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Given a deterministically time-changed Brownian motion Z starting from 1, whose timechange V (t) satisfies V (t) > t for all t ≥ 0, we perform an explicit construction of a process X which is Brownian motion in its own filtration and that hits zero for the first time at V (τ ), where τ := inf{t > 0 : Z t = 0}. We also provide the semimartingale decomposition of X under the filtration jointly generated by X and Z. Our construction relies on a combination of enlargement of filtration and filtering techniques. The resulting process X may be viewed as the analogue of a 3-dimensional Bessel bridge starting from 1 at time 0 and ending at 0 at the random time V (τ ). We call this a dynamic Bessel bridge since V (τ ) is not known in advance. Our study is motivated by insider trading models with default risk.

Introduction

In this paper, we are interested in constructing a Brownian motion starting from 1 at time t = 0 and conditioned to hit the level 0 for the first time at a given random time. More precisely, let Z be the deterministically time-changed Brownian motion Z t = 1 + t 0 σ(s)dW u and let B be another 1 standard Brownian motion independent of W . Consider the first hitting time of Z of the level 0, denoted by τ . Our aim is to build explicitly a process X of the form dX t = dB t + α t dt, X 0 = 1, where α is an integrable and adapted process for the filtration jointly generated by the pair (Z, X) and satisfying the following two properties:

• X hits the level 0 for the first time at time V (τ );

• X is a Brownian motion in its own filtration.

Our study is motivated by the equilibrium model with insider trading and default as in [START_REF] Campi | Insider trading in an equilibrium model with default: a passage from reduced-form to structural modelling[END_REF], where a Kyle-Back type model with default is considered. In such a model, three agents act in the market of a defaultable bond issued by a firm, whose value process is modelled under the risk-neutral probability as a Brownian motion and whose default time is set to be the first time that the firm's value hits a given constant default barrier. The three different agents acting in such a market are the noise traders, an insider and a market maker. What is typical of the model in [START_REF] Campi | Insider trading in an equilibrium model with default: a passage from reduced-form to structural modelling[END_REF] is the additional information of the insider, who is assumed to know the default time τ from the beginning of the time horizon [0, 1]. For the precise modeling assumptions we refer to [START_REF] Campi | Insider trading in an equilibrium model with default: a passage from reduced-form to structural modelling[END_REF]. It has been shown in [START_REF] Campi | Insider trading in an equilibrium model with default: a passage from reduced-form to structural modelling[END_REF] that the equilibrium total demand is a process X * which is a translation of a 3-dimensional Bessel bridge in insider's filtration but is a Brownian motion in its own filtration. These two properties can be rephrased as follows: X * is a Brownian motion conditioned to hit the default barrier for the first time at the default time τ . For more details on that conclusion and the fact that it establishes a link between reduced-form and structural credit risk models via insider's behavior, one may look at the paper [START_REF] Campi | Insider trading in an equilibrium model with default: a passage from reduced-form to structural modelling[END_REF].

The assumption that the insider knows the default time from the beginning may seem too strong from the modeling viewpoint. To approach the reality, one might consider a more realistic situation when the insider doesn't know the default time but however she can observe the evolution through time of the firm's value. Here, we generalize the result of [START_REF] Campi | Insider trading in an equilibrium model with default: a passage from reduced-form to structural modelling[END_REF] along the same dimensions as [START_REF] Campi | Dynamic Markov bridges motivated by models of insider trading[END_REF] generalizes the result of [START_REF] Back | Insider trading in continuous time[END_REF]. As was shown in [START_REF] Campi | Dynamic Markov bridges motivated by models of insider trading[END_REF], the condition of the optimality is that the total demand becomes a dynamic bridge (as in [START_REF] Campi | Dynamic Markov bridges motivated by models of insider trading[END_REF]) as opposed to static one (as in [START_REF] Back | Insider trading in continuous time[END_REF]) -thus, in the case of the insider learning about the default through observation of a signal, it is reasonable to look for the process which generalizes the Bessel bridge of [START_REF] Campi | Insider trading in an equilibrium model with default: a passage from reduced-form to structural modelling[END_REF] to this dynamic setting. Thus, finding the equilibrium demand in this more realistic model corresponds to answering the question we formulated at the beginning of this introduction, i.e. build a process X hitting the default barrier 0 for the first time at time V (τ ) and being a Brownian motion in its own filtration. In the present paper, we focus on the probabilistic construction of such a process, while we postpone the application to equilibrium models with insider and default to a subsequent paper.

Notice that in order to make such a construction possible, one has to assume that Z evolves faster that its underlying Brownian motion W , i.e. V (t) > t for all t ≥ 0. It can be proved (see next Section 2) that when σ ≡ 1, X and Z must concide until τ , which contradicts the independence between Z and B. Moreover, an additional assumption on the behavior of the time change V (t) in a neighbourhood of 0 is needed.

Our resulting process X can be viewed as an analogue of 3-dimensional Bessel bridge with a random terminal time. Indeed, the two properties above characterizing X can be reformulated as follows: X is a Brownian motion conditioned to hit 0 for the first time at the random time V (τ ). In order to emphasize the distinct property that V (τ ) is now known at time 0, we call this process a dynamic Bessel bridge of dimension 3.

