
HAL Id: hal-00534441
https://hal.science/hal-00534441

Submitted on 9 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model-Driven Interoperability of Dependencies
Visualizations

Vincent Mahé, Hugo Bruneliere, Frédéric Jouault, Jean Bézivin, Jean-Pierre
Talpin

To cite this version:
Vincent Mahé, Hugo Bruneliere, Frédéric Jouault, Jean Bézivin, Jean-Pierre Talpin. Model-Driven
Interoperability of Dependencies Visualizations. 3rd Workshop on Model-Driven Tool & Process
Integration (co-located with ECMFA 2010), Jun 2010, France. pp.128–140. �hal-00534441�

https://hal.science/hal-00534441
https://hal.archives-ouvertes.fr

Model-Driven Interoperability of Dependencies

Visualizations

Vincent Mahé1, Hugo Brunelière2, Frédéric Jouault2, Jean Bézivin2, and Jean-Pierre

Talpin1

1 Espresso research team

INRIA Bretagne - Atlantique

Campus de Beaulieu

35000 RENNES (France)

{Vincent.Mahe|Jean-Pierre.Talpin}@inria.fr
2 AtlanMod research team

INRIA Bretagne - Atlantique

École des Mines de Nantes

44000 NANTES (France)

{Hugo.Bruneliere|Frederic.Jouault|Jean.Bezivin}@inria.fr

Abstract. Software tools and corresponding knowledge tend to be collected and

packaged into platforms like Eclipse, MathLab or KDE. Their success and use-

fulness combined with their growing size and complexity rise issues about man-

agement of dependencies between their components and between the platform

and other applications which rely on its plug-in system and/or provided function-

alities. Such problems imply need for dependencies management tools in which

visualization is a core feature. As dependencies are also a concern in domains like

Object-Oriented Programming or Operating System packaging, we may expect to

reuse corresponding works in visualization. But each domain and its related de-

pendencies problem have induced their own hard-coded viewing and browsing

tools. In this article we present how we have reuse existing visualization tools for

our platform cartography together with our own displays using a Model-Driven

Interoperability approach to easily realize bindings btween visualization tools.

1 Introduction

[CfP keywords]: Visualisation in software engineering (e.g. UML diagrams), Integra-

tion of software visualization tools and IDEs, Visualization of software evolution

Platforms are a widely used concept we may encounter in domains as distinct as

hardware industry, engineering environments or web services. They satisfy same needs:

defining an interface to extra pieces, embedding selected services, etc. But their success

together with their growing size and complexity rise management issues we try to deal

with through a visualization approach. Despite their complexity, those platforms share

main features and corresponding issues (e.g. dependencies management) we would like

to reach once for all. We should rely on the numerous researchs done on these visu-

alization issues to solve our platform problems. But each existing tool is built onto a

specific domain in an independent way using its own data format or even a monolithic

P
re

lim
in
ar

y
V
er

si
on

application doing reverse engineering, computation and visualization in the same exe-

cution thread. We propose models paradigm and tools as a gateway between platforms

specific needs and visualization tools. As an additional result, our generic dependency

management gives easy binding to dependency tools for any domain which could need

them out of platforms world. This paper presents our initial motivation in the section

2. The section 3 presents our visualization tool and its main properties. Our attempts to

plug our platform model into existing tools is then explained with the experiments we

have done in the section 4. The section 5 discusses about interests and needs of generic

visualization tools. We conclude in section 6.

2 Motivation

In year 2000 the Object Management Group standardization organisation presented its

Model Driven Architecture (MDA) initiative[11], which promotes a separation of soft-

ware engineering process artifacts between Platform Independent Models (PIM) and

Platform Specific Models (PSM) enriched from the previous ones by (automated) in-

clusion of platform dedicated stuff. They understood platforms as middleware but did

not explore the underlying world; platforms were an issue they tried to escape from by

modeling applications at a higher (platform-free) level.

Since this initiative, the multiplication of platforms has spread and blurred the con-

cept: hardware platforms (as processors: x86, ARM; as all-in-one computers: smart-

phones, internet appliances), software platforms (as OSes: Windows, MacOSX; as frame-

works: Java, Eclipse, OSGi), as sets of tools (Eclipse Modeling, Topcased, MathLab).

The large use of platform concept emphasizes its usefulness and gathers needs like han-

dling of components. As actual platforms are larger and larger, platform builders and

users need a way to manage them in-the-large. The cartography of platforms and the

management it enables are needed for many different platforms (Eclipse, Linux, web

services) which do not fit well together. So our works rose some issues we managed on

the fly. One of our main needs was a visualization tool for dependencies management.

