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Abstract—1In this work, we study the minimum cost flow
allocation problem with varied survivability. Given a set of
demands and a capacitated network, the problem consists of
allocating each demand to a set of primary paths that carry
the flows realizing the demand volume in the normal operation
mode. To ensure survivability, bandwidth is allocated over a
disjoint set of backup links protecting the primary path. With
the varied survivability concept, only a varied portion of the
primary flow is guaranteed to be recovered in failure situations.
The recovery ratio is predefined for a given demand and denotes
the guaranteed quality of protection. We associate a unitary cost
for using the installed bandwidth in core links. Thus, the problem
provides a minimum cost solution for allocating the demands
and ensuring their survivability. The main contribution of this
paper is a new approximation algorithm using a primal-dual
approach. This approximation algorithm computes a solution that
is within a guaranteed factor of the optimal one and runs in time
polynomial in the problem size.

I. INTRODUCTION

Providing minimum cost solutions is a crucial objective
for many optimization tasks that are involved in the network
design process. Particularly, network engineers solicit flow
allocation solutions that induce minimum costs in terms of
bandwidth consumption. This cost is strictly related to the
capital expenditures spent at the capacity provisioning stage.
In this work, we address the problem of finding a minimum
cost flow allocation solution. Flow allocation refers to the
routing and bandwidth allocation problem for a given set
of demands over a capacitated network. Our approach is
an off-line optimization that assumes the knowledge of a
traffic demand matrix. This matrix defines the bandwidth
requirements between network nodes and is generally based
on statistical information. We provide support for the varied
survivability concept where the backup capacity enables to
recover a predefined portion of the primary traffic affected by
failures. The recovery ratio is predefined for a given demand
and denotes the guaranteed quality of protection.

In this paper, we provide a mathematical formulation for the
problem as a Linear Program (LP). We study the complexity
of the separation oracle and derive a new approximation
algorithm. We prove that the solution cost computed by our
approximation algorithm is within a guaranteed factor of the
optimal cost and that the algorithm runs in time polynomial in
the problem size. This paper is organized as the following. In
section II, we state the key elements of this work. We introduce

the problem formulation in section III. Then we study the
complexity of the problem and the relevant approaches in sec-
tion IV, emphasizing the complexity of the oracle subproblem.
Then, we give the approximation algorithm in section V. Fi-
nally, we present the numerical results in section VI, where we
evaluate the performance of our algorithm on a typical network
topology. We conclude in section VII with a brief summary of
the achievements and the open questions encountered in this

paper.
II. CONTEXT AND MOTIVATION

The flow allocation problem with varied survivability in-
cludes many key elements that make the corresponding op-
timization more challenging. In this section, we review the
different concepts involved in flow allocation and motivate
our approach.

The protection we provide in our work follows the varied
survivability concept used in [1]. The basic idea is to offer
different levels of protection for different customers while
still providing best-effort services. For instance, a service
classification can provide (i) guaranteed service quality under
normal network operating conditions, i.e. no failure situations,
(i) full guarantee under normal situations plus a reduced level
of service under failure situations and (iii) full guaranteed
service both under normal or failure situations. Technically,
we implement the varied survivability in our problem using a
varied protection ratio for each demand: the backup bandwidth
protecting the active path of the cycle is computed as a portion
of the active bandwidth, and this portion varies form 0% to
100%.

We use a general technique based on duality in LP in order
to develop an approximation algorithm for the MCost-MCF
problem. In essence, using duality, an optimization problem
‘P given in a particular form, called primal problem, can be
transformed to a related problem called its dual problem, so
that the optimal solutions to both problems are closely related.
Particularly, considering that P is a maximization problem, the
objective value of any feasible solution to the primal problem
is at most the objective value of any feasible solution of its
dual. Hence, when these solutions are equal then they are
optimal. Therefore, by comparing the objective values of the
primal and dual formulations, we can measure the closeness
of a solution (for the primal problem) to the optimal one. The



y set of vertices

& set of undirected links
D set of demands
K
C

d set of cycles realizing demand d
e capacity of link e
hq volume of demand d
Iy partial protection ratio for demand d
4 unitary cost for allocating primary flow over link e
b unitary cost for allocating backup flow over link e

as 4.~ binary constant that equals 1 if link e belongs
to the primary path of cycle k; 0, otherwise

o, ., ~ binary constant that equals 1 if link e belongs
to the backup path of cycle k; 0, otherwise
fak flow allocated to cycle k realizing demand d
TABLE I

BASIC PROBLEM NOTATION

approach we present in this paper is particularly innovative
in the sense that it provides fast and efficient solutions to the
minimum cost problem:

o for any predefined 0 < p < 1, our algorithm computes a
solution that is within a p/2 factor of being optimal

o and our algorithm runs in time polynomial in the network
size and the number of demands.