The paper is structured as follows. In Section 2, we formulate precisely our main result (Theorem 2.1) and show in the case where the time-change is the trivial one, i.e. V (t) = t, that the construction of X is not feasible. Section 3 contains the proof of Theorem 2.1, that uses, in particular, a technical result on the density of the signal process Z, whose proof is given in Section 4. Finally, several technical results used along our proofs have been relegated in the Appendix for reader's convenience.

Formulation of the main result

Let (Ω, H, H = (H t ) t≥0 , P) be a filtered probability space satisfying the usual conditions. We suppose that H 0 contains only the P-null sets and there exist two independent standard Brownian motions, B and W , adapted to H. We introduce the process

Z t := 1 + t 0 σ(s)dW s , (2.1) 
for some σ whose properties are given in the assumption below.

Assumption 2.1 There exist a measurable function σ : R + → R + such that:

1. V (t) := t 0 σ 2 (s)ds ∈ (t, ∞) for every t > 0; 2. There exists some ε > 0 such that ε 0 1 (V (t)-t) 2 dt < ∞.
Consider the following first hitting time of Z:

τ := inf{t > 0 : Z t = 0} (2.2)
One can characterize the distribution of τ using the well-known distributions of first hitting times of a standard Brownian motion. To this end let

H(t, a) := P [T a > t] = ∞ t ℓ(u, a) du, (2.3) 
for a > 0 where

T a := inf{t > 0 : B t = a}, and 
ℓ(t, a) := a √ 2πt 3 exp - a 2 2t .
As Z is a time-changed Brownian motion with deterministic time-change, it can be easily seen that

P[τ > t|H s ] = 1 [τ >s] H(V (t) -V (s), Z s ).
(2.4)

Thus, P[V (τ ) > t] = H(t, 1),
for every t ≥ 0, i.e. V (τ ) = T 1 in distribution. Here we would like to give another formulation for the function H in terms of the transition density of a Brownian motion killed at 0. Recall that this transition density is given by

q(t, x, y) := 1 √ 2πt exp - (x -y) 2 2t -exp - (x + y) 2 2t ,
for x > 0 and y > 0 (see Exercise (1.15), Chapter III in [START_REF] Revuz | Continuous Martingales and Brownian Motion (3rd Revised Edition)[END_REF]). Then one has the identity

H(t, a) = ∞ 0
q(t, a, y) dy.

(2.5)

The following is the main result of this paper.

Theorem 2.1 There exists a unique strong solution to

X t = 1 + B t + τ ∧t 0 q x (V (s) -s, X s , Z s ) q(V (s) -s, X s , Z s ) ds + V (τ )∧t τ ∧t ℓ a (V (τ ) -s, X s ) ℓ(V (τ ) -s, X s ) ds.
(2.6)

Moreover, i) Let F X t = N σ(X s ; s ≤ t)
, where N is the set of P-null sets. Then, X is a standard Brownian motion with respect to

F X ; ii) V (τ ) = inf{t > 0 : X t = 0}.
The proof of this result is postponed to the next section. We conclude this section by showing that when σ ≡ 1, such a construction is not possible. We are going to adapt to our setting the arguments used in [START_REF] Föllmer | Canonical decomposition of linear transformations of two independent Brownian motions motivated by models of insider trading[END_REF], Proposition 5.1. This will give a justification to our assumption that V (t) > t for all t ≥ 0.

Assume that τ = inf{t : X t = 0} a.s.. Fix an arbitrary time t ≥ 0. The two processes M Z s := P[τ > t|F Z s ] and M X s := P[τ > t|F X s ], for s ≥ 0, are uniformly integrable continuous martingales, the former for the filtration F Z,B and the latter for the filtration F X . As usual, F Z and F X denote the natural filtrations generated by, respectively, Z and X. In this case, Doob's optional sampling theorem can be applied to any pair of finite stopping times, e.g. τ ∧ s and τ . We apply to those martingales the same argument as in [START_REF] Föllmer | Canonical decomposition of linear transformations of two independent Brownian motions motivated by models of insider trading[END_REF], Proposition 5.1, to get the following:

M X τ ∧s = E[M X τ |F X τ ∧s ] = E[1 τ >t |F X τ ∧s ] = E[M Z τ |F X τ ∧s ] = E[M Z τ ∧s |F X τ ∧s ],
where the last equality is just an application of the tower property of conditional expectations and the fact that M Z is martingale for the filtration F Z,B which is bigger than F X . We also get

E[(M X τ ∧s -M Z τ ∧s ) 2 ] = E[(M X τ ∧s ) 2 ] + E[(M Z τ ∧s ) 2 ] -2E[M X τ ∧s M Z τ ∧s ].
Since M X τ ∧s and M Z τ ∧s have the same law, we get

E[(M X τ ∧s -M Z τ ∧s ) 2 ] = 2E[(M X τ ∧s ) 2 ] -2E[M X τ ∧s M Z τ ∧s ].
On the other hand we can obtain

E[M X τ ∧s M Z τ ∧s ] = E[M X τ ∧s E[M Z τ ∧s |F X τ ∧s ]] = E[(M X τ ∧s ) 2 ],
which implies that M X τ ∧s = M Z τ ∧s for all s ≥ 0. Using the fact that

M Z s = 1 τ >s H(t -s, Z s ), M X s = 1 τ >s H(t -s, X s ), s < t,
one has

H(t -s, X s ) = H(t -s, Z s ) on [τ > s].
Since the function a → H(u, a) is strictly monotone in a whenever u > 0, the last equality above implies that X s = Z s for all s < t on the set [τ > s]. t being arbitrary, we have that that X τ s = Z τ s for all s ≥ 0.