Once our need was identified we expected to find existing tools for visualization of

dependencies because this question has been investigated in many works. As a matter

of fact we found plural tools about dependencies with an embedded viewer:

– DepAn [2] is a tool for Dependency Analysis of Java programs. It inspects a .jar file

and offers many views on the generated data file.

– CAP [1] is a Code Analysis Plug-in for Eclipse. It analysis algorithm is based on

Martin works [10].

– BARRIO [6] is a cluster analyser for object-oriented programs.

– GUESS [3] is a generic graphs visualizer which accepts GraphML XML format

files as input data.

– SHriMP [8] stands for Simple Hierarchical Multi-Perspective. It is both a technique

and a software application for exploring software.

– SIV [7] stands for Scenario Inter-dependency Visualization.

– SolidFX [12] is an integrated reverse-engineering environment for C and C++ code

(not tested).

P
re

lim
in
ar

y
V
er

si
on

– STAN is an Eclipse-based STructure ANalysis tool for Java.

– X-Ray [9] is a software visualization plug-in for Eclipse.

But those tools suffer some lacks and rigidities that disqualify them for our purpose

relying on platforms instead of OO source code: some visualization tools target a spe-

cific domain like Java packages or Object-oriented typing and inheritance. Another big

issue is about their hard-coded relation to their subject (Java source code) which forbid-

des a reuse in other domains. As our needs concern deployement features or underlying

plug-ins relationships, those tools can not be used and we must reinvent the wheel once

again.

These obstacles emphasize the need of a generic approach of visualization in or-

der to capitalize the knowledge about dependencies viewing and offer its features and

abilities to all domains which are facing dependencies issues. Such an independant tool

will benefit of every effort and advance in the visualization domain with ability to apply

them on all customer application domains.

3 Model-Driven Approach

As seen previously, dependencies management is a recurrent problem in software en-

gineering and requires visualization to help. Many tools have been develop to visualize

corresponding data relationships. Despite those tools are dedicated to a specific domain,

we would like to reuse their main functionalities to display our platform-related depen-

dencies. To do such a reuse, we need to interoperate our platform data and those tools

in an easy way. The Model-Driven Engineering (MDE) gives us the way to do that.

MDE is a software engineering approach considering models as first-class entities,

with a strong underlying conformity of those models to metamodels (models defining

the syntax of dedicated languages). Those metamodels can be multi-purpose like the

Unified Modeling Language (UML), or dedicated to a specific application field (they

are called Domain Specific Modeling Languages, or DSMLs). Given this conformity,

models can be processed with transformations or computed in order to verify some

properties on them. MDE uses models as first class entities with metamodels as sets of

type definitions.

First we present our model-driven representation of platforms. Then we detail the

generic dependencies visualization tool we build on it.

3.1 Megamodeling and Cartography

Megamodeling is a concept of Model-Driven Engineering (MDE) which goal is to pro-

vide over-modeling of MDE artefacts like models, metamodels, transformations that

software engineers can produce when working on a given application domain or the

whole company information system.

The AtlanMod MegaModeling Management (AM3) is a metamodel and dedicated

tools to model and manage complex sets of (not only MDE) artifacts in a generic way.

We use its metamodel (see figure 1) as a fondation for our cartography of Eclipse-like

platforms.

P
re

lim
in
ar

y
V
er

si
on

Fig. 1. AM3 Core metamodel (subset)

AM3 is a generic model-driven manager but our need to specifically manage plat-

forms implies deeper concepts like versionning or tools. The corresponding answer is a

more specific metamodel which inherits the AM3 metamodel and specializes some of

its concepts. It gives the Platform metamodel which types inherit from AM3 types.

Eclipse platform offers its versatility services through a plug-in mecanism which

relies on OSGi standard (on its Eclipse implementation which is named Equinox). As

OSGi concepts are more precise and restrictive than equivalent concepts in AM3 or

Platform metamodels, we design a new wrapping OSGi metamodel which inherits

from them.

The platforms under examination also include packaging (like the Eclipse P2 fea-

tures) and modeling environment (defined in the Global Modeling Managment GMM

metamodel) so our complete Cartography metamodel is a hierarchy of metamodels

which redefine the most generic ones (see figure 2).

Fig. 2. Cartography hierarchy of metamodels

The OSGi and P2 metamodel extensions are specialized sub-types for easier rep-

resentation of Eclipse platforms. Other kind of platforms which are not Eclipse-based

could be mapped to the Platform metamodel (or even the VirtualTool metamodel if

P
re

lim
in
ar

y
V
er

si
on

they include modeling tools), taking full benefit of underlying concepts and correspond-

ing types without Eclipse specificities.