Our contribution is even more relevant since solving directly
the initial problem is time consuming in practice and the best
practice methods does not perform better (more details are
provided in section VI)

III. MATHEMATICAL FORMULATION

In the following, we consider a capacitated network repre-
sented by an undirected graph G = (V,&). All the notation
is described in Table I. Using this notation, we provide a
mathematical formulation for the flow allocation problem,
referred to as MCost. This formulation is a Linear Program
(LP) described in LP 1. Note that in our approach, we use
the cycle formulation, where one cycle refers to a pair of
disjoint paths. Using disjoint paths ensures the resistance to
single link failures. As we allow splittable flows, the demand
volume for one demand can be allocated to more than one
cycle. Note also that for each unit of primary flow allocated
on the primary path of one cycle realizing demand d, a 94
fraction is allocated on the corresponding backup set of links.
Particularly, the objective in (1) consists of minimizing the
total cost of allocating the demands. It takes into account
the two unitary costs of allocating bandwidth for primary and
backup flows. Moreover, constraint (2) ensures that the total
demand volume for each demand d is allocated on cycles
k € Kg4, while constraint (3) ensures that the total flow on
link e does not exceed its capacity.

Now let us proceed to a basic reformulation of MCost
in order to obtain an elementary problem similar to the
problems reported in [2]. The MCost problem formulated in
LP 1 consists of minimizing the cost of allocating all the
demands subject to capacity constraints. Thus, MCost can
be reformulated such that to maximize the portion of allo-
cated demands subject to capacity constraints and a maximal

LP 1 MCost problem

Minmize Z Z Z(aﬁdkfé’-i-agdkfsﬁd)fdk ()

deD ke  e€&

Subject to:
Z fax > hq, VYdeD 2)
ke,
Z Z (e + Al gVa) far < Cey Ve €& (3
deD keKy
far >0, VdeD,Vkeky )

cost bound, and then finding the minimum cost bound that
enables to allocate all the demands (details are provided in
section V-C). We note that the MCost formulation in LP 1 is
a generalization of the minimum cost multicommodity flow
problem. Now, we provide in LP 2 an equivalent maximum
concurrent flow formulation with a cost bound. This will be
referred to as MCost-MCF. In LP 2, constraint (6) ensures
that a minimum portion of all demands is allocated to the
network: this minimum value is denoted by A and is subject
to maximization in the objective (5). Moreover, constraint
(8) denotes the maximum cost, denoted by S, that bounds
the solution of allocating a portion of the demands. Finally,
constraint (7) denotes the capacity limit on each link.

LP 2 MCost-MCF problem

Maximize A\ 3)
Subject to:
> far = Aha, VdED (©6)
kelq
Z Z (@ + algp¥a) fae < Ce, Ve €€  (T)
deD keky
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In order to design an approximation problem, let us begin
by introducing the dual of the MCost-MCF problem in LP 3.
In the dual problem, 74, w. and ¢ denote the dual variables
associated with constraints (6), (7) and (8) respectively in the
primal problem. In order to follow the same approach adapted
from [2], we consider that the generalized weight of one cycle
is given by the left-hand-side expression of constraint (12).
Then, we need to find an oracle that computes the minimum
weight cycle. Unfortunately, this appears as a difficult task, and
the related problem deserves a loser look. In the following, we
start by reviewing the relevant approaches to the MCost-MCF
problem, then we point out the complexity of the oracle in



order derive our approximation.

