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Abstract

Network-on-Chip (NoC) has been proposed as an alternative to bus-based
schemes to achieve high performance and scalability in System-on-Chip (SoC)
design. Performance analysis and evaluation of on-chip interconnect archi-
tectures are widely based on simulations, which become computationally ex-
pensive, especially for large-scale NoCs. In this paper, a Network Calculus-
based methodology is presented to analyze and evaluate the performance and
cost metrics, such as latency and energy consumption. The 2D Mesh, Spi-
dergong, and WK-recursive on-chip interconnect architectures are analyzed
using this methodology and results are compared with those produced using
simulations. ‘The values obtained by simulations and by analysis show sim-
ilar trends in the same order of magnitude. Furthermore, WK outperforms
the other on-chip interconnects in all considered metrics.

Key words: Network-on-Chip, On-chip interconnect, Analytical modeling
and evaluation, Design Tradeoffs, Network calculus

1. Introduction

System-On-chip (SoC) has recently emerged as a key technology behind
most embedded and smart miniaturized systems to provide high flexibility
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and better performance. These systems must provide high-performance while
meeting system requirements, such as a low energy consumption and small
area. For example, future mobile communication terminals should support
many applications, which range from web browsing/navigation, to real-time
multimedia applications such as audio and video communication. Therefore,
the design of these systems should be highly flexible, adaptable, and meet
stringent time-to-market constraints, while providing high-performance and
lower energy consumption.

A key element in the performance and energy consumption in SoCs is
the On-Chip Interconnect (OCI), which allows different SoC components to
communicate efficiently. Network-on-chip has been proposed as an alterna-
tive to bus-based schemes to achieve high performance and scalability in SoC
design. Different OCI-based architectures using packet-switching have been
recently studied and adapted for SoCs. Examples of these architectures are
Fat-Tree (FT)!, 2D mesh?, Ring?, Butterfly-Fat Tree (BFT)*, Torus®, Spi-
dergon®, Octagon”, WK-Recursive®?. However, their increasing complexity
makes their design extremely challenging. Furthermore, understanding and
studying traffic generated between components and traverse the OCI is a
crucial task!'®. Therefore, it is useful to perform a traffic analysis in early
stages of the design process; such that the designer can select appropriate
parameters for the on-chip'interconnect architecture. Indeed, the selection of
the on-chip interconnect architecture, based on traffic patterns that an appli-
cation specific SoC generates, allows designers to detect and locate network
contentions and bottlenecks.

Evaluating the performance of NoC architectures are usually performed
using simulations '+1112:13:1415 - Generally, the simulation is extremely slow for
large systems and provides little insight on how different design parameters
affect the actual NoC performance'®. Analytical models, however, allow fast
evaluation of performance metrics in early stages of the design process. This
paper extends the work we have done by evaluating the performance (e.g., la-
tency) of three on-chip interconnect architectures using Network Calculus!?.
We show how Network Calculus can be used to evaluate the performance
metrics, energy consumption and area requirements of on-chip interconnects
and their design tradeoffs. The main objective is to illustrate the effective-
ness of this methodology in evaluating on-chip interconnect architectures. As
a case study, a detailed analysis and evaluation of three on-chip interconnect
architectures, the 2D mesh, WK-Recursive, and Spidergon, under different
traffic loads is presented.



The rest of this paper is structured as follows. In section 2, we summarize
the existing work on performance analysis methods proposed for evaluating
on-chip interconnects. Section 3 provides a brief overview of Network Calcu-
lus concepts and features. In section 4, we present the on-chip interconnect
modeling methodology, and the results obtained using both simulations and
Network Calculus. Conclusions and future work are given in section 5.

2. Related Work

On-chip interconnect architectures adopted for SoCs are characterized
by trade-offs between latency, throughput, communication load, energy con-
sumption, and silicon area requirements. Several works; such as presented
in'® have demonstrated that there is a crucial need for system design tools
and methodologies to analytically evaluating and comparing NoC architec-
tures. The authors in'® have pointed out that the current design tools and
methodologies are not suitable for NoC' evaluation, and simulation meth-
ods, despite their accuracy, are very expensive and time consuming. There-
fore, techniques and tools are required to extract application communication
characteristics and to efficiently estimating their performance and energy
consumption in addition to area requirements for candidate communication
architectures.