We have just proved that, before τ , X and Z coincide, which contradicts the fact that B and Z are independent, so that the construction of a Brownian motion conditioned to hit 0 for the first time at τ is impossible. A possible way out is to assume that the signal process Z evolves faster than its underlying Brownian motion W , i.e. V (t) ∈ (t, ∞) for all t ≥ 0 as in our assumptions on σ. We prove our main result in the following section.

Proof of the main result

Note first that in order to show the existence and the uniqueness of the strong solution to the SDE in (2.6) it suffices to show these properties for the following SDE

Y t = y + B t + τ ∧t 0 q x (V (s) -s, Y s , Z s ) q(V (s) -s, Y s , Z s ) ds, y > 0, (3.7) 
and that Y τ > 0. Indeed, the drift term after τ is the same as that of a 3-dimensional Bessel bridge from X τ to 0 over the interval [τ, V (τ )]. By Corollary 5.3.23 in [START_REF] Karatzas | Brownian Motion and Stochastic Calculus[END_REF] existence and the uniqueness of the strong solution of (3.7) is equivalent to existence of a weak solution and pathwise uniqueness. We start with demonstrating the pathwise uniqueness property. Proof. It follows from direct calculations that

q x (t, x, z) q(t, x, z) = z -x t + exp -2xz t 1 -exp -2xz t 2z t . (3.8) 
Moreover, qx(t,x,z) q(t,x,z) is decreasing in x for fixed z and t. Now, suppose there exist two strong solutions,

Y 1 and Y 2 . Then (Y 1 t∧τ -Y 2 t∧τ ) 2 = 2 τ ∧t 0 (Y 1 s -Y 2 s ) q x (V (s) -s, Y 1 s , Z s ) q(V (s) -s, Y 1 s , Z s ) - q x (V (s) -s, Y 2 s , Z s ) q(V (s) -s, Y 2 s , Z s ) ds ≤ 0.
The existence of a weak solution will be obtained in several steps. First we show the existence of a weak solution to the SDE in the following proposition and then conclude via Girsanov theorem. Proposition 3.1 There exists a unique strong solution to

Y t = y + B t + τ ∧t 0 f (V (s) -s, Y s , Z s ) ds y > 0 (3.9)
where

f (t, x, z) := exp -2xz t 1 -exp -2xz t 2z t .
Moreover, P[Y τ > 0 and Y t∧τ > 0, ∀t > 0] = 1.

Proof. Strong uniqueness can be shown as in Lemma 3.1; thus, its proof is omitted. Observe that if Y is a solution to (3.9), then

dY 2 t = 2Y t dB t + 21 [τ >t] Y t f (V (t) -t, Y t , Z t ) + 1 dt.
Inspired by this formulation we consider the following SDE:

dU t = 2 |U t |dB t + 21 [τ >t] |U t |f (V (t) -t, |U t |, Z t ) + 1 dt, (3.10) 
with U 0 = y 2 . In Lemma 3.2 it is shown that there exists a weak solution to this SDE which is strictly positive in the interval [0, τ ]. This yields in particular that the absolute values can be removed from the SDE (3.10) considered over the interval [0, τ ]. Thus, it follows from an application of Itô's formula that √ U is a weak, therefore strong, solution to (3.9) in [0, τ ] due to pathwise uniqueness and Corollary 5.3.23 in [START_REF] Karatzas | Brownian Motion and Stochastic Calculus[END_REF]. The global solution can now be easily constructed by the addition of B t -B τ after τ . This further implies that Y is strictly positive in [0, τ ] since √ U is clearly strictly positive.

Lemma 3.2 There exists a positive weak solution to

dU t = 2 |U t |dB t + 21 [τ >t] |U t |f (V (t) -t, |U t |, Z t ) + 1 dt, (3.11) 
with U 0 = y 2 . Moreover, the solution is strictly positive in [0, τ ].

Proof.

