q

)

. This relation gives the equiva-

lence between (11) and a (linear) recursion formula for the numbers Rn,q with coefficients
in C[n, q]. Writing this relation in terms of operators acting on R(t, w) gives (12). �

By Lemma 14, Formula (10) is equivalent to a linear differential equation on the power

series U(t, w) :=
∑

n,q≥0

Un(q)

(2n)!
tnwq. This series is equal to 1

2 exp
(

t
2

)

Q( t2 , 2w) by (8), hence

by factorizing out exp
(

t
2

)

in the differential equation one obtains a (linear) differential

equation for Q( t2 , 2w). The differential equation obtained for Q(t, w) is:

(6tw + 4w2 − 36t− 7w − 6)Q(t, w) − (12t2 + 8tw + 7w − 25) ∂
∂t
Q(t, w)

+w(w + 2)(8w + 6t− 7) ∂
∂w

Q(t, w) + (2t2 − 4tw + 37t+ 9) ∂2

∂t2
Q(t, w)

−w(w + 2)(8t + 7) ∂2

∂w∂t
Q(t, w) + 2w2(w + 2)2 ∂2

∂w2Q(t, w)

+t(8t+ 11) ∂3

∂t3
Q(t, w)− 4wt(w + 2) ∂3

∂w∂t2
Q(t, w) + 2t2 ∂4

∂t4
Q(t, w) = 0.

In terms of coefficients, this equation reads: for all integers q, r

(13)

2(q + 1)(q + 2)P̂q,r+3 + 6(q + 2)P̂q+1,r+1 − (q + 2)(7 + 8r)P̂q+1,r+2

−(4q + 4r + 11)(q + r + 2)(q + 2)P̂q+1,r+3 − 12(r + 1)P̂q+2,r

−2(3q2 + 6qr + 18q + 15r + 25− r2)P̂q+2,r+1

+(q + r + 2)(8qr + 8r2 + 7q + 29r + 18)P̂q+2,r+2

+(q + r + 4)(q + r + 3)(q + r + 2)(2q + 2r + 5)P̂q+2,r+3 = 0
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where P̂i,j =
i! j!Pi,j

(2i + 2j − 4)!
if i > 0, j > 0 and P̂i,j = 0 otherwise.

So far we have proved, using (8), that Ledoux’s formula (6) is equivalent to Equation (13)
about the numbers Pq,r of planar maps. We will now prove (13) using the algebraic
equation (9) satisfied by the generating function P (x, y) =

∑

q,r>0 Pq,rx
qyr. First of all,

the cases q < −1 or r < −2 of (13) are trivial. The case r = −2 is easily checked using the

fact that for all i > 0, P̂i,1 =
i!Pi,1

(2i−2)! =
1

(i−1)! (because Pi,1 is the Catalan number counting

plane trees with i vertices). Now, for q, r ≥ −1, one can multiply Equation (13) by
(q+1)!(r+1)!
(2q+2r+4)! . The equation then becomes (2q+2r+4)Aq,r = 0, where Aq,r is the coefficient

of xq+2yr+1 in

A(x, y)= (4y − 2x− 1)
(

72P (x, y) − 72x ∂
∂x

P (x, y)− (72y − 2) ∂
∂y
P (x, y)

)

−72x2 ∂2

∂x2P (x, y) +
(

8x2 − 6x− 24xy − 56y2 + 10y + 1
)

∂2

∂y2
P (x, y)

+2x (4x− 80y − 1) ∂2

∂y∂x
P (x, y)

+ (4x− 8y − 1)
(

y
(

4x+ 48y2 − 8y − 1
)

∂3

∂y3
P (x, y) + 48x3 ∂3

∂x3P (x, y)
)

+(4x− 8y − 1)
(

144x2y ∂3

∂y∂x2P (x, y) + x
(

4x− 8y − 1 + 144y2
)

∂3

∂y2∂x
P (x, y)

)

.

Since P (x, y) is algebraic (of degree 4), all its partial derivatives can be expressed as
polynomials (of degree at most 3) in P (x, y). In particular, one can express A(x, y) as
a polynomial in P (x, y). Doing so gives A(x, y) = 0, hence Aq,r = 0 for all integers
q, r. Thus, (13) holds for all integers q, r. This completes the proof of Ledoux’s recursion
formula (6). �

7. Additional remarks

The correspondence Ψ stated in Theorem 9 does not allow to count bipartite unicellular
maps (these maps are related to the characters of the hyperoctahedral group). However,
one can establish some enumerative results about these maps by combining Theorem 7 with
some enumerative results about near-Eulerian trees. In particular, one can write a sys-
tem of algebraic equations characterizing the generating function G(x, y, z, u) of bicolored
near-Eulerian trees (with black and white vertices), where the variables x, y correspond
respectively to the number of black and white vertices, the variable z correspond to the
number of outgoing buds, and the variable u correspond to the difference between the
numbers of outgoing buds incident to black and ingoing buds incident to white vertices.
The number of bipartite maps with vertices colored in [p] and in {p+1, . . . , p+ q} respec-
tively forming a bipartition can then be expressed in terms of the coefficients of xpyqznu0

in G(x, y, z, u), for n ≥ 0.
In Section 6 we showed how to use formula (4) in order to prove the recurrence for-

mula (6) for the numbers ηv(n) of unicellular maps with v vertices and n edges. The same
method should apply to any conjectural recurrence formula, hence one could hope to guess
and check a “simpler” recurrence formula. One can also perform the steps of Section 6 in
the reverse direction: start from any linear differential equation for the series P (x, y) of
planar maps and translate it into a recurrence formula for the numbers ηv(n). Alas, we
have found no formula simpler than (6) by this method.

Acknowledgment: I thank Alejandro Morales for several interesting discussions.
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