LP 3 Mcost-MCF: dual problem

Minmize ¢S+  Cow, (10)
ecf
Subject to:
> hama > 1 (11)
deD
Z i (we + E20) + Aggrawe + E20) = Ta,
ec&
Vd € D,Vk € K4 (12)
we >0, Veef& (13)
$»>0 (14)

IV. COMPLEXITY STUDY AND ORACLE APPROXIMATION

A large set of optimization tools can be used in order to pro-
vide efficient solutions to the MCost problem. Notably, a sim-
ilar problem is studied in [1] in the context of network traffic
engineering problem for tunnel provisioning. The authors pro-
vide a cycle formulation that enables to easily model the varied
protection level. The allocation is constrained by bandwidth
and tunnel constraints. In order to provide integral solutions
to the problem, the authors use two heuristics. The first one
consists of solving continuous relaxations of the problem ans
then successively rounding the variables to the nearest integer.
The second one uses a stochastic meta-heuristic approach by
extending the simulated allocation approach introduced in [3].
Another approach consists naturally in adapting the column
generation approach as in [4], where no polynomial oracle was
found. However, this approach requires maintaining a large
set of candidate cycles and thus suffers from computational
complexity (as we see in the numerical results in section VI).
Therefore, the complexity of the problem is somehow related
to the complexity of the oracle. Then, let us investigate the
complexity of the oracle in order to get deeper insights on the
related problem.

A. Oracle Discussion

1) General Formulation: In order to find a most violated
constraint, an efficient subroutine, called oracle, computes
the cycle that minimizes the left-hand-side expression of
constraint (12) for a given demand d. This is equivalent to
finding the minimum weight cycle realizing demand d under
the weight function w? = (w. + ££¢) for the links in the
primary path and w? = J4(w. + ¢) for the links in the
backup path. Note that link costs &7 and & are related to
the capital expenditures in the capacity provisioning phase.
Moreover, our problem supports cost differentiation: different
unitary costs can be chosen for bandwidth units whether it is
used for a primary or backup flow. Typically, we choose the
cost for backup bandwidth to be lower as this bandwidth can

be used to carry Best-Effort preemptible traffic. Thus, at his
level, we make the assumption that (2 > ¢b Ve € &. Since
0 <94 <1, we get w? < wS,Ve € £. As we will see in the
following study, this assumption plays an important role in the
oracle design.

2) Related Work: A similar problem that consists of finding
a pair of disjoint paths with minimum weight has been largely
investigated recently. In [5], the authors present a general
review of the relevant work. They summarize in the table in
section 2 the computational complexity of various problems
related to finding a pair of disjoint paths. Particularly, the
problem of computing a minimum weight disjoint path pair
with different weights for the primary and backup paths,
called dual weights, is studied in [6] and proved to be A P-
complete. A special case is to have ordered dual weights,
e.g. wP > wb Ve € €. This problem of ordered dual weights
is studied in [7] and also proved to be N P-complete. Even
when weights are uniformly ordered, i.e. there exists a constant
0 < x < 1 such that for all links we have w? = Kw?, Ve € &,
the problem is still A/ P-complete. For directed graphs, the
proof is provided in [8], while the proof for undirected graphs
is provided in [5].

3) Efficient Algorithms: Given the N P-completeness of the
above presented problems, the idea is to find a procedure
that efficiently computes a good solution. However, when
reviewing the work oriented in this direction, we realize that
no existing approach suits our needs for the oracle. In [6],
an algorithm with a worst-case guarantee is provided for the
arbitrary dual weights problem. The idea is to average the
weights on the links and then compute a disjoint pair of
paths using the averages weights. Particularly, the algorithm
computes a solution that is within a guaranteed factor of
the optimal one. The factor depends on the maximal ratio
between w? and w?. Take for instance, the simple case where
0 <Yy <1,¥d € D and & = fZ,VG € &, then this ratio
depends on 1/, and the approximation factor is large for
small 4 values. Thus, this algorithm is not suitable as an
oracle. The authors of [9] consider the same problem and
provide an approximation algorithm based on a sophisticated
primal-dual approach. Particularly, they formulate the problem
as an integer linear program. Then, they relax the integrality
and generate a lower bound of the optimal solution. Hence, the
algorithm consists of tightening the lower and upper bounds
for the problem and evaluating the guaranteed approximation
ratio. The authors claim that their algorithm runs fast and the
quality of the obtained approximation is less 5%. However, no
guarantee for the computation time, nor the number of itera-
tions, is given. Therefore, this approach is not fully suitable
for our guaranteed approximation with a desired polynomial
running time.

