
HAL Id: hal-00534353
https://hal.science/hal-00534353v1

Submitted on 9 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Inter-DSL Coordination Support by Combining
Megamodeling and Model Weaving

Frédéric Jouault, Bert Vanhooff, Hugo Bruneliere, Guillaume Doux, Yolande
Berbers, Jean Bézivin

To cite this version:
Frédéric Jouault, Bert Vanhooff, Hugo Bruneliere, Guillaume Doux, Yolande Berbers, et al.. Inter-
DSL Coordination Support by Combining Megamodeling and Model Weaving. ACM 25th Symposium
on Applied Computing (SAC 2010), Track ”Coordination Models, Languages and Applications”, Mar
2010, Sierre, Switzerland. pp.2011–2018, �10.1145/1774088.1774511�. �hal-00534353�

https://hal.science/hal-00534353v1
https://hal.archives-ouvertes.fr

Inter-DSL Coordination Support
by Combining Megamodeling and Model Weaving

Frédéric Jouault1, Bert Vanhooff2, Hugo Brunelière1, Guillaume Doux1,
Yolande Berbers2, Jean Bézivin1

1 AtlanMod, INRIA RBA Center & EMN
4 rue Alfred Kastler

44307 Nantes, France

Firstname.lastname@inria.fr

2 Department of Computer Science, K.U. Leuven
Dept. Computer Science Celestijnenlaan 200A

B-3001 Heverlee Belgium

Firstname.lastname@cs.kuleuven.be

ABSTRACT
Model-Driven Engineering (MDE) advocates the use of models at
every step of the software development process. Within this
context, a team of engineers collectively and collaboratively
contribute to a large set of interrelated models. Even if the main
focus can be on a single model (e.g. a class diagram model),
related elements in other models (e.g. a requirement model) often
have to be considered and/or accessed. Moreover, all the involved
models do not necessarily conform to the same metamodel and
thus may have been built using different independent Domain-
Specific Languages (DSLs). Such a situation has already been
frequently observed in many large-scale industrial deployments of
MDE. Manually coordinating all the involved models, i.e. being
able to both manage and use the links existing between them, can
become a cumbersome and difficult task. As a proposal to solve
this inter-DSL coordination issue, we introduce in this paper a
generic and extensible inter-model traceability and navigation
environment based on the complementary use of megamodeling
and model weaving. We illustrate our solution with a concrete
working example.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures –
Languages (description, interconnection, definition)

D.2.12 [Software Engineering]: Interoperability – Data mapping

D.2.13 [Software Engineering]: Reusable Software – Domain
engineering, Reuse models

D.3.2 [Programming Languages]: Language Classifications -
Design languages, Very high-level languages

Keywords
Model-Driven Engineering, Domain-Specific Languages,
Coordination, Megamodeling, Model Weaving.

1. INTRODUCTION
Model Driven Engineering (MDE) largely promotes the use of
models at each step of the software development lifecycle. One
possible approach, and the one mainly considered in this paper, is
to model each aspect of the system using a different Domain
Specific Language (DSL). A DSL is a modeling language that
strongly focuses on a specific area of a system such as
requirements, data structure or user interface navigation for
instance.
All the different models representing a same system are often
interrelated. However, we cannot assume that all the DSLs which
have been used for building them systematically provide explicit
inter-DSL coordination capabilities. On the contrary, a DSL is
often deliberately defined in isolation, focusing on just one aspect
of the system (while completely ignoring others) and being
independent of other DSLs. This makes it more reusable but also
means that useful interrelationships between models built with
different DSLs cannot be expressed directly using them.
Nevertheless, for a given set of DSLs within the context of a
project or project’s type, we can identify a cartography of the
coordination by specifying the possible kinds of relationships that
may occur. For instance, the link between a Class element in a
Java model and a Paragraph element in a Requirements model,
or an Entity element in a Data model, can be considered.
In an incremental development process, most of the models are
constantly elaborated and updated. Modifying one model might
have an impact on, and require corresponding modifications to,
other related models. Therefore, a developer needs to be able to
quickly and easily navigate from model to model and from model
element to model element. As soon as an MDE process includes
more than a few DSLs, manually maintaining links and
navigating between models (and corresponding model elements)
does not scale very well. The problem of language coordination –
managing many interrelated DSLs – is thus emerging as a very
important challenge in MDE software engineering.
In this paper, we propose a generic and extensible modeling
solution which is based on the combined use of megamodeling [9]
and model weaving [11]. Concretely, we offer a framework for
representing both model-level and model element-level links and
provide tool support for developers to be able to use these links
and to navigate along them. This general modeling solution has
been directly applied within the specific context of inter-DSL
coordination.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC’10, March 22-26, 2010, Sierre, Switzerland.
Copyright 2010 ACM 978-1-60558-638-0/10/03…$10.00.

