
HAL Id: hal-00534442
https://hal.science/hal-00534442

Submitted on 9 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A stochastic formula for the entropy and applications
Joseph Lehec

To cite this version:
Joseph Lehec. A stochastic formula for the entropy and applications. Annales de l’Institut Henri
Poincaré (B) Probabilités et Statistiques, 2013, 49 (3), pp.885-899. �10.1214/11-AIHP464�. �hal-
00534442�

https://hal.science/hal-00534442
https://hal.archives-ouvertes.fr


A stochastic formula for the entropy and applications

Joseph Lehec∗

June 2010

Abstract

We prove a stochastic formula for the Gaussian relative entropy in the spirit of Borell’s
formula for the Laplace transform. As an application, we give unified and short proofs of
various well known inequalities.

1 Introduction: Borell’s formula

Let (Ω,A, m) be a measured space and µ be an absolutely continuous probability measure.
Letting ρ = dµ/dm and assuming that ρ log(ρ) is integrable, the relative entropy of µ is
defined by

Hm(µ) =

∫

Ω
ρ log(ρ) dm =

∫

Ω
log(ρ) dµ.

Given a function f : Ω → R such that ef is integrable we let

Lm(f) = log
(

∫

ef dm
)

be the log-Laplace of f . Then, using Jensen’s inequality, it is easily seen that

Lm(f) + Hm(µ) ≥
∫

f dµ.

Moreover, there is equality as soon as ef is a constant multiple of ρ on the support of µ. To
sum up, the following Legendre duality relation holds:

Lm(f) = sup
µ

(

∫

f dµ − Hm(µ)
)

Hm(µ) = sup
f

(

∫

f dµ − Lm(f)
)

.

(1)

We consider R
n equipped with its standard scalar product 〈·, ·〉, Euclidean norm ‖·‖, and

Gaussian measure γn. In [5, 6] Borell proves the following formula. Given a standard n-
dimensional Brownian motion B and a reasonable function f : R

n → R, we have

Lγn
(f) = sup

u

(

E f
(

B(1) +

∫ 1

0
u(s) ds

)

− 1

2
E

∫ 1

0
‖u(s)‖2 ds

)

,
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where the supremum is taken over all random processes u, say bounded and progressively
measurable with respect to the Brownian filtration. Among other applications, Borell shows
that the classical Prékopa-Leindler inequality follows easily from this formula.

Our purpose is to show that a similar formula holds for the Gaussian relative entropy.
This should not be too surprising, given the duality relation between the log-Laplace and the
entropy. However, this stochastic formula for the entropy provides new, unified and simple
proofs of a number of well-known Gaussian inequalities.

2 Stochastic formula for the entropy

For simplicity, we only consider measures µ on R
n having a density with respect to γn of the

form ρ = ef with a function f twice continuously differentiable, bounded and with bounded
first and second derivatives. These hypothesis are certainly not optimal.
Let

(

Ω,A,P
)

be a probability space equipped with a filtration (Ft)t∈[0,1] (we shall only con-
sider processes on the interval [0, 1] throughout) carrying a standard n-dimensional Brownian
motion B starting from 0. We call drift any progressively measurable random process u taking
values in R

n and satisfying

E

∫ 1

0
‖u(s)‖2 ds < +∞.

This is the class of processes for which the stochastic integral

∫ 1

0
〈u(s),dB(s)〉

is well defined. Let P be the semi-group associated to B

Ptf(x) = E f(x + Bt)

for every t ∈ R+, x ∈ R
n and every bounded (say) function f . This semi-group evolves

according to the heat equation:

∂tPtf(x) =
1

2
∆Ptf(x).

Our stochastic formula for the entropy states as follows.

Theorem 1. Let µ be a probability measure on R
n having a density ρ with respect to γn

satisfying the above technical assumptions. Then

Hγn
(µ) =

1

2
inf

(

E

∫ 1

0
‖u(s)‖2 ds

)

,

where the infimum is taken over all bounded drifts u such that B(1) +
∫ 1
0 u(s) ds has law µ.