4) Oracle Approximation: After this discussion, we con-
clude that finding a good oracle that computes a minimum
weight pair of paths with dual ordered weights is not an
easy task. Therefore, we introduce a new approximation to
the oracle with dual ordered weights. This approximation
achieves a guaranteed optimality factor of 2 and runs in time



polynomial in the problem size. However, we note that this
approximation will induce a structural modification on the
basic problem formulation. Let us start by describing the
approximation. Our approach is based on the famous algorithm
in [10]. Algorithm 1 begins by computing a shortest path form
source to destination using weights w?, Ve € £. This will be
the primary path of the output. Then, we construct a residual
graph: Each link e on the computed shortest path is replaced by
a directed link oriented toward the source and a zero weight.
Each other link e is replaced by two directed links in opposite
directions with the same weight w®. On the residual directed
graph, we compute a shortest path denoted by ¢’ form source
to destination. Then, going back to the original graph, we
remove the interlacing links between ¢’ and the primary path
and obtain the backup set of links g¢. Finally, the weight of
the set of links in (p, ¢) is at most two times the weight of
the minimum weight cycle realizing demand d. The formal
approximation result is provided in Theorem 1.
Theorem 1: Algorithm 1 computes a 2-approximation for
the minimum weight cycle problem with ordered dual weights.
Proof: Let k* denote the minimum cycle realizing
demand d and let (i~ be its weight, given by (x~ =
ece b + abywl = wpe + wye, Where wye (re-
spectively wp+) denotes the weight of the primary path (re-
spectively, the backup path) of the minimum weight cycle.
According to Algorithm 1, p is the minimum weight path
realizing demand d, with respect to weights w?. Therefore,
the weight of path p, denoted by w,,, verifies w, < wp= < Ci=.
Moreover, considering the algorithm in [10]: the aim of the
second step is to compute a minimum cost path on the residual
graph (obtained by removing the forward edges on path p).
This is a minimum cost flow problem and any cycle is a
feasible solution to this problem. Particularly, k* is a feasible
solution, which gives us wy < > oy, + aly.)wh <
Y ece OB wP + al,.-w? (using the assumption that w® <
wP, Ve € £). Hence wy < wy < (g, which finally gives us
that the weight (i, of k = (p, ¢) verifies (i = wp+wq < 2(-.
|
However, we note that the output of Algorithm 1 is not a
cycle! In fact, when pruning the interlacing links, we get a
set of backup links and not a disjoint backup path. Still, this
set of backup links ensures the survivability in single failure
situations. Thus, we consider that we use obtain a generalized
form of protection and we call the pair of primary path and the
set of disjoint backup links a survivable structure or simply
a structure. To some extent, the structure and the generalized
protection concept were used in a similar approach to our
work, introduced in [11]. The approach formulates a back-
tracking concept for on-line routing of bandwidth guaranteed
tunnels i.e. for a single commodity problem. Backtracking
enables to bound the protected entity scope. Particularly, in the
no backtracking case, the backup path must originate at the
node at which the failed link originates. This case represents
true local restoration. In the bounded backtracking case, the
backup path can originate at a node on the primary path up to
a predefined number of hops away from the node that owns

input : graph G = (V,€), demand d = (s4,tq),

{wP, Ve € £} and {w?, Ve € £}
output : approximate minimum weight structure k € kg4
assume : wP > Wb Ve &

foreach e € £ do assign a weight w?;
p «— shortest path realizing demand d;

foreach e € p do
Lreplace e with a directed link oriented toward the source

and let the weight of this link be zero;
foreach e € £ — p do

replace e with two directed links in opposite directions
Land let the weight of these links be wé’;

q' < shortest path realizing demand d in the modified
directed graph;

q < {set of links in the original graph that are in ¢’ and
not in p};

k=P, 9);

Algorithm 1: Oracle Approximation

~
—CQ—0
Primary path U

— = = Set of backup links

(a) Primary path and disjoint set of
backup links

(b) Two link-disjoint paths

Fig. 1. Examples of survivable structures

the link. Moreover, in the infinite backtracking case, unlimited
backtracking is allowed and therefore, in the worst case may
result in backup paths that originate at the source node. The
end-to-end restoration can be considered a special case of
this where the maximum backtracking allowed is equal to the
length of the primary path. The last case is very similar to the
generalized approach we introduce in our work. The authors
in [11] show that joint optimization of primary and backup
paths is NP-hard in all cases and they consider algorithms
that compute primary and backup paths in two separate steps.
In the following we formalize the definition of the output
structure of the oracle approximation.