Prel
im

ina
ry

ve
rsi

on

Within the paper, we use the Pet Store reference application as an
example. This application involves several DSLs and underlying
models, each one describing a different aspect of this software
system. While the techniques of inter-model coordination have a
much broader scope than presented in this simple example, it
allows us to practically demonstrate our solution. We consider a
snapshot of a given project at a certain point in the development
process. At this point, a developer wants to contribute to the
project, for example by adding a new feature. In order to do so,
considering a single model often does not suffice. Rather, a
number of interrelated models need to be considered and modified
accordingly. Our solution, together with all the used metamodels
and Pet Store models, are publicly available from the Eclipse
AtlanMod MegaModel Management (AM3) project [1].
This paper is organized as follows. Section 2 briefly presents the
fundamental model engineering techniques, and more especially
the AmmA MDE toolkit that is used in our approach. Section 3
explains in details the proposed generic and extensible modeling
solution. Section 4 introduces the Pet Store example, and uses it
in order to illustrate how concrete models can be coordinated so
that related traceability links may be navigated. Similar works on
inter-model coordination in general are listed in Section 5
whereas Section 6 discusses some related issues. Section 7
concludes the paper.

2. MODEL ENGINEERING WITH THE
AmmA TOOLKIT
This section briefly describes the AmmA (AtlanMod Model
Management Architecture) MDE toolkit that is used as a basis for
this work. AmmA is composed of four functional blocks available
from the Eclipse website:

• Model Transformation offers model-to-model
transformation capabilities. Within our framework, it is
provided by ATL (AtlanMod Transformation Language) [2];

• Model Weaving allows representing links between elements
from different models. This functionality is provided by the
AMW (AtlanMod Model Weaver) component [3];

• Global Model Management or Megamodeling assists in
managing large collections of models and high-level links
between them. The AM3 (AtlanMod MegaModel
Management) component [1] provides an implementation for
this;

• Projection of models to and from other technical spaces like
XML, grammarware, etc. The block implementing the
various tools is called ATP (AtlanMod Technical Projectors).

In order to allow developers to establish the cartography of the
coordination between different related models, we need to be able
to represent all the available links. In order to do so (section 3),
we need the Model Weaving component to manage links at the
model element-level (subsection 2.1) and the Global Model
Management component to manage links at the model-level
(subsection 2.2). This latest component will then be extended in
order to effectively enable the required navigation. In the next
subsections, both these components are briefly discussed.

2.1 Model Weaving with AMW
Model weaving operations are performed between models or
metamodels (two or more). A weaving model (WM) specifies
links between elements from different models (called woven
models). A weaving model conforms to a weaving metamodel
(WMM), which provides the semantics of the links. AMW
provides concrete solutions to the following model weaving
related problems:

• Automating link creation. The generation of abstract
correspondence links between elements from different models
can be partially automated by means of heuristics (several
ones are already available);

• Storing links. It is possible to record this set of model
element-level links as a whole, in order to use it later in
various contexts;

• Using links in tools. It is possible to use the links as the input
of automatic or semi-automatic tools. The typical use is the
generation of a concrete transformation from a weaving
model with the help of a higher order transformation.

The output of a model weaving operation on a set of models is a
WM that conforms to a WMM. Hence, this WM remains linked to
the set of woven models. Each link (a model element of WM) is
typed by a concept specified in the corresponding WMM.

The WMM defines the available link types. Since model-element
level links can be used in many scenarios (e.g., traceability and
model annotations) it is quite impossible to define a common
WMM supporting all the situations. Therefore, AMW only
defines a minimal WMM, which can be extended for specific
purposes. The minimal metamodel only offers a single (but
extensible) type of link. Depending on the purpose of the links,
the user should specialize them to one or more project-specific
link types by adding more data and constraints. Thus, a concrete
WMM may be expressed as an extension of another WMM. This
means that a hierarchy of metamodels is created, which allows
AMW to generically deal with all weaving-related tasks.

2.2 Global Model Management with AM3
The AtlanMod MegaModel Management tool, AM3 [1], is a
generic and extensible environment for dealing with large
collections of heterogeneous models and metamodels. They are
often accompanied by the tools and services which are usually
combined in a given domain of application and/or specific
process. The Global Model Management (GMM) principles [5]
are implemented in this tool: for each part of the “real-world”
intended to be modeled, which is often composed of several
different systems, it is assumed that a megamodel can be specified
and used in order to define the associated metadata.
A conceptual overview of the AM3 framework is shown in Figure
1. MDE introduces three different kinds of models [6]: terminal
models (M1) conform to metamodels represent real-world
systems, metamodels (M2) conform to a metametamodel and
metametamodels (M3) conform to themselves. A megamodel is a
specific kind of terminal model whose elements represent models
themselves, as well as relationships between them and metadata
on them. As it is a terminal model, a megamodel conforms to a
specific metamodel. In the context of a given working zone, the

Prel
im

ina
ry

ve
rsi

on

megamodel records all available resources or artifacts and their
inter-relations.