Recently, there has been a great deal of interest in the development of
analytical performance models for NoC design. Approaches proposed in the
literature can be classified in four main categories: deterministic approaches,
probabilistic approaches, physics based approaches, and system theory based
approaches. In the first category, approaches are mainly based on graph the-
ory used successfully in many software and computer engineering domains.
For example; in'®, a model using a cyclo-static dataflow graph was used for
buffer dimensioning for NoC applications. Deterministic approaches assume
that the designer has thorough understanding of the pattern of communica-
tion among cores and switches.

Most of the work to date using probabilistic approaches are based on
queuing theory. For example, an analytical model using queuing theory was
introduced in?° to evaluate the traffic behavior in Spidergon NoC. Simulation
results to verify the model for message latency under different traffic rates
and variable message lengths have been reported. A queuing-theory-based
model for evaluating the average latency and energy consumption of on-chip
interconnects was proposed in?'. The results from the analytical model were



validated with those obtained when using a cycle-accurate simulator. Most
queuing approaches consider incoming and outgoing traffic as probability dis-
tributions (e.g., Poisson traffic) and allow designers to perform a statistical
analysis on the whole system in order to evaluate certain network metrigs,
such as average buffer occupancy and average buffer delay in an equilibrium
state. However, NoC applications exhibit traffic patterns that are very dif-
ferent compared to Poisson distribution used in queuing model?2'2; More
precisely, the Poisson model fails to capture some important network char-
acteristics like self-similarity or long-range dependence?3.

In?*, the authors suggested statistical physics and information theory
for NoC design and evaluation. Unlike stochastic approaches that make
Markovian assumptions about the network behavior, statistical physics can
model the interactions among various components while considering the long-
term memory effects. A quantum-like approach-was proposed in?* to model
the information flow and buffers behavior in NoCs. The main concept in
this model is that packets in the network move from one node to another
in a manner that is similar to particles moving in a Bose gas and migrating
between various energy levels as_ a consequence of temperature variations.
The authors have focused on the buffer sizing issue, which is a major factor
that affects the energy consumption and the silicon area requirements.

The fourth category uses system theory that is successfully applied to de-
sign electronic circuits:” Network Calculus features are derived from system
theory so that performance bounds (e.g., end-to-end delay) in networks such
as the Internet can be modeled and evaluated?>26. The attractive feature of
Network Calculus is its ability to capture all traffic patterns with the use of
bounds. In other words, based on shapes of the traffic flows (by analogy, sig-
nals in system theory), designers are able to capture some dynamic features
of the network. For example, in?", we have presented a performance analysis
methodology using Network Calculus to analyze and evaluate performance
metrics of 2D Mesh on-chip interconnect. Simulations are performed and re-
sults are compared with those from the Network Calculus-based methodology
in order to underline its usefulness for evaluating on-chip interconnects.

In this paper, the Network Calculus-based methodology is used to eval-
uate other performance metrics (e.g., load and throughput) as well as cost
metrics (e.g., energy consumption and area overhead). Three on-chip inter-
connects, that are the 2D mesh, WK-Recursive, and Spidergon, are evaluated
and compared under different traffic loads. Results show the effectiveness of
Network Calculus as a useful tool for NoC design and evaluation. It’s worth
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noting that we have selected 2D mesh, WK-Recursive, and Spidergon be-
cause they outperform other on-chip interconnects, such as F'T and Ring, in
all performance and cost metrics®28.

3. Network Calculus: an Overview

Network Calculus?2?% is a modeling framework that allows designers to

specify a system as a mathematical model and evaluate main performance
bounds such as end-to-end delay. This theory is based on (min,+) alge-
bra for deterministic network performance analysis, especially for worst-case
analysis?®. Based on shapes of the traffic flows, designers are able to capture
some dynamic features of the network. In this section, we briefly introduce
Network Calculus, in particular service and arrival curves that represent
traffic patterns, as well as some performance bounds.