B. Structures and Cycles

We have noted above that a structure obtained by Algo-
rithm 1 consists of a primary path going from source to
destination and a set of backup links that are disjoint from
the primary path and ensure the survivability. More formally,
a structure k realizing demand d = (sq4,%q) is a set of links
that consists of a primary path p from s; to ¢; and a set of
backup links b the are disjoint from p. For each single failure
situation the set (p U b) contains a path from s4 to ¢4. Thus,
in a structure, backup links together with the primary links
that are not failing are required to provide connectivity from
source to destination in failure situations.



Mathematically, we can define a structure using basic proper-
ties of graph theory [12]. Recall that an (s — ¢) cut, denoted
by C(s—¢), in graph G = (V,€&) is a partition of the set of
vertices V' into disjoint sets S and 7 = V — S, such that
s € S and t € 7. The links of the cut are those that have
precisely one endpoint in both V and 7. Let us denote the set
of links of the cut by &, _, . Therefore, a structure & realizing
demand d = (s4,t4) verifies that there are more than 2 links
belonging to k N &, . for any (sa,ta)-cut C(s,—¢,). In
Figure 1, we provide two examples that enable to illustrate
the new concept of structures. Figure 1(a) is a general case of
a structure obtained by the oracle approximation. However, in
some cases and depending on the output of the approximation
algorithm, a structure consists of two disjoint paths, as in
Figure 1(b). Thus, we consider that the cycle formulation is a
special case of the structure formulation.

V. APPROXIMATION ALGORITHM

Now that we have an approximate oracle, we continue
the design of the global approximation to the MCost-MCF
problem by adapting the approach introduced in [13].

A. Algorithm Presentation

Algorithm 2 computes an approximation to the MCost-MCF
problem. This algorithm works as follows: we start with initial
link weights w, = C%,Ve € £ and ¢ = %. The quantity
0 depends on the approximation guarantee (particularly on a
parameter e introduced later) and will be stated later in the
algorithm analysis section. The algorithm proceeds in phases.
Each phase is composed of D iterations. In iteration d, we
allocate h4 units of flow for demand d. This flow is allocated in
a sequence of steps. In each step, a cycle k* (realizing demand
d) that minimizes the left-hand-side expression of constraint
(12) should be computed. However, as we have shown in
the oracle study we can compute an approximate structure
denoted by k. Now, we will compute the flow we allocate to
this structure. Considering the varied survivability concept, k
consists of a primary path p and a backup set of links b with
bottleneck capacities denoted by ¢, and ¢, respectively. The
bottleneck capacity of structure k is given by the minimum of
(i) ¢p, and (ii) ¢, /4. This is due to the fact that we allocate a
¥4 fraction of bandwidth on the backup links for each 1 unit
of flow on the primary path. Therefore, the maximum amount
of flow allocated to structure k in this step is denoted by c
and is the minimum of:

1) the bottleneck capacity of structure k given by

min{cy, cp/Vq},

2) the remaining amount of flow that need to be allocated

for demand d to make a total of hgy.

However, we should ensure that the cost of allocating ¢ units
of flow to structure k£ does not exceed S, otherwise the flow
should be scaled appropriately. Particularly, let us denote by
sk the cost of allocating 1 unit of flow to structure k. Recall
that this is equivalent to allocating 1 unit to the primary path
and a 1, fraction of unit to the backup links. Thus, s; =
>ece(0l &8 + by, £89,4). Similarly, the cost of allocating

c units of flow to structure k is given by csy. Therefore, we
ensure that:
S

1) if csp > S, we scale ¢ according to ¢ = cos

2) if else, the value of ¢ remains unchanged.