Figure 1. AM3 Conceptual Framework

A megamodel can thus be viewed as a metadata repository where
representations of models and links between them are stored as a
model. Other artifacts such as textual files and even tools or
services can also be managed by a megamodel if the
corresponding extension of the metamodel of megamodel is
available.
The AM3 solution from the Eclipse foundation implements the
previously described conceptual framework. It is an open source
project which is part of the GMT subproject, which is itself part of
the top-level Eclipse Modeling project. The generic and extensible
AM3 megamodeling solution provides not only the capabilities to
explicitly specify the metadata associated with a given system or
process, but also a standard Megamodel Navigator as well as
generic and extensible editors for instantiating and editing the
megamodel in a more user-friendly way (Figure 6 and Figure 7).
In addition, it offers several extension points allowing domain-
specific extensions of the tool. Both the metamodel of megamodel
and its related UI components can be extended.

AM3 is composed of two distinct sets of Eclipse plug-ins:

• The core plug-ins providing the basic metamodel of
megamodel, the core APIs , the core runtime environment and
associated generic navigator and editors;

• The extension plug-ins providing extensions of the metamodel
of megamodel and corresponding extensions of the UI (for
instance specific editor pages, contextual actions, etc).

With AM3, users can build their customized megamodeling
solution by extending either the core plug-ins or other already
existing extension plug-ins. A set of generic MDE extensions
have already been developed: GMM for Global Model
Management, GMM4ATL for model transformation with ATL,
GMM4CT for Composite Transformations.

In the next section, we describe a new extension that is
specifically focused on the problems that were described earlier.
By integrating the use of model weaving in the megamodeling
environment and providing a number of UI extensions, we aim to
provide some easy-to-use inter-DSL coordination capabilities.

3. COMBINING MODEL WEAVING AND
MEGAMODELING
The problem of inter-DSL coordination, considering inter-model
traceability and navigability, can be divided into two
complementary problems corresponding to two different
abstraction levels:

• traceability/navigability between models (higher level);

• traceability/navigability between model elements (lower
level).

These two levels are related by a refinement relationship:
navigability between model elements is a refinement of
navigability between models. To support these two levels, both
model-level links and model element-level links must be
considered. Global Model Management proposes to use a
megamodel (section 2.2) to represent all models involved in a
given context as well as various relationships between them.
Therefore, GMM is a solution applicable for model-level links.
Model weaving (section 2.1) allows representing different kinds
of fine-grained relationships between elements from different
models. Model element-level links can thus be managed by using
Model Weaving.

Figure 2. Support for navigation links in the GMM extension

of the metamodel of megamodel
What was missing was a way to represent the refinement relation
between the two levels of links. We have solved this problem by
incorporating the notion of traceability links and models directly
into the GMM extension of the metamodel of megamodel (Figure
2). The top part of the figure shows basic concepts, from the
metamodel of megamodel, to represent models and relationships
between them in a megamodel. On the bottom left, we have
extended these to the notion of ModelWeavingRelationship and
ModelTraceRelationship, the latter being a more specific case of
the former. Since they both derive from the Relationship element,
they have the ability to express high-level links between models.
On the bottom right, we introduce the WeavingModel and
TraceModel concepts as representations of weaving models
expressed by AMW (low-level links). The refinement relationship
between both levels can now be represented simply by adding an

Prel
im

ina
ry

ve
rsi

on

association between ModelWeavingRelationship and
WeavingModel.
This solution handles the navigability problem in a generic and
extensible way. Navigability is provided by recording traceability
links between both models and model elements. The concrete
weaving or trace metamodel used can differ from project to
project (extensibility) while navigation will be handled
generically since each weaving metamodel will derive from a
common base metamodel (AMW).
Figure 3 describes an example of a megamodel. The legend at the
bottom may be informally interpreted as a summary of the
metamodel of this megamodel, previously presented in Figure 2.
Each of the models (Mx) contains a number of model elements.
These models conform to different metamodels (MMx) and are
interrelated via model-level links (MWRelation). Each model-
level link can be associated to a weaving model (WeavingModelx-
y) which refines this link. All this information is stored within a
single megamodel. Note that the weaving models are also
registered into the megamodel, just like any other models.
Within a specific context, the semantics of the traceability links
can be specialized: additional information about model-level links
is specified by the metamodel of the megamodel and specific
semantics for model element-level links can be provided by
specializing the weaving metamodel(s).

Figure 3. Overview of the proposed generic and extensible

solution.