As |xf (t, x, z)| is bounded (by 1) uniformly over R 3 + and √ x is a locally bounded continuous function, it follows from Theorem 6.17 together with Corollary 10.1.2 in [START_REF] Stroock | Multidimensional Diffusions Processes[END_REF] that the martingale problem defined by the stochastic differential equations for U and Z is well-posed upto an explosion time, i.e. there exists a weak solution to (3.11), along with (2.1), valid upto a stopping time. Fix one of these solutions and call it (U, Z). As Z does not explode it suffices to check that U does not explode in order to show the existence of a weak solution. To do this observe that the drift term is bounded from above by 3 and from below by 0, and the diffusion and drift coefficients satisfy the conditions in Proposition 5.2.18 in [START_REF] Karatzas | Brownian Motion and Stochastic Calculus[END_REF]. Therefore, the comparison result of Proposition 5.2.18 in [START_REF] Karatzas | Brownian Motion and Stochastic Calculus[END_REF] applies to (3.11). First, since the initial condition is positive, U t ≥ u t for every t ≥ 0 where u solves

u t = 2 t 0 √ u s dβ s ,
and β is the Brownian motion associated to the weak solution of (3.11) that we have fixed. Clearly, u ≡ 0 solves this equation and in fact it is the only solution. This yields that U is positive. In order to show U does not explode we compare U with the solution of

R t = y 2 + 2 t 0 R s dβ s + 3t. (3.12)
There exists a unique strong solution to this equation and the solution is given by the square of a 3-dimensional Bessel process (see Definition 1.1 in Chap. XI of [START_REF] Revuz | Continuous Martingales and Brownian Motion (3rd Revised Edition)[END_REF]). As a 3-dimensional Bessel process never explodes we have no explosion for U by comparison.

Next we show the strict positivity in [0, τ ]. First, let a and b be strictly positive numbers such that ae -a 1e -a = 3 4 and be -b 1e -b = 1 2 .

As xe -x 1-e -x is strictly decreasing for positive values of x, one has 0 < a < b. Now define the stopping time

I 0 := inf{0 < t ≤ τ : U t Z t ≤ V (t) -t 2 a},
where inf ∅ = τ by convention. As √ U τ Z τ = 0, √ U 0 Z 0 = y 2 , and V (t)t > 0 for t > 0, we have that 0 < I 0 < τ , ν y -a.s. by continuity of (U, Z) and V , where ν y is the probability measure associated to the fixed weak solution. Moreover,

U t > 0 on the set [t ≤ I 0 ]. Note that C t := 2 √ UtZt V (t)-t is continuous on (0, ∞) and C I 0 = a. Thus, τ := inf{t > I 0 : C t = 0} > I 0 .
Consider the following sequence of stopping times:

J n := inf{I n ≤ t ≤ τ : C t / ∈ (0, b)} I n+1 := inf{J n ≤ t ≤ τ : C t = a} for n ∈ N ∪ {0}.
Our aim is to show that τ = τ = lim n→∞ J n , a.s.. We start with establishing the second equality. As J n s are increasing and bounded by τ , the limit exists and is bounded by τ . Suppose that J := lim n→∞ J n < τ with positive probability. Note that by construction we have I n ≤ J n ≤ I n+1 and, therefore, lim n→∞ I n = J. Since C is continuous, one has lim n→∞ C In = lim n→∞ C Jn . However, as on the set [J < τ ] we have C In = a and C Jn = b for all n, we arrive at a contradiction. Therefore, τ = J.

Next, we will demonstrate that τ = τ . Observe that since C τ = 0, τ ≤ τ and thus C τ = 0. Suppose that τ < τ with positive probability. Then, we claim that on this set C Jn = b for all n, which will lead to a contradiction since then b = lim n→∞ C Jn = C τ = 0. We will show our claim by induction.

1. For n = 0, recall that I 0 < τ by construction. Also note that on (I 0 , J 0 ] the drift term in (3.11) is greater than 2. Therefore the solution to (3.11) is strictly positive in (I 0 , J 0 ] since a 2-dimensional Bessel process is always strictly positive. Thus, C J 0 = b.

2. Suppose we have C J n-1 = b. Then, due to continuity of C, I n < τ . For the same reasons as before, the solution to (3.11) is strictly positive in (I n , J n ]. Thus, C Jn = b.

Thus, we have shown that for all t > 0, U τ ∧t > 0, a.s.. In order to show that U τ > 0 consider the stopping time I := sup{I n : I n < τ }. Then, we must have that I < τ since otherwise a = C I = C τ = 0, another contradiction. Similar to the earlier cases the drift term in (I, τ ] is larger than 2, thus, U τ > 0 as well. Proof. Due to Proposition 3.1 there exists a unique strong solution, Y , of (3.9). Define (L t ) t≥0 by L 0 = 1 and

dL t = 1 [τ >t] L t Y t -Z t V (t) -t dB t .
If (L t ) t≥0 is a true martingale, then for any T > 0, Q T on H T defined by

dQ T dP T = L T ,
where P T is the restriction of P to H T , is a probability measure on H T equivalent to P T . Then, by Girsanov Theorem (see, e.g., Theorem 3.5.1 in [START_REF] Karatzas | Brownian Motion and Stochastic Calculus[END_REF]) under Thus, it remains to show that L is a true martingale. Fix T > 0 and for some 0

Q T Y t = y + β T t + τ ∧t 0 q x (V (s) -s, Y s , Z s ) q(V (s) -s, Y s , Z s ) ds, for t ≤ T where β T is a Q T -
≤ t n-1 < t n ≤ T consider E exp 1 2 tn∧τ t n-1 ∧τ Y t -Z t V (t) -t 2 dt . (3.13) As both Y and Z are positive until τ , (Y t -Z t ) 2 ≤ Y 2 t + Z 2 t ≤ R t + Z 2
t by comparison where R satisfies (3.12) with B replacing β. Therefore, since R and Z are independent, the expression in (3.13) is bounded by