Finally, we get a value of c that denotes the amount of flow
to be allocated to the structure & computed in this step. The
primal variables are updated correspondingly and the dual
weights are updated as follows (using the parameter e that
will determine the approximation ratio):

1) for each e € p, we = we(1 +€F),

2) for each e € b, w, = w (1 + e%),

3) and ¢ = (1 + %), ‘
The algorithm terminates when the dual objective function
value becomes bigger than one. At termination, dual feasibility
constraints will be satisfied. However, link capacity constraints
in the primal solution will be violated, since we use the
original (and not the residual) link capacities at each stage.
The full details are provided in the following section, where
we study the global performance of the algorithm and the
corresponding approximation ratio.

input : Capacitated graph G, set of demands D, cost
bound S and €
output : \= =1 S =3

10831-;.5(%)
) . _d.
we=¢g,Ve€l; ¢=g;

logi;.(3)’
initialize: ¢ = 0;
while 2 < 1 do
ford=1,...,D do
7« hg;
while 2 < 1 and r > 0 do
k = (p,b) < structure realizing demand d given by
Algorithm 1;
¢ «— min{r, ¢y, cp/Va};
Sk Zeeg(agdkgg + by, E004;
if csp > S then ¢ — i

s = 0;

S < S+ CSk;

Ve € p:iwe — we(l+e5);
Veeb:webwe(l—keﬁc—f);
¢ — o1+ eF);
Lr—1r—c¢

|t —t+1;

Algorithm 2: MCost-MCF approximation algorithm

B. Algorithm Analysis

Let us denote by w,(i,d,j — 1) the weight of link e and
¢(i,d,j — 1) the value of ¢ at the beginning of step j of
iteration d in phase 4. Let k*(4,d, j — 1) denote the minimum
weight cycle in Ky in step j of iteration d of phase ¢, using
weights we(i,d,j — 1), and let Cy-(iq,5)(4,d,j — 1) be its
weight. We know that the weight of the computed structure
Cr(i,d,5) (4, d,j — 1) does not exceed 2(«(;,q,5)(4,d,j —1). Let
also Q(i,d, j) be the objective of the dual problem LP 3 at
the end of the iteration. Assuming that there are J = J(i,d)



steps executes at iteration d of phase 4, let us consider that
Q(i) = (i, D, J) and T(i) = 37, haGe- (i, (i, D), where
Ci+(i,d) (i, D) denotes the weight of the minimum weight
cycles (computed originally with respect to w,(i,d—1, J) and
¢(i,d — 1,.J)) at the end of phase i. Then, the dual problem
is an assignment of weights w, to links e € £ and a scalar ¢,
which we view as a weight associated with a pseudo-link of

capacity S, such that % is minimized. Moreover, the optimal

dual objective is given by ) := min; ?8 In the algorithm

analysis, we assume that ¢ > 1 but we shall remove this
assumption later after.
We start by computing the ratio between the optimal dual
objective 1) and the primal objective obtained at the end of
the algorithm. Knowing that we allocate %4 units of flow for
each demand d in each phase, then the primal objective is
given by t — 1, where t denotes the total number of phases.
Lemma 1 gives the corresponding intermediate result. Note
that this primal solution does not necessarily correspond to
a feasible solution, and thus need to be scaled properly in
order to become feasible. Therefore, Lemma 2 and Lemma 3
give the proper scaling that yields a feasible solution to the
primal problem and the corresponding cost. For clarity, the
full mathematical proof is left for the Appendix. Hereafter,
we provide the main results of the algorithm analysis.
Lemma 1: At the end of Algorithm 2, the ratio between

the optimal dual objective and the number of phases verifies
Y 2e
=1 = (1-2¢)In 575

Lemma 2: At the end of Algorithm 2, A = —t=L__ yields

10g1+e(%)

a feasible primal solution.

Lemma 3: At the end of Algorithm 2, § = == is the
08115
cost of the feasible primal solution. .
Theorem 2: Assuming that 0 < p < 1, € = 1_2‘)§ and

0= (f_—gle)’l/ €, Algorithm 2 computes a p/2-approximation
to the MCost-MCF problem in time O((2D logD + E +

1) [%loglﬂ%-‘
to compute a minimum weight structure.