The proposed solution allows users and tools to retrieve and
navigate all kinds of traceability links recorded into the
megamodel. We have also extended the AM3 megamodeling
environment with two specific views to allow users to zoom in on
a given model-level link. This way, it is possible to see which
elements of the corresponding models are actually concerned and
how they are precisely interrelated.
In the next section, we apply the proposed solution to a concrete
example and demonstrate how the extended AM3 megamodeling
environment can thus be used by developers as an inter-DSL
coordination solution.

4. USE CASE: THE “PET STORE”
APPLICATION
In 2001, Sun described an application named Pet Store with the
objective of providing to developers a typical example of program
built using J2EE best practices. Later, Microsoft reproduced this
experiment using their DotNet framework. This Pet Store sample
application has since been used in many areas of software
development as a benchmark to evaluate alternative development
methodologies. The Java Pet Store 2.0 is the reference application
for building Ajax web applications on Java Enterprise Edition 5
platform [7]. It illustrates good practices for using AJAX with
Java, building AJAX-enabled JSF component libraries, using Java
Persistence APIs, applying MVC (Model/View/Controller) and
other design patterns. In this particular AJAX Web application,
several services such as Google Maps service for location, PayPal
service for payment, etc. are used to implement parts of the
functionalities.
We consider a snapshot taken during the software development
cycle of a simplified Pet Store application: all artifacts developed
at this time are models built using various DSLs. How the various
models have been built and how the traceability relations between
them have been established is out of the scope of this paper. They
can be created manually, derived automatically or generated by
model transformations. We currently focus solely on the
representation of these traceability links and on their navigability.
A Pet Store case, based on seven different types of models (i.e.
Requirements, Use Cases, Deployment, Entity-Relationship, Class
Diagram, Page Navigation and Java Project), has been
developed. These terminal models are provided in EMF-XMI.
The seven corresponding metamodels are expressed in KM3 [6]
but are also available in EMF-XMI (conforming to Ecore).
All these available models and metamodels are registered into a
megamodel. In this megamodel, we also record the high-level
relationships between the models. As discussed in the previous
section, we also represent low-level relationships using weaving
models. Figure 4 shows a snapshot of the Pet Store project
showing a number of such relevant links. Solid arrows are model-
level links whereas dotted arrows are model element-level links.

Figure 4. Traceability links between models and model

elements

Prel
im

ina
ry

ve
rsi

on

For example, there is a traceability link between the UseCase
model and the Deployment model. By zooming on this link, more
detailed traceability information can be retrieved: a given use case
of the UseCase model is linked to two different components of
the Deployment model. Using the same process, there is a
traceability link between the ClassDiagram model and the
JavaProject model: a design class of the ClassDiagram model is
linked to two different Java implementation classes in the
JavaProject model. A more detailed example of the links in
Figure 4 can be found in Figure 5. In this specific example, there
are traceability links respectively between the UseCase and the
ClassDiagram model and between the ClassDiagram model and
the Entity-Relationship model.

Figure 5. Detailed examples of traceability links

Zooming in on the model-level link between the UseCase and
ClassDiagram models (Figure 5), we see that from the Browse
Product use case we can navigate to design classes Category and
Product. When we zoom in on the link between the
ClassDiagram and EntityRelationship models, we see that the
Category design class is related to the Category entity and that
the ID class attribute is related to the ID field. Thus, it can be
deduced that the Category entity is (indirectly) linked to the
Browse Products use case.

Figure 6. Model-level navigability

All kinds of links that have been presented above need to be
persisted (i.e., they need to be stored and then potentially
retrieved). We consider that representing these links directly
inside the Pet Store models is not a suitable approach because the
models are then polluted by additional traceability information.
This is why, following our generic and extensible approach, the
model level links are stored directly in the megamodel like any
other relations. The model-element level links are represented as
links in weaving models attached to the model element links.
Figure 6 and Figure 7 show how the AM3 megamodeling
environment provides all these navigation links to the developer.
When we select the eStoreClassDiagram model on the right part
of the Megamodel Navigator, related models immediately show
up the Model Level view. We can then easily navigate to the
related eStoreEntityRelationship and eStoreJavaProject models or
open up any of them using their corresponding editor. In Figure 5,
the ClassDiagram model has traceability links to the Entity-
Relationship and JavaProject models (linked models part of the
Model Level view). Zooming on the ClassDiagram to JavaProject
traceability link available from the screenshot of Figure 6 there is
a model element-level traceability link between the Category
design class and the Category type from the Java project model
(Figure 7).
All the work presented in this section, including the AM3-based
megamodel, editors and the sample models, is available from the
Eclipse-GMT AM3 project webpage [1].

Figure 7. Model element-level navigability

We insist in this example on the way one may navigate all the
models developed in a project (with different DSLs) at a given
time. Thus, the available links may be used in order to ensure part
of the inherent coordination existing between the different
languages. However, the main interest of this work has been to
demonstrate that this set of artifacts together with their mutual
relationships and metadata, all providing the cartography of the
coordination, may be represented as a megamodel (i.e. a model)
conforming to a given (extensible) metamodel. This result is quite
strong and new applications of it are still being found. For
example, it is possible to check this megamodel for global
consistency and this can be easily expressed with a model
transformation. Similarly, it is possible to project this megamodel
on a given display surface or to extract any kind of simplified
view from it, again using a single model transformation.