Besides, the infimum is attained at some drift v which solves the differential equation

v(t) = ∇ log P1−tρ
(

B(t) +

∫ t

0
v(s) ds

)

, t ∈ [0, 1]. (2)

Lastly, the optimal drift v is a martingale and E v(t) =
∫

x dµ(x) for all t ∈ [0, 1].
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We start the proof with a simple lemma.

Lemma 2. Let G : [0, 1] × R
n → R

n be continuous in the time variable and Lipschitz in the

space variable. Then there exists a progressively measurable process Y satisfying

Y ′(t) = G
(

t, B(t) + Y (t)
)

, t ∈ [0, 1],

almost surely.

For fixed ω ∈ Ω, the equation above is an ordinary differential equation, the only issue is
to show that the solution depends of ω in a progressively measurable way. This can be dealt
with as follows.

Proof. Equivalently, we need to show that the map

T : Z 7−→
(

t ∈ [0, 1] 7→
∫ t

0
G

(

s, B(s) + Z(s)
)

ds

)

has a progressively measurable fixed point. A direct (and standard) computation shows that
T is a contraction for the distance induced by the norm

sup
(t,ω)∈[0,1]×Ω

‖Z(t, ω)‖e−Kt,

where K is the Lipschitz constant of G. Recall that a process Z is said to be progressively
measurable when for all t ∈ [0, 1] the map

(s, ω) ∈ [0, t] × Ω 7→ Z(s, ω)

is measurable with respect to the σ-field B([0, t])⊗Ft. Let P be the subspace of the above L∞

space consisting of progressively measurable processes. Then clearly P is a closed subspace
and T (P) ⊂ P. Therefore T as a fixed point in P.

We now prove Theorem 1, most of the ideas are borrowed from Borell’s article [5].

Proof of Theorem 1. Let u be a bounded drift such that B(1) +
∫ 1
0 u(s) ds has law µ. Since

u is bounded

Eu(t) := exp
(

−
∫ t

0
〈u(s),dB(s)〉 − 1

2

∫ t

0
‖u(s)‖2 ds

)

is a martingale and Girsanov’s formula applies, see for instance [12]. Under the measure

dQ = Eu(1) dP

the process B(t) +
∫ t
0 u(s) ds is a Brownian motion on [0, 1]. In particular

E ρ
(

B(1) +

∫ 1

0
u(s) ds

)

Eu(1) =

∫

Rn

ρ dγn = 1.

Taking logarithm and using Jensen’s inequality we get

E log(ρ)
(

B(1) +

∫ 1

0
u(s) ds

)

≤ −E log
(

Eu(1)
)

.
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Since B(1) +
∫ 1
0 u(s) ds has law µ, the left hand side equals Hγn

(µ) and we get

Hγn
(µ) ≤ 1

2
E

∫ 1

0
‖u(s)‖2 ds.

This argument shows that if a bounded drift v satisfies

log(ρ)
(

B(1) +

∫ 1

0
v(s) ds

)

=

∫ 1

0
〈v(s),dB(s)〉 +

1

2

∫ 1

0
‖v(s)‖2 ds (3)

almost surely, then B(1) +
∫ 1
0 v(s) ds has law µ and we have equality in the above Jensen

inequality, hence

Hγn
(µ) =

1

2
E

∫ 1

0
‖v(s)‖2 ds.

Let F (t, x) = log(P1−tρ)(x). The hypothesis made on ρ easily imply that ∇F is bounded,
continuous in t and Lipschitz in x on [0, 1] × R

n. By Lemma 2 there exists a progressively
measurable process Y satisfying

Y ′(t) = ∇F
(

t, B(t) + Y (t)
)

, t ∈ [0, 1].

Then v = Y ′ is progressively measurable, bounded and satisfies (2). We claim that v satis-
fies (3). Indeed, let M(t) = F

(

t, B(t) +
∫ t
0 v(s) ds

)

so that M(0) = log(P1ρ)(0) = 0 and

M(1) = log(ρ)
(

B(1) +

∫ 1

0
v(s) ds

)

.