3.2 Dependencies visualization

One of our main concerns facing software application platforms like Eclipse is the

issues about dependencies between their components. One answer to this problem is

a visualization displaying those dependencies in a graphical way.

Our hierarchy of metamodels from the most generic to the most specialized offers

the capacity for specialized types inheriting from a generic type to be compatible with

model-based tools built upon this generic type. We illustrate the benefits of this principle

on the dependencies.

Relationship & DirectedRelationship concepts The AM3 metamodel includes a no-

tion which is close to dependency: the DirectedRelationship type (defined upon

the more generic Relationship type). It relies one or multiple source Entity(ies)

to one or multiple target Entity(ies) (see figure 1).

DirectedRelationship extraction An AM3toGraphML model-to-model transforma-

tion has been written in ATL language to take any AM3 (compatible) model and extract

all its DirectedRelationship and related Entity elements. It generates the

corresponding graph edges and nodes in a model which conforms to the GraphML [4]

metamodel. When a source or a target of the relationship lacks (no source or no target),

it creates the corresponding node with an error tag and the lack information is added to

the node label:

1 r u l e Relationship2Edge {
2 from

3 dr : AM3 !DirectedRelationship

4 to

5 edges : d i s t i n c t GraphML !Edge foreach (pair in

6 thisModule .STPairs (dr)) (

7 id <− dr .__id ,

8 source <− i f (pair .source = OclUndefined)

9 then thisModule .createLackingNode (

10 ’source lacking for ’ + dr .__id)

11 e l s e

12 thisModule .NodefromEntity (pair .source)

13 endi f ,

14 target <− i f (pair .target = OclUndefined)

15 then thisModule .createLackingNode (

16 ’target lacking for ’ + dr .__id)

17 e l s e

18 thisModule .NodefromEntity (pair .target)

19 endi f ,

20 graph <− thisModule .graph

21)

22 }
23 unique l a z y r u l e NodefromEntity {
24 from

25 s : AM3 !Entity

26 (s .sourceOf−>size () > 0

27 or s .targetOf−>size () > 0)

28 to

29 node : GraphML !Node (

P
re

lim
in
ar

y
V
er

si
on

30 id <− s .identifier .value ,

31 datas <− Sequence{
32 thisModule .createData (’label’ ,

33 s .identifier .value) ,

34 thisModule .createData (’error’ , ’’) } ,

35 graph <− thisModule .graph

36)

37 }

The resulting output is a GraphML model (conforming to the GraphML meta-

model) which is transformed in the corresponding textual XML file (with the GraphML

syntax) using the ATL XML extractor.

The ATL environment includes an extractor which generates an XML textual file

corresponding to the XML model. GraphML2XML model- to-model transformation

and XML extractor are generic tools made in a previous project.

The scheme of the whole model-driven chain is presented in figure 3.

Fig. 3. AM3 to viewer bridge

DirectedRelationship visualization For visualization we have realized a simple tool

using Prefuse to display the corresponding dependencies. Lacking nodes are in red. See

figure 4 for a sample.

Fig. 4. A sample of our dependencies visualizer

P
re

lim
in
ar

y
V
er

si
on

In the next section we demonstrate the easyness of this model-driven approach to

interoperate tools by displaying DepAn data in the SIV tool through our cartography

tools and concepts.

4 Model-Driven Interoperability of visualizations

As we have seen in previous section, any kind of dependency which could be modeled

as an AM3 DirectedRelationship type can then be passed to our visualization

tool. We will use this property to bridge our Cartography and some existing dependen-

cies visualization tools. As such an approach uses models and their advanced properties

in order to realize the corresponding gateways, it is called Model-Driven Interoperabil-

ity (MDI).

4.1 What is Model-Driven Interoperability?

MDI is the third trend of concepts and solutions emerging from Model-Driven Engi-

neering (MDE) as presented in section 3:

1. The first applications of MDE focused on code generation. The goal was to obtain

final software artefact from design models.

2. A second generation of MDE techniques was concern by reverse engineering of

existing systems. The purpose was to build models from software artefacts in order

to use model-driven approaches on them.

3. A third trend is upcoming in MDE which uses model-driven approaches to build

gateways between existing software applications. As exposed by Bézivin et alii [5],

it relies on model transformations to transfer informations from a technical world

into a distinct other world. MDE ability of tooling a given domain is used to write

tools which:

– extract models of the emitter data

– transform them in receiver equivalent models

– translate received models in the receiver kind of data

A strong impact of Model-Driven Interoperability is the fact that it builds tools

which automate data transfers between the two technical distinct domain applications.