We consider that any system can be composed of one or several compo-
nents that exchange traffic in order to accomplish a given task. The traffic
pattern of the system can be defined by arrival curves of incoming traffic lows
to each component of the system. lLet’s consider f a data flow characterized
by an input function denoted by R(t), which represents the cumulative data
units (e.g., packets, bits) of frarriving at the component C' within the time
interval [0,¢]. Let’s consider R*(t) the output function (see Figure 1), which
represents the cumulative amount of data that leaves the component during
the time interval [0,t], R(¢) > R*(t). Having the input and output func-
tions, we can derive the following two quantities of interest, the backlog and
the virtual delay®. The backlog x(t) is the amount of data units that are
held inside the system, z(t) = R(t) — R*(t). The wvirtual delay d(t) is the
delay that would be experienced by a data unit arriving at time ¢ if all units
received before it is served before it, d(t) = inf{r > 0, R(t) = R*(t+ 7)}.

In order to calculate the delay and the backlog, the input and output func-
tions have to be defined. Their definition is based on (min,+) convolution
and deconvolution principles defined as follows. Given f and g wide-sense
increasing functions and f(0) = ¢(0) = 0, their convolution is defined as
(f ®g)(t) = infocs<t{f(t —s) + g(s)} and their deconvolution is defined as
(f @ 9)(t) = supssol f(t +5) — g(5)}

Each input function can be characterized by an arrival curve as follows.
An arrival curve «(t) characterizes a traffic flow R(t), iff it upperbounds
the amount of arriving data of this traffic low during any time interval
[0,t]. More formally, given a wide-sense increasing function «(t) defined



for t > 0, we say that a flow R(t) is constrained by « iff for all s < t:
R(t) — R(s) < a(t — s). It is also said that R has « as an arrival curve,
or also that R is a-smooth?>. Using (min,+) convolution, « is an arrival
curve of an input function R iff R < R ® a. An example of the arrival
curve is a leaky bucket controller, which enforces an arrival curve constraint
a(t) = rt + b. It means that no more than b data units can be sent-at once
and rbit/s on long-term.

R(t) ~ait) R R¥(t) ~a*()
r B0 >

Backlog

Figure 1: Arrival and service curves in Network Calculus with delay and backlog bounds

The output function R*(t) can becalculated after the modification of the
input function R(t) by the component C"described by the service curve (3(t)
of that component. We say that C offers to the flow R a service curve 3 (non-
decreasing function such that 8(0) = 0) iff: V¢t > 0, R*(t) > info<s<:{R(s)+
B(t — s)}. Using (min, +) eonvolution of these two functions, f is a service
curve of flow R iff R* > R®[. An example of the service curve is rate latency
function ((t) = R(t— T)F, where R denotes a guaranteed service rate and
T is the maximum latency caused by the component®. The expression ()"
equals to  when = > 0 and 0 otherwise. Figure 1 shows a component with
input/output curves, service curve, delay and backlog.

Knowing the service curve (3(t) offered by a component C, the output
curve of(t) of R*(t), can be calculated as follows: o*(t) = (o @ §)(t). For
example, assuming that a flow is constrained by an arrival curve a(t) =
rt +band C provides a guaranteed service curve 3(t) = R(t — T)7 to the
flow, the output bound can be calculated as follows: «o*(t) = «(t) + rt.
These curves, a(t) and o*(t), act like bounds on the input and output traffic
flows respectively, and are used to compute the delay bound D and the
backlog bound B as follows. The delay D for a data flow R(t) constrained
by an arrival curve a(t) that receives the service 3(t) to produce a data flow
R*(t) constrained by the arrival curve o*(t) is upper-bounded by: d(t) <
supsso(inf{T > 0 : a(s) < B(s+ 7)}). The backlog z(t) can be upper-
bounded by: z(t) < sups<o{a(s) — [(s)}, Vt.
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An example is illustrated in Figure 2 that shows the delay and the backlog
bounds of a component receiving a traffic flow characterized by an arrival
curve a(t) = rt + b and providing a service curve 3(t) = R(t — T)™", where
R > r is the guaranteed bandwidth, and 7" is the maximum latency of the
service. Using these curves, the backlog B and delay bounds D can be
expressed as follows: B=0b+rT and D =b/R+T.