E exp 1 2 tn t n-1 R t 1 V (t) -t 2 dt E exp 1 2 tn t n-1 Z t V (t) -t 2 dt ≤ E exp 1 2 R * T tn t n-1 1 V (t) -t 2 dt E exp 1 2 (Z * T ) 2 tn t n-1 1 V (t) -t 2 dt , (3.14) 
where Y * t := sup s≤t |Y s | for any càdlàg process Y . Recall that Z is only a time-changed Brownian motion where the time change is deterministic and R t is the square of the Euclidian norm of a 3-dimensional standard Brownian motion with initial value (y 2 , 0, 0). Thus, since V (T ) > T , the above expression is going to be finite if

E y∨1 exp 1 2 (β * V (T ) ) 2 tn t n-1 1 V (t) -t 2 dt < ∞, (3.15) 
where β is a standard Brownian motion and E x is the expectation with respect to the law of a standard Brownian motion starting at x. Indeed, it is clear that, by time change, (3.15) implies that the second expectation in the RHS of (3.14) is finite. Moreover, since R * T is the supremum over [0, T ] of a 3-dimensional Bessel square process, it can be bounded above by the sum of three supremums of squared Brownian motions over [0, V (T )] (remember that V (T ) > T ), which gives that (3.15) is an upper bound for the first expectation in the RHS of (3.14) as well.

In view of the reflection principle for standard Brownian motion (see, e.g. Proposition 3.7 in Chap. 3 of [START_REF] Revuz | Continuous Martingales and Brownian Motion (3rd Revised Edition)[END_REF]) the above expectation is going to be finite if

tn t n-1 1 V (t) -t 2 dt < 1 V (T ) . (3.16)
However, Assumption 2.1 yields that

T 0 1 V (t)-t 2
dt < ∞. Therefore, we can find a finite sequence of real numbers 0 = t 0 < t 1 < . . . < t n(T ) = T that satisfy (3.16). Since T was arbitrary, this means that we can find a sequence (t n ) n≥0 with lim n→∞ t n = ∞ such that (3.13) is finite for all n. Then, it follows from Corollary 3.5.14 in [START_REF] Karatzas | Brownian Motion and Stochastic Calculus[END_REF] that L is a martingale.

The above proposition establishes 0 as a lower bound to the solution of (3.7) over the interval [0, τ ], however, one can obtain a tighter bound. Indeed, observe that qx q (t, x, z) is strictly increasing in z on [0, ∞) for fixed (t, x) ∈ R 2 ++ . Moreover,

q x q (t, x, 0) := lim z↓0 q x q (t, x, z) = 1 x - x t . Therefore, qx q (V (t) -t, Y t , Z t ) > qx q (V (t) -t, Y t , 0) = 1 Yt -Yt V (t)-t for t ∈ (0, τ ].
Although qx q (t, x, z) is not Lipschitz in x (thus, standard comparison results don't apply), if Y 0 < Z 0 then the comparison result of Exercise 5.2.19 in [START_REF] Karatzas | Brownian Motion and Stochastic Calculus[END_REF] can be applied to obtain P[Y t ≥ R t ; 0 ≤ t < τ ] = 1 where R is given by(3.17).

However, this strict inequality may break down at t = 0 when Y 0 ≥ Z 0 , and, thus, rendering the results of Exercise 5.2.19 is inapplicable. Nevertheless, we will show in Proposition 3.4 that

P[Y t ≥ R t ; 0 ≤ t < τ ] = 1 where R is the solution of R t = y + B t + t 0 1 R s - R s V (s) -s ds, y > 0. (3.17) 
Before proving the comparison result we first establish that there exists a unique strong solution to the SDE above and it equals in law to a scaled, time-changed 3-dimensional Bessel process. We incidentally observe that the existence of a weak solution to an SDE similar to that in (3.17) is proved in Proposition 5.1 in [START_REF] Carr | A jump to default extended CEV model: an application of Bessel processes[END_REF] along with its distributional properties. Unfortunately, our SDE (3.17) cannot be reduced to theirs and moreover, in our setting, existence of a weak solution is not enough.

Proposition 3.3 There exists a unique strong solution to (3.17). Moreover, the law of R is equal to the law of λρ Λ where ρ is a 3-dimensional Bessel process starting at y and

λ t := exp - t 0 1 V (s) -s ds , Λ t := t 0 1 λ 2 s ds.
Proof.

Note that 1

x -x t is decreasing in x and, thus, pathwise uniqueness holds for (3.17). Thus, it suffices to find a weak solution for the existence and the uniqueness of strong solution. Consider the 3-dimensional Bessel process ρ which is the unique strong solution (see Proposition 3.3 in Chap. VI in [START_REF] Revuz | Continuous Martingales and Brownian Motion (3rd Revised Edition)[END_REF]) to

ρ t = y + B t + t 0 1 ρ s ds.
Therefore, ρ Λt = y + B Λt + Λt 0 1 ρs ds. Now, M t = B Λt is a martingale with respect to the timechanged filtration (H Λt ) with quadratic variation given by Λ. By integration by parts we see that

d(λ t ρ Λt ) = λ t dM t + 1 λ t ρ Λt - λ t ρ Λt V (t) -t dt.
Since λ 0 ρ Λ 0 = y and t 0 λ 2 s d[M, M ] s = t, we see that λ t ρ Λt is a weak solution to (3.17). This obviously implies the equivalence in law. Proposition 3.4 Let R be the unique strong solution to (3.17). Then,

P[Y t ≥ R t ; 0 ≤ t < τ ] = 1
where Y is the unique strong solution of (3.7).