Prel
im

ina
ry

ve
rsi

on

5. RELATED WORK
The problem of the coordination between multiple related
artifacts is not a new one. In code-centric environments, we also
have to deal with multiple types of mostly textually-oriented
artifacts such as source code, SQL code, Web service descriptions
(WSDL), language dictionaries or any DSL. All these artifacts,
their integration and their interrelations can be managed in
different ways. Classically, the management of these relations has
been performed using an Integrated Development Environment
(IDE). Usually, a single data (meta)model is defined for all
artifacts and only predetermined relationships are available.
Considering some other approaches, the coordination is realized
thanks to a dedicated DSL such as in [25]. Our approach focuses
not on textual artifacts but more generally on models and is based
on an extensible metamodel that allows to potentially link any
types of model (i.e. models which conform to any metamodel)
without modifying the core of the tools. Typical services offered
by classical IDEs are ‘find usages’ and back/forward navigation
throughout code. Our initial implementation is a first step in the
direction of offering similar kinds of services for model-centric
approaches.
In order to implement our solution for coordination, model
traceability (which is an application of model weaving) and global
model management (based on megamodeling in our case) have
been combined. In the next two subsections we discuss related
works in these two different but somehow interrelated areas.

5.1 Traceability
In order to enable navigation across different DSLs so that they
can be coordinated, we use traceability links, stored as weaving
models, between models and model elements. Many traceability
approaches focus on requirements tracing and many different
metamodels have been proposed [23], some of them trying to
distill a standard metamodel [24]. Our model weaving approach
offers a basic traceability metamodel that can be extended to fit
almost any traceability scenario. Since the navigation operations
are only dependent of the basic metamodel, it works transparently
to the specific traceability needs of a project, meaning that any
traceability links can be used for navigation.
In [22], a number of problems related to the management of many
artifacts that have different purposes and different notations
(describing parts of the same system, similarly to our problem
statement) are discussed. They have developed an approach for
traceability and inconsistency management between descriptions
of software requirements, UML-style use case models and black-
box test plans. Traceability links are often used to notify
developers if changes might have to be propagated throughout the
chain of artifacts, i.e. if the different artifacts have to be
coordinated. Our approach can be used to accomplish the same
goals if each artifact is described by a DSL. Developers can thus
easily navigate between artifacts to manually analyze possible
required changes. Automatic analysis of change impact could be
added as an extension to our tools.

5.2 Global Model Management
The concept of a megamodel was proposed in [9] and in [10]. The
Eclipse AM3 project [5] has served as a cooperative framework to
experiment with concrete implementations of various forms of
megamodels. The global view presented by a megamodel also
uses the concept of a weaving model proposed in [11]. The idea

of a joint use of megamodeling and model weaving was first
presented in [12]. However, this work was really exploratory and
at the time mostly focused on traceability in model
transformation. This initial idea has now been generalized to any
kinds of possible relationships between models, so that many
different underlying coordination problems can be addressed.
There have been several mentions of using megamodeling
techniques in recent works when dealing with complex situations.
In [14], an example of a megamodel describing model
transformations is given, as well as a megamodel more focused on
the model-driven evolution of software architectures. In [15], a
megamodel is used in order to define families of reusable
components. It refers to several metamodels and model
transformations organized in an architectural framework. This
megamodel allows formalizing the relations between different
languages and thus provides some kind of support for
coordination. In [16], an important network of transformations is
described within the context of a rule-based management system.
The paper illustrates that the development of a set of bridges
between different DSLs implies the production of a high number
of different artifacts (metamodels, projectors, transformations,
etc) whose coordination is difficult to ensure and maintain
without any automated support. Applying MDE techniques to the
management of a high number of MDE artifacts naturally
suggested using megamodeling techniques in this case.
As far as we know, there are not so many existing global model
management approaches. However, some available ones have
similarities with the megamodeling approach. For instance
“macromodeling”, as described in [17], proposes to define and
use hierarchical models whose elements denote models and model
relationships: as a consequence, a macromodel can be seen as
some kind of megamodel. Moreover, this approach suggests
considering macromodels for checking integrity constraints on the
represented models and relationships. This is also the type of
verification that can be performed from a megamodel, for
example by applying a validation (model-to-model)
transformation on it and generating a diagnostic model as a result.
The work described in [18] is also somehow related to global
model management, even if it does not make use of explicit
megamodels. The precise analysis of a significant application (the
Apache Open for Business OFBiz framework) leads to identify a
set of seventeen different DSLs used in this context. These
languages belong to different technical spaces (XML,
grammarware, modelware), but they are not disjoint. The work
presented there is a strong motivation for studying the problem of
coordination between the programs written in these different
languages. An experimental tool for navigating them is described
(SmartEMF) which is quite similar to the browser presented in
our work. The main difference with our work is that, in their case,
there is no global representation of the situation by a
(mega)model, which leads to the direct handling of the
connections between artifacts by the various technologies.
Moreover, as the underlying metadata is not explicitly expressed
as a model like in our approach, this information cannot be
directly reused for other purposes (validation, analysis, code
generation, documentation generation, statistics and reports
generation, etc).