A .
bits bits

(a) (b)

Figure 2: Example of backlog bound B (a) and delay bound D (b)

4. OClIs exploration

In this section, three on-chip interconnect architectures are selected for
analysis and evaluations; 16-node configurations are used. Figure 3 shows
these configurations with application data flows generated as a case study
(e.g., in 2D Mesh, f; = (cs, Ss, S12,¢12)). As shown in this figure, there
are three important elements in NoC: cores, routers (or switches), and bidi-
rectional links. Each core can be either a source or a sink, in which flits
are constructed or consumed. Each ingress port in a switch has a buffer
for temporary storage of information. When a flit arrives at a switch, it
must go into the buffer that corresponds to a Drop-tail queue with an FIFO
queue management mechanism. The rest of this section presents the Network
Calculus-based model and how it is used to evaluate the performance and
cost metrics.

4.1. Network Calculus-based Model

In order to analyze and evaluate the performance of each OCI, we need to
build a model for the entire system. The NoC architecture can be viewed as
a distributed system composed of autonomous nodes that communicate by



Link i>Data flow

c
Switch @ IP core

Figure 3: On-chipinterconnects with data flows: (a) 2D Mesh, (b) Spidergon, (¢) WK(4,2)-
recursive.

exchanging messages through an on-chip interconnect’. The on-chip inter-
connect. can be described as a graph OCI(V, E) whose nodes v € V represent
switiches or cores and whose edges ¢ € F represent the communication links
between two neighboring nodes u and v. For each node v € V, r, is the
injection rate and for each link ¢/ € E, R, denotes the guaranteed service rate
or the link bandwidth. Similarly, an application can be represented by an
acyclic digraph, called Task Graph T'G, where each v € V represents a task
and each ¢ = (u,v) € E is a communication flow edge having one attribute
@y (t), the input arrival curve that represents the data flow sent by u to v.
After a random mapping of the TG on the OCI, as illustrated in Fig-



ure 3, the cores (cg,cs, c11,c15) are selected to be traffic sources. Cores
(¢1,¢s5, 12, C13), considered as sinks, are selected according to the following
communication locality principle in which 25% of the traffic takes place be-
tween neighboring cores and 75% of the traffic is uniformly distributed among
the rest. We can see, in this traffic pattern, that cg is selected two times as a
traflic source and ¢y, is selected two times to be a traffic sink. Data flows are
represented by sequences of hops from a source core ¢; to a destination core
¢;. These data flows are computed using a deterministic routing protocol to
direct flits between switches.

Having these data flows, we can express the input and output arrival
curves, @, (t), @, (t), and @,(t) of each switch s;, core ¢;, and link ¢ respec-
tively. The maximum data flow sent to a switch s; is constrained by the
arrival curve @;(t) = rit + b;, where b; is the maximum burst size of the
data flow and r; is its average rate. Using this arrival curve, a node can
send b; bits at once, but without exceeding r;bit/s over the long run. Each
switch also provides a guaranteed service constrained by the service curve
Bi(t) = R;(t — T;)*, where R; denotes the guaranteed service rate and T; is
the maximum latency caused by the switch s;. This service curve is called
the rate-latency service curve in which data is delayed by a fixed time T;
and then routed out at a rate R;. These two curves are widely used in eval-
uating systems313%3331 We use these curves to evaluate and compare the
considered OCls.