Proof. Note that

R t -Y t = t 0 q x q (V (s) -s, R s , 0) - q x q (V (s) -s, Y s , Z s ) ds,
so that by Tanaka's formula (see Theorem 1.2 in Chap. VI of [START_REF] Revuz | Continuous Martingales and Brownian Motion (3rd Revised Edition)[END_REF])

(R t -Y t ) + = t 0 1 [Rs>Ys] q x q (V (s) -s, R s , 0) - q x q (V (s) -s, Y s , Z s ) ds = t 0 1 [Rs>Ys] q x q (V (s) -s, R s , 0) - q x q (V (s) -s, Y s , 0) ds + t 0 1 [Rs>Ys] q x q (V (s) -s, Y s , 0) - q x q (V (s) -s, Y s , Z s ) ds ≤ t 0 1 [Rs>Ys] q x q (V (s) -s, R s , 0) - q x q (V (s) -s, Y s , 0) ds,
since the local time of R -Y at 0 is identically 0 (see Corollary 1.9 n Chap. VI of [START_REF] Revuz | Continuous Martingales and Brownian Motion (3rd Revised Edition)[END_REF]). Let τ n := inf{t > 0 : R t ∧ Y t = 1 n }. Note that as R is strictly positive and Y is strictly positive on [0, τ ], lim n→∞ τ n > τ . Since for each t ≥ 0

q x q (t, x, 0) - q x q (t, y, 0) ≤ 1 t + 1 n 2 |x -y| for all x, y ∈ [1/n, ∞), we have (R t∧τn -Y t∧τn ) + ≤ t 0 (R s∧τn -Y s∧τn ) + 1 V (s) -s + 1 n 2 ds.
Thus, by Gronwall's inequality (see Exercise 14 in Chap. V of [START_REF] Protter | Stochastic integration and differential equations[END_REF]), we have (R t∧τn -Y t∧τn ) + = 0 since

t 0 1 V (s) -s + 1 n 2 ds < ∞
by Assumption 2.1. Thus, the claim follows from the continuity of Y and R and the fact that lim n→∞ τ n > τ .

Remark 1 Note that the above proof does not use the the particular SDE satisfied by Z. The result of the above proposition will remain valid as long as Z is nonnegative and Y is the unique strong solution of (3.7), strictly positive on [0, τ ].

Since the solution to (3.7) is strictly positive on [0, τ ] and the drift term in (2.6) after τ is the same as that of a 3-dimensional Bessel bridge from X τ to 0 over [τ, V (τ )], we have proved Proposition 3.5 There exists a unique strong solution to (2.6). Moreover, the solution is strictly positive in [0, τ ].

Using the well-known properties of a 3-dimensional Bessel bridge (Exercise (3.11), Chapter XI in [START_REF] Revuz | Continuous Martingales and Brownian Motion (3rd Revised Edition)[END_REF]) we also have the following Corollary 3.1 Let X be the unique strong solution of (2.6). Then,

V (τ ) := inf{t > 0 : X t = 0}.
Thus, in order to finish the proof of Theorem 2.1 it remains to show that X is a standard Brownian motion in its own filtration. We will achieve this result in several steps. First, we will obtain the canonical decomposition of X with respect to the minimal filtration, G, satisfying the usual conditions such that X is G-adapted and τ is a G-stopping time. More precisely, G = (G t ) t≥0 where G t = ∩ u>t Gu , with Gt := N σ({X s , s ≤ t}, τ ∧ t) and N being the set of P-null sets. Then, we will enlarge this filtration with τ to show that the canonical decomposition of in this filtration is the same as that of a Brownian motion starting at 1 in its own filtration enlarged with its first hitting time of 0. This observation will allow us to conclude that the law of X is the law of a Brownian motion.

In order to carry out this procedure we will use the following key result, the proof of which is deferred until the next section for the clarity of the exposition. We recall that H(t, a) = ∞ 0 q(t, a, y)dy, where q(t, a, y) is the transition density of a Brownian motion killed at 0. Proposition 3.6 Let X be the unique strong solution of (2.6) and f : R + → R be a bounded measurable function with a compact support contained in (0, ∞).

E[1 [τ >t] f (Z t )|G t ] = 1 [τ >t] ∞ 0 f (z) q(V (t) -t, X t , z) H(V (t) -t, X t ) dz.
Using the above proposition we can easily obtain the G-canonical decomposition of X.

Corollary 3.2 Let X be the unique strong solution of (2.6). Then,

M t := X t -1 - τ ∧t 0 H x (V (s) -s, X s ) H(V (s) -s, X s ) ds - V (τ )∧t τ ∧t ℓ a (V (τ ) -s, X s ) ℓ(V (τ ) -s, X s ) ds
is a standard G-Brownian motion vanishing at 0.