Prel
im

ina
ry

ve
rsi

on

6. DISCUSSION
The work presented in this paper is a step in the direction of
providing a generic and extensible inter-DSL coordination
solution. A prototype based on the AM3 megamodeling tool has
been developed and some experiments have been performed
considering the Pet Store application as an example. The first
results are very promising: the cost to develop the proposed
prototype is relatively low since our solution is based on a generic
and extensible megamodeling environment. Moreover, we could
easily add many new DSLs to our example without requiring a lot
of additional effort.
Apart from the evolution of the proposed example, the prototype
in itself may be improved in different ways. From the navigability
side, some user facilities such as navigation history support (Web
browser-like) or additional navigation views may be developed.
From a security side, user rights and restrictions of access on
certain models and links may also be managed (this problem is
somehow related to the notion of views and points of view on a
system).
From a more theoretical point of view, the main lessons learnt in
this work have been about the effective need of megamodeling
techniques. Indeed, this exploratory work showed us the
importance of megamodeling for inter-DSL coordination, but
more generally for the management of any MDE process. The
approach has a particularly high potentiality when used in
combination with other basic MDE techniques such as model
weaving or model transformation. MDE is based on the concepts
of metamodel, metametamodel and model transformation.
Considering our important experience with the model
transformation applications (thanks to the ATL community), we
came to the conclusion that the notions of model weaving and
megamodeling should also be considered as essential concepts of
MDE.
The three-level metamodeling stack [19] is now consensually
accepted. However, there are still many degrees of liberty in
deploying MDE in practical contexts. One choice still on the floor
is about considering either a minimal or universal metametamodel
(this corresponds to the level M3 of the stack). In our work, we
have clearly opted for this alternative by using the KM3 proposal
[6]. A second choice is about using either a universal or several
specific metamodels (this corresponds to the level M2 of the
stack). UML may be seen as a universal modeling language which
obliges to handle a restriction device (the so-called profile
mechanism) when the scope of the language needs to be more
narrowly defined. We have clearly opted for the second approach
where a metamodel is considered for defining the abstract syntax
of a DSL [20]. These choices have a cost: nowadays we are facing
the multiplication of small DSLs. As a consequence the penalty to
pay is fragmentation, and megamodeling comes here as an
obvious generic and extensible solution for coordinating a high
number of related modeling artifacts.
One of the other interesting properties of our proposal is its low
conceptual cost. Since weaving models (i.e. trace models) and
megamodels are models, a lot of new functionalities can be
achieved and plugged to the existing solution at a very low cost,
thanks to the model unification principle and to all available MDE
techniques. There are plenty of nice properties that come naturally
out from the fact that a megamodel is a standard terminal model.
Thus, it is possible to transform a megamodel into another model

providing a different view on it. For example, some experiments
we have already done allow to generate a graphical view,
automatically obtained from the PetStore megamodel (using
ATL), showing (using DOT) the conformance dependences
between all the registered models.

We also discovered that megamodeling is necessary but not
sufficient when used alone, as is model weaving. The joint
efficient use of both techniques for coordination purposes is the
main original contribution of the present paper. It has already
been proved to work on a relatively small but significant
application. It has now to be deployed on more important real life
applications to be completely assessed. Following this idea, we
already have observed several interesting properties of our
proposal. In particular, it should scale up very nicely due to the
recursive property of megamodeling: since a megamodel may
represent any kind of models, it can represent megamodels also.
Thus, we have the intuition that scalability issues in presence of a
very high number of different artifacts may be addressed using
the recursive property of megamodeling.

However, some other topics, which were not the subject of this
paper but are related to the present work, still remain to be
explored. One obvious topic is the production of the coordination
information, e.g. of the traceability links both at model and model
element levels. In this paper, this information was considered as
already available in the required format but this is not always the
case. More often, these data are created manually afterwards or
automatically generated during the model creation process (for
instance when a model transformation is running). Sometimes,
they are also inferred from provided metadata using some
heuristics, or imported from various inputs in different formats
(for example from available documentation). Within our context,
the deep study of all these possible cases still represents a lot of
work. Another interesting topic is the checking and validation of
the coordination information. For instance, by providing a more
precise semantics to the traceability links (maybe by attaching
explicit constraints to them), it could be possible to perform their
verification and validation. Thus, the correctness and the
relevance of the provided coordination information could be
ensured before its actual use.