After defining data flows and nodes participating in transmitting and/or
receiving data, the entire network can be described to obtain the perfor-
mance model by merging all arrival and output flows. For example, Figure
3 (b) shows the 16-nodes configuration of the Spidergon on-chip intercon-
nect. As shown in this figure, five data flows are selected as follows: f; =
(08738759;310751175127012)7 Jo = (087587377 56735705)7 f3 = (0675673575137013)7
fi= (011, 511, 83, 52, 51,01)7 f5 = (015, 515, 514, S13, 5127012)-

Based on these data flows, the input and output curves of each switch
are iteratively calculated. For example, @y5(t) and @j;(t) respectively have
to be calculated first. We have then, @5(t) = rt + b and a5 (t) = rt + b+
rI". The output bound of the switch si5 is an input to the switch s14, so
a(t) = rt+b+rT and @j,(t) = rt + b+ 2rT. In the second iteration,
input and output curves ag(t) are calculated as follows, ag(t) = 2rt + 2b and
ai(t) = 2rt + 2b+ 2rT. In the third iteration, the input and output curves
of @;(t) and ay(t) respectively have to be calculated in the same manner
according to data flows. The calculation will be repeated with nodes sg, s5,



S13, S10, S11, S12, S3, S2, and sy, till we obtain the following equations:

t)=rt+b+5rT  ay(t)=rt+b+rT

a (

ag(t):Tt—l-b—l-%?“T @10(15):7“15+b+27°T
as(t)=rt+b+3rT  ay(t) =2rt+2b+3rT
az(t)y=rt+b+rT au(t)=rt+bo+1rT
ag(t) =2rt+2b 515(15) =rt+0b

In the same manner, the arrival curve, @,,(t), of each core ¢;, and the
arrival curve, @(t), of each link ¢ can be calculated.- One of the main ad-
vantages of using Network Calculus is that the designer can model the data
flows of an application and their interactions (i.e., flows are dependent to
each other) which are necessary for NoC design-and evaluation.

SoC applications generally have broad computation and/or communica-
tions requirements. Understanding application communication patterns is
critical for efficient use of SoC resources within a given set of constraints
such as area, power and performance. In the rest of this section, we will
show how to evaluate the performance, the energy consumption, and the
area requirements based on the OCI model describing the arrival curves of
each switch, core, and link. Analytical and simulation results are compared
using the same traffic pattern to confirm the usefulness of Network Calculus
for NoC design and evaluation. Simulations are conducted using a simulator
developed in'4.

In the simulation, we consider that an application is represented as com-
municating parallel processes. Each process is linked with a traffic generator
that injects flits according to the CBR (Constant Bit Rate) model at a de-
terministic rate r, which is varied between 25Mbps and 100Mbps. It’s worth
noting that, in this evaluation, we have used Network Calculus theory, which
is mainly proposed to study lossless system, i.e., with the assumption that no
flits are ever lost. Once a flit is injected in the NoC, it will eventually reach
its destination. When the injection rate is above 100Mbps, a lot of flits are
lost. This is the reason why at this rate the network becomes congested and
router start dropping flits. The maximum service rate R is fixed to 200Mbps
in this simulation and same for each switch. In NoCs, the maximum ser-
vice rate was expected to be in the order of Gigabits/s. However, because
of the limitations from real conditions and since an event-simulator not cy-
cle accurate simulator (event can represent many cycles that allow this high
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bandwidth) is used, and processor power limitation, the maximum service
rate can only add up to 200Mbps.

In the analytical evaluation, the arrival curve we have used for each node ¢
is a leaky bucket controller which enforces an arrival curve constraint a(t) =
rt+b. Using this arrival curve, a node 7 can send b bits at once, but without
exceeding rbit /s over the long run. One of the applications using arrival curve
is in the Generic Cell Rate Algorithm (GCRA) with two parameters; target
inter-arrival time of packets T', and 7 the tolerance that quantifies how early
packets may arrive with respect to the ideal spacing 72°. A CBR connection
is defined by one GCRA with parameters (7', 7), in which b =.S;(F + 1) and
%, where Sy is the flit size. In the simulator we have used, the CBR
was implemented with 7 equal to 0, therefore, b is all time equal to the flit
size fixed.