The bridges can be complex but their use is clear and could be easily integrated into the

graphical user interface of the interlinked applications.

We will use this approach in order to realize bridges between existing dependencies

visualization tools with the AM3 metamodel as a central root. A first gateway will

enable export of our dependencies to the SIV tool. A second set of tools will be made

in order to import DepAn visualizer data into our AM3 dependencies tool. The interest

of using AM3 as a central root will then be demonstrated by easily realizing a complete

chain between DepAn and SIV tools using previous bridges together.

P
re

lim
in
ar

y
V
er

si
on

4.2 Display our data into an existing tool: Cartography to SIV

The goal is to export our Cartography dependencies to the SIV tool in order to take

advantage of its existing visualization features [7].

As SIV tool use GraphML XML syntax as input, the chain of transformations be-

tween Cartography data and SIV tool is designed like the one which export AM3 rela-

tionships to our generic visualization tool (see section 3.2). The only change is the first

step which is now realized by the AM3toSIV transformation: it takes an AM3 (compat-

ible) model as input and generates a SIV model which is a dedicated GraphML model

with SIV specific tags (k0, k1, k2, k3).

The scheme of this Model-driven chain is the same as the one presented in figure 3

The resulting GraphML (with SIV data) is transformed in a XML model and then

extracted in the corresponding XML textual file which is opened and displayed by SIV

application. Figure 5 is a sample of our plug-ins dependencies displayed in SIV viewer.

Fig. 5. Cartography plug-ins dependencies in SIV

Using MDI we have connected our Cartography data to the SIV external tool.

4.3 Import data from an existing tool: DepAn to AM3

The goal is to build a bridge from an existing dependencies tool to our generic AM3

metamodel and tools. The choosen DepAn tool could then be taken as input of our

dependencies visualization tool.

The DepAn is a direct manipulation tool for visualization, analysis and refactoring

of dependencies in the Eclipse environment (see figure 6 for a sample of its viewer).

It includes a dependency discovery tool for Java applications which parse the .java

files of a given directory (and all Java packages sub-directories) and generates the cor-

responding dependencies informations. The tool has its own XML file format with the

.dpang extension.

We have to get data from DepAn files in order to visualize them. To reach this

goal we built the Model-driven process below (similar to previous export chains but

inverted):

P
re

lim
in
ar

y
V
er

si
on

Fig. 6. A DepAn view of its javascript library

1. design the metamodel of DepAn tool domain

2. obtain a XML model from the DepAn XML file (.dpang) by XML injection

3. transform this XML model to the corresponding DepAn model (conforming to the

DepAn metamodel we designed)

4. transform the DepAn model into an AM3 model

5. display the AM3 model in our visualization tool

The scheme of this Model-driven chain is presented in figure 7.

Fig. 7. DepAn to AM3 bridge

DepAn metamodel We design the DepAn metamodel corresponding to the DepAn

tool file structure using Ecore tools of the Eclipse Modeling Platform3.

XML extraction The ATL XML extractor produces a XML model (.xmi) of the

original .dpang file.

From XML model to DepAn model Next is an excerpt of the XML2DepAn trans-

formation written in ATL to translate XML model of an input .dpang file into the

corresponding DepAn model:

3 Cf. http://www.eclipse.org/modeling/

P
re

lim
in
ar

y
V
er

si
on

1 r u l e Root {
2 from

3 r : XML !Root (

4 r .name = ’graph-model’

5)

6

7 to

8 root : DepAn !Root (

9 elements <− Sequence{r .getChildrenByName (

10 ’java-type’)}
11 −>union (Sequence{r .getChildrenByName (

12 ’java-method’) })

13 [. . .]

14)

15 }
16

17 r u l e JavaType {
18 from

19 e : XML !Element (e .name = ’java-type’)

20 using {
21 n : S t r i n g = e .getStringAttrValue (’name’) ;

22 id : S t r i n g = ’java:’ + n ;

23 }
24 to

25 jt : DepAn !JavaType (

26 name <− n

27)

28 do {
29 thisModule .map <− thisModule .map−>

30 including (id , e) ;

31 }
32 }

From strict DepAn model to AM3 model Then we need to rely DepAn model ele-

ments to AM3 corresponding types.

As AM3 metamodel is a generic one, its types are mainly abstract. In order to pro-

cess the DepAn tool data as AM3 elements, we defined a DepAnAM3 metamodel

which types inherits from AM3 ones. Our goal is to display dependencies so we only

use AM3 identifiers as data into the types (here JavaType inherits from Entity and

uses its id and identifier attributes to store its name).