An easy computation shows that ∂tF = −(∆F +‖∇F‖2)/2. Then Itô’s formula and (2) yield
(omitting variables)

dM = ∂tF dt + 〈∇F,dB〉 + 〈∇F, v〉 dt +
1

2
∆F dt

= 〈v,dB〉 +
1

2
‖v‖2 dt,

hence (3). Another application of Itô’s formula and (2) show that v is a semi-martingale with
variation (omitting variables again)

dv = ∂t∇F dt + ∇2F (dB + v dt) +
1

2
∆(∇F ) dt. (4)

Observe that

∂t∇F = ∇∂tF = −1

2

(

∇(∆F ) + ∇(‖∇F‖2)
)

= −1

2
∆(∇F ) −∇2F (∇F )

and recall that ∇F = v. Therefore the absolutely continuous part in (4) cancels out and v
is a local martingale. It is actually a true martingale since it is bounded. In particular its
expectation E v(s) is constant on [0, 1]. Lastly, from the equality

µ = B(1) +

∫ 1

0
v(s) ds

in law, we get E v(s) =
∫

x dµ(x) for all s ∈ [0, 1].
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3 Applications

Throughout, measures are assumed to satisfy the technical assumptions of the previous sec-
tion. All the inequalities that we prove can be extended to more general measures by density
arguments left to the reader.

3.1 Transportation cost inequality

Recall the definition of the L2 Wasserstein distance: if µ and ν are probability measures on
R

n

W2(µ, ν) = inf
(

∫

Rn×Rn

‖x − y‖2 dπ(x, y)
)1/2

.

where the infimum is taken over all couplings π of µ and ν, namely all probability measures
on the product space R

n × R
n having marginals µ and ν. There is a huge litterature about

this optimisation problem, usually refered to as Monge-Kantorovitch problem. Our modest
purpose is to give a simple proof of the following inequality due to Talagrand [13]. The reader
willing to know more about optimal transport is refered to the book [14].

Theorem 3. Any probability measure µ on R
n satisfies

W2(µ, γn)2 ≤ 2 Hγn
(µ).

Proof. Let B be a standard Brownian motion and v be the optimal drift for µ. Namely, the
random vector X := B(1) +

∫ 1
0 v(s) ds has law µ and

Hγn
(µ) =

1

2
E

∫ 1

0
‖v(s)‖2 ds.

Since
(

X, B(1)
)

is a coupling of (µ, γn) and by definition of the Wassertein distance

W2(µ, γn)2 ≤ E‖X − B(1)‖2.

On the other hand, by Jensen’s inequality

E‖X − B(1)‖2 = E
∥

∥

∥

∫ 1

0
v(s) ds

∥

∥

∥

2
≤ E

∫ 1

0
‖v(s)‖2 ds.

3.2 Logarithmic Sobolev inequality

Let µ be a probability measure on R
n. The relative Fisher information of µ is defined by

Iγn
(µ) =

∫

Rn

‖∇ρ‖2

ρ
dγn =

∫

Rn

‖∇ log(ρ)‖2 dµ,

where ρ is the density of µ with respect to γn. The logarithmic Sobolev inequality for the
Gaussian measure, due to Gross [11], states as follows.

Theorem 4. For all probability measure on R
n

Hγn
(µ) ≤ 1

2
Iγn

(µ).
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See the book [1] for an overview on this inequality, we only give a short proof based on
Theorem 1.

Proof. Let B be a Brownian motion and let v be the optimal drift for µ. Recall that v is a
martingale, so ‖v‖2 is a sub-martingale, hence the inequality

Hγn
(µ) =

1

2

∫ 1

0
E‖v(s)‖2 ds ≤ 1

2
E‖v(1)‖2.

On the other hand v solves the equation

v(t) = ∇ log(P1−tρ)
(

B(t) +

∫ t

0
v(s) ds

)

, t ∈ [0, 1],

and B(1) +
∫ 1
0 v(s) ds has law µ. Therefore

E‖v(1)‖2 = E
∥

∥

∥
∇ log(ρ)

(

B(1) +

∫ 1

0
v(s) ds

)
∥

∥

∥

2
= Iγn

(µ).