The flit is an elementary unit of information exchanged in the commu-
nication network in a unit of time (e.g., clock cycle), but a packet is an
element of information that an IP core sends to another core, which consists
of a variable number of flits. The size of flits can be 8, 16, 32 or 64 bits, but
in our evaluation, we keep the fliti size to 8 bytes. The size has influence on
the performance and cost metrics but not on the comparison results between
on-chip interconnects. It is worth noting that, the length of packet, number
and size of flits and the buffer size are all parameterized during the design
space exploration. More precisely, after comparing different on-chip intercon-
nects the designer can customize the suitable one by selecting appropriate
parameters, such as the maximum service rate, the buffer size for each input
port, and flit size, given a specific application.

In this evaluation study, we have considered latency, throughput, and
communication load, which are the most important performance metrics used
in evaluating on-chip interconnects!3'13. Another performance metric is
the loss rate not considered in this study because we are analyzing lossless
NoCs. In addition to these performance metrics, cost metrics that are energy
consumption and area requirements are considered.

r =

4.2. Performance Metrics

In this section, performance metrics, mainly the latency, throughput, and
communication load, will be evaluated using the input and output arrival
curves @, (t), a,(t), and @, (t).
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4.2.1. Latency

Latency is defined as the time that elapses between the injection start of
the flits into the network at the source core and its arrival at the destination
core. For a flit to reach the destination cores (e.g., processing elements), it
must travel through a path consisting of a set of links and switches. Using
Network Calculus, the latency L, in each switch s; constrained by an arrival
curve 7;t + b; can be calculated as follows?®:

L 2
si — E + 1y ( )

where R; is the service bandwidth and T; is the maximum latency of the
service at a switch s;. Therefore, the average latency can be calculated based
on equation 2. For example, as shown in the previous section (see eq.1), in
Spidergon, since @z(t) = rt + b+ rT, D; = {5+ 1)T + %, if the injection
rate is r = 100Mbps, R = 200Mbps, b= 64bits, and the flit size is Sy = 8
bytes, then Dg = 0.8us, where T' = S¢/R. After computing the delay bound
of each switch, the total delay, called end-to-end delay bound, Dy, of each
data flow f; (from the source to thesink) can be calculated by summing up
the delay of each participating switeh. It is defined as the time that elapses
between the injection start of the flit into the network at the node source and
its arrival to the destination node. For example, since Dy, = D5+ D¢+ D;s3,
if r = 75Mbps, then Dy = 4.2us. The calculation continues in the same
manner with Dy, Dy,, Dg,, and Dy, to find the average end-to-end delay.

Figure 4 compares the average latency of the three on-chip interconnect
architectures under different injection rate using Network Calculus (analysis)
and simulation. As shown in this figure, when increasing the injection rate,
the network becomes more congested with heavy traffic and hence queues
become full causing more flits to wait, and therefore increasing the latency.
We can-also see that the latency obtained using network calculus analysis
(i.e.; a'worst case analysis) is in the same order of magnitude as the latency
obtained using simulations, i.e., both show a deviation of less than 14%
on average. Furthermore, regardless of the injection rate used and in both
simulation and analysis results, the Spidergon has higher average latency
compared to the Mesh and WK because of high average number of hops flits
traversed. We can also see that WK is less sensitive to the injection rate
increases and has lower average latency.
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Figure 4: The average latency

4.2.2. Network Load

Communication load is a relative value of arrival rate versus departure
rate on all links. Let’s consider D, (t) is the maximum number of flits that
can possibly, under ideal circumstances, be transmitted over all links at time
t, and A,(t) is the actual number of flits that have arrived over all links at
time ¢14. The communication load £(#) can be defined as the ratio between
the departure rate D, (t) and the arrival rate A,.(t) as follows:

At) S a(t)
D.(t) NgRif )

where @y, (t) is the number of flits arrived in the link ¢;, R is the bandwidth
of each link /¢;, and N, is the number of unidirectional links involved in
transporting flits. We consider that all links have the same bandwidth, R.

The results depicted in Figure 5 show the variation of communication
load under different traffic rates for the three OCIs. The communication load
obtained using Network Calculus analysis is in the same order of magnitude
as the load obtained using simulations with a deviation of less than 28%.
Furthermore, regardless of the injection rate used, in both simulation and
analysis results, the Spidergon has a higher communication load compared
to the Mesh and WK. Furthermore, WK is less sensitive to the injection rate
increases and has a slightly lower load.