The transformation from DepAn effective model to the AM3 compatible model is a

simple one-to-one translation.

Visualization The resulting AM3 compatible model can be process in our visualization

tool chain. Figure 8 is a sample of the DepAn javascript library dependencies displayed

in our viewer.

Fig. 8. DepAn dependencies in AM3 visualizer

P
re

lim
in
ar

y
V
er

si
on

4.4 MDI chain between existing tools: DepAn to SIV

We have presented an export chain from AM3 data to SIV visualization tool and an

extraction chain from DepAn data into AM3 model. The last step is to link together the

second one to the first of these two chains to get a effective chain able to display depAn

data into SIV. As all the transformations are written, the linking is only an additional

call of the two previous chains.

The scheme of this Model-driven chain is presented in figure 9

Fig. 9. Cartography to SIV bridge

Using the DepAn-to-AM3 chain and then the AM3-to-SIV chain as-is, we can dis-

play data from the DepAn analysis tool into the SIV tool. Figure 10 is a sample of the

DepAn javascript library dependencies displayed in SIV viewer.

Fig. 10. DepAn dependencies in SIV

We have seen the ability of Model-Driven Engineering to deal with many problems

and requirements like interoperability and genericity in a simpler way than previous

paradigms. The new flexibility of the MDI approach answers some of the issues a tech-

nical domain like visualization may encounter. Given this, it opens interesting paths the

research on dependencies visualization may now explore.

5 Discussion - separation of concerns

Visualization can help managing dependencies but existing viewers are dedicated to

a specific domain (e.g. Java classes). Our approach proposes Model-Driven Interoper-

ability (MDI) to transfer data from one tool to another one with further features. As the

central metamodel is generic, this approach is domain-agnostic and gives an access to

tools which have been design originally for different concepts.

Previously, tools concerned separate domains and could not share any data. Each

approach was rewriting the visualization concepts others had explored because they

P
re

lim
in
ar

y
V
er

si
on

were not reusable. Using resources for that redoing work, the progresses were only

marginal.

Now we have a way to pass dependencies data to a visualizer which can be domain-

agnostic. Such an independent tool could make easier all visualization enhancements

and research relative to dependency problems however are the concerned domains.

Ways of presenting dependencies (both in hierarchical and flat forms) as well as user-

friendly navigation between them remain open subjects which could be investigated for

themselves without specific domains mind-focus.

6 Conclusion

We investigate in this paper a more flexible way for interconnecting visualization tools.

For this purpose, we propose a binding tools chain relying on the recent Model-Driven

Interoperability approach.

This paper brings a domain-agnostic solution which opens perspectives about a

generic approach of dependencies problem. Using MDI approach could drive to en-

larged experiments and sharing of knowledge about visualization specialized concepts.

Acknowledgements The present work is being supported by the CESAR European

ARTEMISJU project and the French ANR IDM++ project, and relies on the AM3 tool-

ing developed within the MODELPLEX European IST FP6 research project.

References

1. Code Analysis Plugin. http://cap.xore.de.

2. DEPendency vizualization and ANalysis tool. http://code.google.com/p/google-depan.

3. The Graph Exploration System. http://graphexploration.cond.org.

4. The GraphML File Format. http://graphml.graphdrawing.org.

5. J. Bézivin, H. Bruneliere, F. Jouault, and I. Kurtev. Model engineering support for tool

interoperability. In Proceedings of WiSME.

6. J. Dietrich, V. Yakovlev, C. McCartin, G. Jenson, and M. Duchrow. Cluster analysis of Java

dependency graphs. In Proceedings of the 4th ACM symposium on Software visualization,

pages 91–94. ACM, 2008.

7. D. Harel and I. Segall. Visualizing inter-dependencies between scenarios. In Proceedings of

the 4th ACM symposium on Software visualization, pages 145–153. ACM, 2008.

8. R. Lintern, J. Michaud, M. Storey, and X. Wu. Plugging-in visualization: experiences inte-

grating a visualization tool with Eclipse. In Proceedings of the 2003 ACM symposium on

Software visualization. ACM, 2003.

9. J. Malnati. X-ray-an eclipse plug-in for software visualization. Bachelor Project. Lugano

University, 2007.

10. R. Martin. OO design quality metrics. An analysis of dependencies, 1994.

11. R. Soley and OMG. Model Driven Architecture, 2000.

12. A. Telea and L. Voinea. An interactive reverse engineering environment for large-scale C++

code. In Proceedings of the 4th ACM symposium on Software visualization, pages 67–76.

ACM, 2008.

P
re

lim
in
ar

y
V
er

si
on