3.3 Shannon’s inequality

In this section we prove a classical information inequality known as Shannon’s inequality,
see [10] for an overview on the topic. Let Ln be the Lebesgue measure. In the sequel, when
X is a random vector H(X) means H(µ) where µ is the law of X.

Theorem 5. Let X, Y be independant random vectors on R
n and λ ∈ (0, 1)

HLn
(
√

1 − λ X +
√

λ Y ) ≤ (1 − λ) HLn
(X) + λ HLn

(Y ). (5)

Proof. Observe that

Hγn
(X) = HLn

(X) +
n

2
log(2π) +

1

2
E‖X‖2

and similarly for Y . Since X and Y are independant, it is easily seen that (5) is equivalent to

Hγn
(
√

1 − λX +
√

λY ) ≤ (1 − λ) Hγn
(X) + λ Hγn

(Y )

+
√

λ(1 − λ)
〈

EX, EY
〉

(6)

Let B be a standard Brownian motion on R
n and u be the optimal drift for X. Recall that

it implies in particular that
Eu(s) = EX, s ∈ [0, 1].

Similarly, let C be a standard Brownian motion on R
n, independant of B and v be the optimal

drift for Y (built out of C of course). Now let W =
√

1 − λB+
√

λC and w =
√

1 − λu+
√

λv.
Then W is a standard Brownian motion and, since (B, u) is independant of (C, v), the random
vector W (1) +

∫ 1
0 w(s) ds equals

√
1 − λX +

√
λY in law. Therefore

Hγn
(
√

1 − λX +
√

λY ) ≤ 1

2
E

∫ 1

0
‖w(s)‖2 ds.

Since u and v are independant

E‖w(s)‖2 = (1 − λ) E‖u(s)‖2 + λ E‖v(s)‖2 + 2
√

λ(1 − λ)〈EX, EY 〉.

Integrating this equality on [0, 1] yields (6).
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3.4 Brascamp-Lieb inequality

Let us focuse on a family of inequalities dating back to Brascamp and Lieb’s article [7] on
optimal constants in Young’s inequality. Since then a number of nice alternate proofs have
been discovered, see [4, 8] and the survey article [2], and it would also be possible to use Borell’s
formula. Still, we believe the following approach based on Theorem 1 is worth noticing.

Let E be a Euclidean space, let E1, . . . , Em be subspaces and for all i let Pi be the orthog-
onal projection with range Ei. Let c1, . . . , cm be positive numbers. The crucial hypothesis is
the so-called frame condition

m
∑

i=1

ciPi = idE . (7)

Let x ∈ E, we then have ‖x‖2 = 〈
∑

ciPix, x〉. Since Pi is an orthogonal projection we obtain

‖x‖2 =
m

∑

i=1

ci‖Pix‖2. (8)

Now let x1, . . . , xm belong to E1, . . . , Em respectively. For any element y ∈ E, using the
Cauchy-Schwarz inequality and (8) we get

〈

m
∑

i=1

cixi, y
〉

=

m
∑

i=1

ci〈xi, Piy〉

≤
(

m
∑

i=1

ci‖xi‖2
)1/2(

m
∑

i=1

ci‖Piy‖2
)1/2

=
(

m
∑

i=1

ci‖xi‖2
)1/2

‖y‖.

Hence
∥

∥

∥

m
∑

i=1

cixi

∥

∥

∥

2
≤

m
∑

i=1

ci‖xi‖2. (9)

Throughout this subsection we let γ be the standard Gaussian measure on E and γi be
the standard Gaussian measure on Ei, for all i ∈ {1, . . . ,m}. The Brascamp-Lieb inequality
states as follows.

Theorem 6. Under the frame condition, for all fi : Ei → R, and g : E → R satisfying

g(x) ≤
m

∑

i=1

cif(Pix)

for all x ∈ E, we have

Lγ(g) ≤
m

∑

i=1

ci Lγi
(fi).

For the many consequences of this inequality, we refer to [9]. As observed by Carlen and
Cordero in [8], this theorem admits an equivalent formulation in terms of entropy.
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Theorem 7. Under the frame condition, we have

Hγ(X) ≥
m

∑

i=1

ci Hγi
(PiX)

for all random vector X on E.