L(t)=

4.2.3. Throughput
The throughput for each core ¢; represents how many bits arrive at that
core per second (bps). The aggregate throughput 7 () is the sum of through-
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Figure 5: The communication load

put of each destination core ¢; during the interval [0,¢]. Tt can be calculated
as follows:

T(t) = > @) @

where Ny is the number of cores selected as destinations (i.e., sinks), and
@, (t) is the arrival curve that represents the accumulated number of bits
arrived (i.e., accumulated) at the destination core ¢; until time ¢.

In the example depicted in Figure 3, cores (¢, ¢5, ¢12, ¢13) are selected to
be sinks. Using, the OCI'model of the Spidergon, the arrival curve a,(t) of
each core ¢; can be calculated, for example, @, (t) = rt+b+ 1T and @, (t) =
rt + b+ 3rT. Figure 6 shows the variation of aggregate throughput under
different injection rates for the three OCIs. The throughput increases linearly
when the injection rate increases because of the number of flits generated.
Furthermore, the throughput obtained using analysis is slightly similar to
all OCIs and is in the same order of magnitude as the throughput obtained
using simulations with a deviation of less than 5%.

4.8. Cost Metrics

This section presents the analytical evaluation of cost metrics, mainly the
average energy consumption and area overhead. Analytical results are also
compared to those obtained using simulations.

4.3.1. Energy

The total energy can be decomposed into the energy consumed on the
switches (traversal of input and output switches) and energy consumed per
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Figure 6: The aggregated throughput

wires or links between cores and switches. The total energy £(t), can be
calculated as follows:

£0) =3 0B, Y 5, (O, 6

where @y, (t) and @y, () are the number of bits arrived until time ¢ to the link ¢;
and s; respectively. N, and Ngare the number of links and switches involved
in transporting the application flows. Therefore, the first term represents
the energy consumed, at timet, on all links involved, and the second term
represents the energy constimed inside the switches®®. FE, is the energy
consumed during transporting one bit on a link /;, and E;; is the energy
consumed during buffering and routing operations of one bit inside each
switch s;.

The values of Ey, and E,; depend mainly on the switch architecture and
the link characteristic such as the width, the length, etc. In this evaluation,
we use the values already estimated in the energy model proposed in®® in
which the average amount of energy required for a single bit to pass a switch
is equal to 0.9776pJ/bit and the average amount of energy required for a
single bit to cross a link £ is (0.39 + 0.12L,) pJ/bit, where L, is the length
of the link ¢. To calculate L,, we consider that the link between each core
and its corresponding switch is of length 1mm. We consider that all links
(horizontal or vertical) between neighboring switches are of length 2mm. For
example, as shown in Figure 3, WK(4,2) has 16 links of length 1mm, 20 links
of length 2mm, and 10 links of length 4mm. However, only 5 links of length
lmm, 5 of length 2mm, and 5 of length 4mm are involved in transporting
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flits.

Figure 7 shows the energy consumption using analytical evaluation and
simulations. This figure shows that the energy consumption increases lin-
early when the injection rate increases. This increase can be explained by
the big number of flits generated as the injection rate increases. Furthermore,
regardless of the injection rate used, in both simulation and analysis results,
the Spidergon has higher average energy consumption compared to the Mesh
and WK. This increase can be explained by the higher number of hops tra-
versed by flits. We can also see that the energy obtained using analysis is in
the same order of magnitude as the energy obtained using simulations, i.e.,
the difference between simulation and analysis is about 1%.
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Figure 7: The average energy consumption

4.3.2. Area

In NoC design, three sources of area overhead can be identified, switches,
cores, and links. Switches have two main components: the buffers to tempo-
rally store flits and logic to implement the routing algorithm. Area overhead
of links-depends on their lengths inside the chip®®. The total area value can
be then calculated as follows:

A=Y A+ DAL+ Ak (6)

where Ny is the number of switches, /N, is the number of IP cores, N, is the
number of bidirectional links, A,(7) and A.(j), and A,(k) is the area require-
ment for the switch ¢, core j and link k respectively. The average on-chip
interconnect area A, will be determined by the average link area A,, the
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average switch area A, and the average IP core area A;. We consider the
average since the resources (e.g., DSP, FPGA, Memory) are heterogeneous,
the length of links are different, and the size of switches depends on their
emplacement in the on-chip interconnect (e.g. degree). We use the architec-
tures’ layout presented in?® to determine these values, in particular A4 and
Ay. So the average area A can be derived from eq.6 as follows:

A, = NS(RS + &Sngst) + N.A. + ayN¢Ly (7)

where Bj is the average buffer size, a, is the area required for one byte, Sy is
the flits’” size in bytes, a, and Ly is the average width and the average length
of each link ¢, R, is another switch silicon area, such as routing table and
logic to implement the routing algorithm, and d, is the average degree of the
on-chip interconnect, which represents the average number of buffers inside
the switch.

It was demonstrated in previous works, for example in®637, that a domi-
nant part of the NoC area is due to the buffer sizes. To calculate the average
buffer size B, we have to calculate the buffer size B, of each switch s;
as follows. As described above, each switch s; is constrained by an arrival
curve in the form @;,(t) = r;it + b; and provides a guaranteed service curve
Bi(t) = R;(t—T;)" to each flow. Therefore, By, can be calculated as follows?:

where 7; is the core injection rate and 7; is the maximum latency of the service
at the switch s;: For example, in Spidergon, since @, (t) = rt + b+ 31T,
By, = %rT + b, if the injection rate is r = 75Mbps, R = 200Mbps, b=
64bits, and-the flit size is Sy = 8 bytes, then B, =24.5 bytes (~3 flits),
where T' = S¢/R.

Figure 8 shows the area requirements (in mm?) for zero flits drop (i.e.,
lossless system) under different injection rates. In this evaluation, the area
required to store the routing table and other related area are considered
constant, R, = 1mm?, and a, = 0.005mm?, a;, = 0.02mm, A, = 2mm?,
R, = 1mm?. We also consider that the chip size is of 20mm x 20mm. The
value of L, is calculated based on the architectures layout®®. As shown in
Figure 8, when injection rate increases, the area requirement increases be-
cause the network becomes more congested with heavy traffic and so more
space is needed to absorb differences in speed and burstiness between the IP
cores. In other words, as the injection rate increases more space is needed
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to avoid flits from being dropped. We can see, that the WK and Spider-
gon require more area because of the additional links and more buffer size
respectively, when compared with the Mesh. Furthermore, area obtained
using analytical evaluation is in the same order of magnitude as the area ob-
tained using simulations, i.e., the difference between simulation and analysis
is about 1.5%.
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Figure 8: The average silicon area

5. Conclusions and Future Work

In this paper, a Network Calculus-based methodology is presented to
evaluate on-chip interconnects in terms of performance (i.e., latency, com-
munication load, throughput) and cost metrics (i.e., energy consumption and
area requirements) based on a given traffic pattern. The main objective is
to illustrate‘the practical use of the Network Calculus approach to analyti-
cally evaluating on-chip interconnects. The 2D regular Mesh, Spidergon, and
WK on-chip interconnect architectures are compared and evaluated using a
given traffic pattern. The results show that this approach can provide the
designer with initial insight on on-chip interconnects and the relationship
between application traffic and performance. The results show that WK-
Recursive outperforms the 2D Mesh and Spidergon on-chip interconnects in
all considered metrics.

Further work concerns the development of a design space exploration soft-
ware tool that will be built around Network Calculus and integrated with
a simulation and experimental environment. This software tool allows de-
signers to rapidly explore design options over a wide range of energy budget
and performance requirements. The utility of this tool will be demonstrated
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via several prototypes that are created using reconfigurable platforms based
on the FPGA technology where actual performance can be measured. Com-
bining applications characterization, performance simulation and analysis,
and implementation in one software tool allows filling the gap between pure
simulation that may be too slow and analytic methods that are not accurate
enough to be used in a design space exploration of SoCs.
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