The running time for computing a minimum weight structure
as in Algorithm 1 is dominated by two minimum weight path
computation that can be performed in O(F + VlogV) [14].

mes), where T, is the time required

C. Finding the Minimum Cost Solution

With a p/2-approximation to the MCost-MCF problem,
we can obtain a p/2-approximation to the MCost problem
introduced in LP 1. For this purpose, we can use an efficient
search method such as binary search to find the smallest
value of S for which MCost-MCF has a solution of \ > 1.
Furthermore, the binary search can be improved by using an
interpolation search as in [15]. This improvement consists of
estimating the next value using a linear interpolation as in the
following:

e if MCost-MCF with a bound S returns a value \ >1,

then the final cost bound is at most S/ 5\;
o if MCost-MCF with a bound S returns a value A <1,
then the final cost bound is at least S/\.

10000

—6— cost bound
—— solution cost
9000
8000+
7000
60001 2 3 4 5 6

Binary search step

Fig. 2. Cost evolution

1 2 3 4 5 6
Binary search step

Fig. 3. Objective of MCost-MCF

This interpolated search enables to quickly converge to the
smallest value of S for which MCost-MCF has a solution
of A > 1. This value is a p/2-approximation to the MCost
problem. Note finally that a simple upper bound for the
solution cost, given for instance by ) .. £PC,, can be used
to start the binary search.

VI. NUMERICAL RESULTS

We present a typical numerical result corresponding to the
KL topology [9]. KL is a 15-node 28-link topology. We
associate a capacity of 200 bandwidth units with each link and
consider that demands are defined between each node pair of
the network, each having have a volume of 10 bandwidth units.
We associate a unitary cost of 2 for the links in the primary
path and 1 for the links in the backup path. For this typical
simulation, the binary search ends in 6 steps. Note that we start
with the simple upper cost bound as indicated in section V-
C. In Figure 2, we evaluate the cost of the solution for the
MCost-MCF problem throughout the binary search steps. Let
us analyze simultaneously Figure 3 that gives the value of A
(the objective of the MCost-MCF problem) during the binary
search process. At the first two steps, the cost bound is very
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loose, and the value of \ is around 1.15. Then, using the linear
interpolation we start strengthening the bound in order to make
A converge toward 1. Thus, in the third step, the cost of the
solution goes down from 7500 to 6500, while A is still around
1.15. This is due to the fact that the solution of the problem
is not unique and two allocations of the same bandwidth
volume can lead to different costs. However continuing the
interpolated binary search, we obtain two steps further (step
5) a solution with X around 1.01 and a cost bound of 6500. We
note that at this level, smaller reductions in the cost bound has
bigger impact on the value of . Finally at the sixth step, the
desired accuracy is reached for a cost of 6300 and A around
1.0001.

Finally, in Figure 4, we assess the time performance of the
algorithm. We provide for each binary step the number of
phases, and the total time spent in the algorithm. We can see
that the total number of phases in each run of the algorithm
decreases with the steps. This is due to the fact that A is
decreasing and less flow is allocated, then a smaller number
of phases is needed. Similarly, the running time is decreasing
with the binary steps. An important remark is that the total
running time (the sum for the six steps) is very competitive
with the running time for the column generation approach. A
complete study and further comparison is provided in [16].

VII. CONCLUSION

The advent of Next Generation Internet (NGI) networks
has launched many services related to survivability. Therefore,
the need for efficient algorithmic tools that enable network
engineers to implement their provisioning strategies is be-
coming urgent. In this work we have designed an efficient
algorithm for the flow allocation problem. Our problem takes
into account varied survivability levels in terms of guaranteed
protection and enables to minimize the network costs. An
extension of this work encompasses multiple failure surviv-
ability is reported in [16]. Moreover, detailed comparison with
the best practice methods, especially with column generation,
is provided in [16]. Future work will include rounding the

fractional solution to get integral flows and comparing the
results with stochastic meta-heuristics.

APPENDIX I
ANALYSIS OF ALGORITHM 2

In the following, we highlight the basic steps in the algo-
rithm analysis. In [16] a complete version is provided.