7. CONCLUSIONS
The naïve view where an application was entirely developed in
one unique general purpose language (like Java) and only
maintained in this language is now considered as completely
unrealistic. Present day's applications make use of a high number
of different DSLs (for example XML-based DSLs) and code
written with these different DSLs does not disappear when the
application is put in use. We first observed in this paper that this
fragmentation problem is serious but should be rapidly addressed
by defining scalable coordination schemes.
We presented our generic and extensible solution for dealing with
the inter-DSL coordination problem. Our approach is based on the
combined use of two different but complementary MDE
techniques: megamodeling (or global model management) and
model weaving. We have shown that our solution can be
practically applied in order to manage the various artifacts related
to a given context in a software project. As an example, we have
used a simple situation based on the development of a sample
software system and we have shown that many applications of

Prel
im

ina
ry

ve
rsi

on

MDE generate or use a high number of artifacts. From there, we
have reported significant progresses on handling the general
situation. The example presented in this work shows how to use
the Eclipse-GMT AM3 project as a coordination tool fitted with
traceability and navigation capabilities.
It is also very important to notice that megamodeling has a much
broader application scope than the one presented here. The inter-
DSL coordination problem is just an example, among many
others, of a possible use of a megamodel. The megamodeling
approach, being by nature generic and extensible, can potentially
have many different applications in all domains involving the
management (and so the coordination) of a lot of modeling
artifacts and their associated metadata. Dealing with the design,
building, and execution of complex chains of model
transformations is one example directly coming from the MDE
field. Being able to efficiently manage hundreds (or even
thousands) of heterogeneous models, retrieved from source code
and documentation during the reverse-engineering process of a
complex legacy software system, is another interesting problem
we are currently exploring. Another application we are now
experimenting on, which is also directly related to the reverse-
engineering domain, is the use of a megamodel in order to
represent the actual high-level cartography of different software
platforms (in terms of tools, services, plugins, etc). This should
allow obtaining all the different available dependences, in order to
check the validity and the appropriateness of the overall platform
for instance.

8. ACKNOWLEDGMENTS
This work is being supported by the IST-FP6 MODELPLEX
European project [21] and the French IdM++ project.

9. REFERENCES
[1] The Eclipse-GMT AM3 (AtlanMod MegaModel

Management) project’s website:
http://www.eclipse.org/gmt/am3/

[2] The Eclipse-M2M ATL (AtlanMod Transformation
Language) project’s website:
http://www.eclipse.org/m2m/atl/

[3] The Eclipse-GMT AMW (AtlanMod Model Weaving)
project’s website: http://www.eclipse.org/gmt/amw/

[4] Jouault, F, and Kurtev, I: Transforming Models with ATL. In:
Satellite Events at the MoDELS 2005 Conference, Montego
Bay, Jamaica, October 2-7, 2005, pages 128—138. 2006.

[5] Allilaire, F, Bézivin, J, Brunelière, H, and Jouault, F, Global
Model Management In Eclipse GMT/AM3. In: Proceedings
of the Eclipse Technology eXchange workshop (eTX) at the
ECOOP 2006 Conference, Nantes, France:
http://www.sciences.univ-
nantes.fr/lina/atl/www/papers/GlobalModelManagementInEc
lipseGMTAM3_Revised.pdf

[6] Jouault, F., Bézivin, J.: KM3: A DSL for Metamodel
Specification. In: the 8th IFIP International Conference on
Formal Methods for Open Object-Based Distributed
Systems, LNCS, Volume #4037, ISBN 978-3-540-34893-1,
pp. 171-185. Bologna (2006).

[7] The Sun JAVA Pet Store demo:
https://blueprints.dev.java.net/petstore/

[8] The AtlanMod Zoo http://www.emn.fr/x-
info/atlanmod/index.php/Zoos

[9] Bezivin, J, Jouault, F and Valduriez, P: On the Need for
Megamodels. In: Proceedings of the OOPSLA/GPCE: Best
Practices for Model-Driven Software Development
workshop, 19th Annual ACM OOPSLA. 2004.

[10] Favre, J-M and Nguyen, T: Towards a megamodel to model
software evolution through transformations (2004), SETRA
Workshop, Elsevier ENCTS, 2004, pp. 59-74

[11] Didonet Del-Fabro, M, Bézivin, J, and Valduriez, P :
Weaving Models with the Eclipse AMW plugin. In: Eclipse
Modeling Symposium, Eclipse Summit Europe 2006,
Esslingen, Germany. 2006.

[12] Barbero, M., Didonet Del-Fabro, M and Bézivin, J.
Traceability and Provenance Issues in Global Model
Management, In: Proceedings of the Third ECMDA
Traceability Workshop, Haifa, Israel 2007

[13] Bézivin, J, Jouault, F, Rosenthal, P and Valduriez, P.
Modeling in the large and modeling in the small. In Model
Driven Architecture: European MDA Workshops, volume
3599 of “Lecture Notes in Computer Science”, pages 33–46.
Springer-Verlag, 2005.