Proof. Let X be a random vector. Let B be a standard Brownian motion on E, and u
be the optimal drift for X. Then PiB is a standard Brownian motion on Ei and since
B(1) +

∫ 1
0 u(s) ds = X in law, we have PiB(1) +

∫ 1
0 Piu(s) ds = PiX in law. Therefore

Hγi
(PiX) ≤ 1

2
E

∫ 1

0
‖Piu(s)‖2 ds.

Using (8), we get

m
∑

i=1

ci Hγi
(PiX) ≤ 1

2
E

∫ 1

0

m
∑

i=1

ci‖Piu(s)‖2 ds

=
1

2
E

∫ 1

0
‖u(s)‖2 ds = Hγ(X).

The Brascamp-Lieb inequality admits a reversed version due to Barthe [3].

Theorem 8. Assuming (7), for all fi : Ei → R and h : E → R satisfying

m
∑

i=1

cif(xi) ≤ h
(

m
∑

i=1

cixi

)

(10)

for all (x1, . . . , xm) ∈ E1 × · · · × Em, we have

m
∑

i=1

ci Lγi
(fi) ≤ Lγ(h).

This reversed version has also many implications, it is in particular related to the Brunn-
Minkowski inequality. As far as the author know, there is no entropic version of this reversed
inequality in the litterature, here is an attempt.

Theorem 9. Under condition (7), for all random vectors X1, . . . , Xm on E1, . . . , Em respec-

tively, there exist Y1, . . . , Ym satisfying Xi = Yi in law for all i ∈ {1, . . . ,m} and

Hγ

(

m
∑

i=1

ciYi

)

≤
m

∑

i=1

ci Hγi
(Xi).

Proof. We first prove Theorem 9, then we prove that it implies Theorem 8.
Let X1, . . . , Xm be random vectors on E1, . . . , Em respectively. Again let B be a sandard
Brownian motion on E. Let i ∈ {1, . . . ,m}, since PiB is a standard Brownian motion on Ei,
there exists a drift vi satisfying PiB(1) +

∫ 1
0 vi(s) ds = Xi in law and

Hγi
(Xi) =

1

2
E

∫ 1

0
‖Pivi(s)‖2 ds.
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Now let Yi = PiB(1) +
∫ 1
0 vi(s) ds. By the frame condition

m
∑

i=1

ciYi = B(1) +

∫ 1

0

m
∑

i=1

civi(s)ds.

Using Theorem 1 and (9) we get

Hγ

(

m
∑

i=1

ciYi

)

≤ 1

2
E

∫ 1

0

∥

∥

m
∑

i=1

civi(s)
∥

∥

2
ds

≤ 1

2
E

∫ 1

0

m
∑

i=1

ci‖vi(s)‖2 ds

=
m

∑

i=1

ci H(Xi).

We now prove Theorem 8, the argument relies on the duality (1). Let f1, . . . , fm, h satisfy (10).
Let X1, . . . , Xm be random vectors on E1, . . . , Em and Y1, . . . , Ym be the vectors given by
Theorem 9. Writing

m
∑

i=1

ci

(

E fi(Xi) − Hγi
(Xi)

)

= E
(

m
∑

i=1

cifi(Yi)
)

−
m

∑

i=1

ci Hγi
(Xi)

≤ Eh
(

m
∑

i=1

ciYi

)

− Hγ

(

m
∑

i=1

ciYi

)

≤ Lγ(h).

and taking suprema in the vectors Xi yield the desired inequality.

Remark. The equivalence between Theorem 6 and Theorem 7 relies only on the duality rela-
tion (1), it has nothing to do with the frame condition nor the Gaussian measure. We refer
to [8] for a general statement. Similarly, it is possible to formulate a general entropic reversed
Brascamp-Lieb inequality along the lines of Theorem 9 and prove that it implies a general
reversed Brascamp-Lieb inequality. It is not clear though (at least to the author) whether
the converse implication holds true.
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[1] C. Ané et al. Sur les inégalités de Sobolev logarithmiques. Panoramas et Synthèses
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