Proof. It follows from Theorem 8.1.5 in [START_REF] Kallianpur | Stochastic Filtering Theory[END_REF] and Lemma A.2 that

X t -1 - t 0 E 1 [τ >s] q x (V (s) -s, X s , Z s ) q(V (s) -s, X s , Z s ) G s ds - V (τ )∧t τ ∧t ℓ a (V (τ ) -s, X s ) ℓ(V (τ ) -s, X s ) ds is a G-Brownian motion. However, E 1 [τ >s] q x (V (s) -s, X s , Z s ) q(V (s) -s, X s , Z s ) G s = 1 [τ >s] ∞ 0 q x (V (s) -s, X s , z) q(V (s) -s, X s , z) q(V (s) -s, X s , z) H(V (s) -s, X s ) dz = 1 [τ >s] 1 H(V (s) -s, X s ) ∞ 0 q x (V (s) -s, X s , z) dz = 1 [τ >s] 1 H(V (s) -s, X s ) ∂ ∂x ∞ 0 q(V (s) -s, x, z) dz x=Xs = 1 [τ >s] H x (V (s) -s, X s ) H(V (s) -s, X s ) .
A naive way to show that X as a solution of (2.6) is a Brownian motion is to calculate the conditional distribution of τ given the minimal filtration generated by X satisfying the usual conditions. Although, as we will see later, the conditional distribution of V (τ ) given an observation of X is defined by the function H as defined in (2.3), verification of this fact leads to a highly non-standard filtering problem. For this reason we use an alternative approach which utilizes the well-known decomposition of Brownian motion conditioned on its first hitting time as in [START_REF] Campi | Insider trading in an equilibrium model with default: a passage from reduced-form to structural modelling[END_REF].

We shall next find the canonical decomposition of X under

G τ := (G τ t ) t≥0 where G τ t = G t σ(τ ). Note that G τ t = F X t+ σ(τ ).
Therefore, the canonical decomposition of X under G τ would be its canonical decomposition with respect to its own filtration initially enlarged with τ . As we shall see in the next proposition it will be the same as the canonical decomposition of a Brownian motion in its own filtration initially enlarged with its first hitting time of 0. Proposition 3.7 Let X be the unique strong solution of (2.6). Then,

X t -1 - V (τ )∧t 0 ℓ a (V (τ ) -s, X s ) ℓ(V (τ ) -s, X s )
ds is a standard G τ -Brownian motion vanishing at 0.

Proof.

First, we will determine the law of τ conditional on G t for each t. Let f be a test function. Then

E 1 [τ >t] f (τ )|G t = E E 1 [τ >t] f (τ )|H t G t = E 1 [τ >t] ∞ t f (u)σ 2 (u)ℓ(V (u) -V (t), Z t ) du G t = 1 [τ >t] ∞ t f (u)σ 2 (u) ∞ 0 ℓ(V (u) -V (t), z) q(V (t) -t, X t , z) H(V (t) -t, X t ) dz du = -1 [τ >t] ∞ t f (u)σ 2 (u) ∞ 0 H t (V (u) -V (t), z) q(V (t) -t, X t , z) H(V (t) -t, X t ) dz du = -1 [τ >t] ∞ t f (u)σ 2 (u) ∂ ∂s ∞ 0 ∞ 0 q(s, z, y) dy q(V (t) -t, X t , z) H(V (t) -t, X t ) dz s=V (u)-V (t) du = -1 [τ >t] ∞ t f (u)σ 2 (u) ∂ ∂s ∞ 0 ∞ 0 q(V (t) -t, X t , z) H(V (t) -t, X t ) q(s, z, y) dz dy s=V (u)-V (t) du = -1 [τ >t] ∞ t f (u)σ 2 (u) ∂ ∂s ∞ 0 q(V (t) -t + s, X t , y) H(V (t) -t, X t ) dy s=V (u)-V (t) du = -1 [τ >t] ∞ t f (u)σ 2 (u) H t (V (u) -t, X t ) H(V (t) -t, X t ) du = 1 [τ >t] ∞ t f (u)σ 2 (u) ℓ(V (u) -t, X t ) H(V (t) -t, X t ) du.
Thus,

P[τ ∈ du, τ > t|G t ] = 1 [τ >t] σ 2 (u) ℓ(V (u)-t,Xt) H(V (t)-t,Xt) du.
Then, it follows from Theorem 1.6 in [START_REF] Mansuy | Random Times and Enlargements of Filtrations in a Brownian Setting[END_REF] that

M t - τ ∧t 0 ℓ a (V (τ ) -s, X s ) ℓ(V (τ ) -s, X s ) - H x (V (s) -s, X s ) H(V (s) -s, X s ) ds
is a G τ -Brownian motion as in Example 1.6 in [START_REF] Mansuy | Random Times and Enlargements of Filtrations in a Brownian Setting[END_REF]. This completes the proof.

Corollary 3.3 Let X be the unique strong solution of (2.6). Then, X is a Brownian motion with respect to F X .