A. Proof of Lemma 1

As we have noted, Algorithm 2 proceeds in phases: each
phase is composed of D iterations. In iteration ¢, we allocate
hg units of flow of demand d and the flow is allocated in a
sequence of steps. Using the notation introduced in section V-
B, we have:

Oi,d, j) = ¢(i,d, ))S + Y Cewe (i, d, j)

ec&
=¢(i,d,j — 1)(S + ecsp) + Y Cewe(i,d,j — 1)
ec&
tee Y abyweliyd, j — 1)+ abyPawe (i, d, j — 1),

ecf

Using the fact that s, = >, (a2, €8 + aly,,£094), we get:
Q(Za da]) = Q(Zv d?] - 1) + 6ch(i,d,j)(ia da] - 1)

< Q(Zv du] - 1) + QECCk*(i,d,j) (Za daj - 1)
Assume that there are J = J(i,d) steps executed in it-
eration d in phase i. Adding the inequalities in (15) for
demand d of phase i and noting that (j«(; a5 (7, d, j — 1) <
Crx(4,d,5) (1, d, J), we get

Q(i,d, J) < Qi,d,0) + 2€hqCi=(5,a,5) (4, d, J).

15)

Adding the above inequalities over all demands in phase ¢,
and using the fact that weights are monotonically increasing
over iterations, we get

Qi) < Qi — 1) + 2e0().

Q) > 1), we have

where Q(i, D) = (3). Since ng)

Q-1
Qi) < (172)
1— 2¢
¥
and with ©Q(0) = 6(E + 1), we have for ¢ > 1
0(FE+1
() < JE4D
(=)
S(E+1) 2 4
1-— % (1+ Y — 26)
< (F —261)62;(5:)
T
LOE4D) 2y
- 1-—2¢

where we assume that ¢ > 1 in the last inequality. At phase
t, we get Q(t) > 1 and the procedure stops. Therefore,

0(E+1) ei?it:zle)>

1<) <

— 2¢



which implies

P < 2¢
t—17 (1-2¢)ln

1—-2¢
0(E+1)

B. Proof of Lemma 2

Considering edge e and associated weight w.. The value of
we 1s updated when flow is allocated on edge e. Particularly,
this is done when e belongs to the active or backup set of links
of a chosen structure. In either cases, w, is updated by a factor
of at most 1+e¢. Let the sequence of flow allocation that require
an update of w, be Ay, Ao, ..., A, Let 22:1 A; = kC,, ie.
the total flow allocated to edge e exceeds its capacity by a
factor of k. Scaling t—1 (the allocated portion at the end of the
algorithm) by « lead to a feasible solution (satisfying capacity
constraints). Since the algorithm terminates when Q(t) > 1,
we have Q(t —1,D,J) < 1 and Q(¢, D) < 1 + €. Therefore,
we have Cow,(t —1,D,J) < 1 and

!
) A;
(t—1,D,J) = — 1+e—).
el =g e
Knowing that (14+az) > (1+2)%,Vx > 0andany 0 < a < 1,
we get

l N
1> Cowe(t—1,D,J) > o]J1+e% =5(1+¢)"
=1

Therefore x < logHE% and scaling ¢ — 1 by & gives the result
in the lemma. For scaling the computed value of the total cost
s, the proof follows the same sketch as the one provided for
A. Note that ¢(t — 1,D,J) < 1/S, ¢(1,0,0) = §/S and
that every time we allocate a flow whose total cost is S, we
increase ¢ by a factor of 1+ e.

C. Proof of Theorem 2

Let 1 be the ratio of the values of the optimum dual and

primal solutions. Then, n verifies

P 1

n < mlogwe(g)-

By substituting the bound value given by Lemmal, we get

2e 1

n < “2¢ logl 6(7)
(1 —2¢)In 6(1E-|2—1) tes
For = (££1)~1/¢, we obtain
2
< <2(1—2¢)75.

TS0 o= 20 (i + o

ol

Therefore, choosing ¢ = 1_2” will lead to a p/2-
approximation algorithm with 0 < p < 1.

By weak duality we have

v
—1

1
L<n< —7logi(3)

~

hence the number of phases, ¢, is strictly less than 1 +
¢ logy (%) which implies that t = [% log, . %—‘
ing the analysis provided in [13], we can scale the capacities
so that ¢» > 1 and the total number of phases is 7" log D (refer
to [16] for more details). Moreover, in each step, except the
last step in an iteration, we increase either the weight of some
edge or the value of ¢ by a factor 1 4 . Hence, the weights
of the edges and ¢ can be increased by a factor 1 + ¢ at most

log, . 1? times. Therefore the number of steps exceeds the
number of iterations by at most (E + 1) k log, .. F_—*le—‘

. Follow-
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