[14] Bas Graaf, Model-Driven Evolution of Software
Architectures, PhD Thesis, 27 november 2007, Technische
Universiteit Delft:
http://www.st.ewi.tudelft.nl/~basgraaf/publications/PHDTH
ESIS2007.pdf

[15] Favre L., Martinez, L. Formalizing MDA components. LNCS
Volume 4039/2006, in Reuse of off the shelf components,
July 2006

[16] Didonet Del-Fabro, M, Albert, P, Bézivin, J and Jouault, F :
Industrial-strength Rule Interoperability using Model Driven
Engineering - INRIA Technical Report 00344013:
http://hal.inria.fr/inria-00344013/fr/

[17] Salay, R, Mylopoulos, J and Easterbrook, S : Using
Macromodels to Manage Collections of Related Models, 21st
International Conference - CAiSE 2009, Amsterdam, The
Netherlands, June 8-12, 2009

[18] Hesselund, A., Czarnecki, K., Wasowski, A. Guided
development with Multiple Domain-Specific languages,
MODELS, 2007, pp. 46-60, Nashville, USA.

[19] Bézivin, J and Gerbé, O : Towards a precise definition of the
OMG/MDA framework. ASE'01, Automated Software
Engineering, San Diego, USA, November 26-29, 2001.

[20] Kurtev, I, Bézivin, J, Jouault, F, and Valduriez, P : Model-
based DSL Frameworks. In: Companion to the 21st Annual
ACM SIGPLAN OOPSLA 2006, October 22-26, 2006,
Portland, OR, USA. ACM, pages 602—616. 2006.

[21] MODELPLEX IST-FP6 European Project:
https://www.modelplex-ist.org/

[22] Olsson, T., Grundy, J.: Supporting traceability and
inconsistency management between software artefacts. In:
Proceedings of the 2002 IASTED International Conference

Prel
im

ina
ry

ve
rsi

on

http://www.eclipse.org/gmt/am3/
http://www.eclipse.org/m2m/atl/
http://www.eclipse.org/gmt/amw/
http://www.sciences.univ-nantes.fr/lina/atl/contrib/allilaire
http://www.sciences.univ-nantes.fr/lina/atl/contrib/bezivin
http://www.sciences.univ-nantes.fr/lina/atl/contrib/bruneliere
http://www.sciences.univ-nantes.fr/lina/atl/contrib/jouault
http://www.sciences.univ-nantes.fr/lina/atl/www/papers/GlobalModelManagementInEclipseGMTAM3_Revised.pdf
http://www.sciences.univ-nantes.fr/lina/atl/www/papers/GlobalModelManagementInEclipseGMTAM3_Revised.pdf
http://www.sciences.univ-nantes.fr/lina/atl/www/papers/GlobalModelManagementInEclipseGMTAM3_Revised.pdf
https://blueprints.dev.java.net/petstore/
http://www.emn.fr/x-info/atlanmod/index.php/Zoos
http://www.emn.fr/x-info/atlanmod/index.php/Zoos
http://www.st.ewi.tudelft.nl/%7Ebasgraaf/publications/PHDTHESIS2007.pdf
http://www.st.ewi.tudelft.nl/%7Ebasgraaf/publications/PHDTHESIS2007.pdf
http://hal.inria.fr/inria-00344013/fr/
https://www.modelplex-ist.org/

on Software Engineering andApplications, Boston, MA,
USA, November 2002.

[23] Gills, M.: Survey of traceability models in IT projects. In:
ECMDA-TW, Proceedings of the 1st Traceability Workshop,
November 2005.

[24] Limon, A., Garbajosa, J., The Need for a Unifying
Traceability Scheme, Proceedings of the 1st Traceability
Workshop (ECDMA 2005), November 2005.

[25] Groenewegen, D and Visser, E : Declarative Access Control
for WebDSL: Combining Language Integration and
Separation of Concerns, Eighth International Conference on
Web Engineering, ICWE 2008, 14-18 July 2008, Yorktown
Heights, New York, US

Prel
im

ina
ry

ve
rsi

on

	1. INTRODUCTION
	2. MODEL ENGINEERING WITH THE AmmA TOOLKIT
	2.1 Model Weaving with AMW
	2.2 Global Model Management with AM3

	3. COMBINING MODEL WEAVING AND MEGAMODELING
	4. USE CASE: THE “PET STORE” APPLICATION
	5. RELATED WORK
	5.1 Traceability
	5.2 Global Model Management

	6. DISCUSSION
	7. CONCLUSIONS
	8. ACKNOWLEDGMENTS
	9. REFERENCES