Proof. It follows from Proposition 3.7 that G τ -decomposition of X is given by

X t = 1 + µ t + V (τ )∧t 0 1 X s - X s V (τ ) -s ds,
where µ is a standard G τ -Brownian motion vanishing at 0. Thus, X is a 3-dimensional Bessel bridge from 1 to 0 of length V (τ ). As V (τ ) is the first hitting time of 0 for X and V (τ ) = T 1 in distribution, the result follows using the same argument as in Theorem 3.6 in [START_REF] Campi | Insider trading in an equilibrium model with default: a passage from reduced-form to structural modelling[END_REF].

Next section is devoted to the proof of Proposition 3.6. P[τ > t] .

Note that this measure change is equivalent to an h-transform on the paths of Z until time t where the h-transform is defined by the function H(V (t) -V (•), •) and H is the function defined in (2.3) (see Part 2, Sect. VI.13 of [START_REF] Doob | Classical potential theory and its probabilistic counterpart[END_REF] for the definition and properties of h-transforms). Note also that (1 [τ >s] H(V (t) -V (s), Z s )) s∈[0,t] is an (P, H)-martingale. Therefore, under P τ,t , (X, Z) satisfy

dZ s = σ(s)dβ t s + σ 2 (s) H x (V (t) -V (s), Z s ) H(V (t) -V (s), Z s ) ds (4.18) dX s = dB s + q x (V (s) -s, X s , Z s ) q(V (s) -s, X s , Z s ) ds, (4.19) 
with X 0 = Z 0 = 1 and β t being a P τ,t -Brownian motion. Moreover, the transition density of Z under P τ,t is given by

P τ,t [Z s ∈ dz|Z r = x] = q(V (s) -V (r), x, z) H(V (t) -V (s), z) H(V (t) -V (r), x) . (4.20) Thus, P τ,t [Z s ∈ dz|Z r = x] = p(V (t); V (r), V (s), x, z) where p(t; r, s, x, z) = q(s -r, x, z) H(t -s, z) H(t -r, x) . ( 4 

.21)

Note that p is the transition density of the Brownian motion killed at 0 after the analogous htransform where the h-function is given by H(ts, x).

Lemma 4.1 Let F τ,t,X s = σ(X r ; r ≤ s)∨N τ,t
where X is the process defined by (4.19) with X 0 = 1, and N τ,t is the collection of P τ,t -null sets. Then the filtration (F τ,t,X s ) s∈[0,t] is right-continuous.

Observe that P τ,t [τ > t] = 1. Moreover, for any set E ∈ G t , 1 [τ >t] 1 E = 1 [τ >t] 1 F for some set F ∈ F τ,t,X t
. Then, it follows from the definition of conditional expectation that

E f (Z t )1 [τ >t] |G t = 1 [τ >t] E τ,t f (Z t )|F τ,t,X t , P -a.s.. (4.22)
Thus, it is enough to compute the conditional distribution of Z under P τ,t with respect to (F τ,t,X s

) s∈[0,t] . In order to achieve this goal we will use the characterization of the conditional distributions obtained by Kurtz and Ocone [START_REF] Kurtz | Unique characterization of conditional distributions in nonlinear filtering[END_REF]. We refer the reader to [START_REF] Kurtz | Unique characterization of conditional distributions in nonlinear filtering[END_REF] for all unexplained details and terminology.

Let P be the set of probability measures on the Borel sets of R + topologized by weak convergence. Given m ∈ P and m-integrable f we write mf := R f (z)m(dz). The next result is direct consequence of Lemma 1.1 and subsequent remarks in [START_REF] Kurtz | Unique characterization of conditional distributions in nonlinear filtering[END_REF]: Lemma 4.2 There is a P-valued F τ,t,X -optional process π t (ω, dx) such that

π t s f = E τ,t [f (Z s )|F τ,t,X s ]
for all bounded measurable f . Moreover, (π t s ) s∈[0,t] has a càdlàg version.

Let's recall the innovation process

I s = X s - s 0 π t r κ r dr
where κ r (z) := qx(V (r)-r,Xr,z) q(V (r)-r,Xr,z) . Although it is clear that I depends on t, we don't emphasize it in the notation for convenience. Due to Lemma A.2 π t s κ s exists for all s ≤ t. In order to be able to use the results of [START_REF] Kurtz | Unique characterization of conditional distributions in nonlinear filtering[END_REF] we first need to establish the Kushner-Stratonovich equation satisfied by (π t s ) s∈[0,t) . To this end, let B(A) denote the set of bounded Borel measurable real valued functions on A, where A will be alternatively a measurable subset of R 2 + or a measurable subset of R + . Consider the operator

A 0 : B([0, t] × R + ) → B([0, t] × R + ) defined by A 0 φ(s, x) = ∂φ ∂s (s, x) + 1 2 σ 2 (s) ∂ 2 φ ∂x 2 (s, x) + σ 2 (s) H x H (V (t) -V (s), x) ∂φ ∂x (s, x), (4.23) 
with the domain

D(A 0 ) = C ∞ c ([0, t]×R + )
, where C ∞ c is the class of infinitely differentiable functions with compact support. By Lemma A.1 the martingale problem for A 0 is well-posed over the time interval [0, tε] for any ε > 0. Therefore, it is well-posed on [0, t) and its unique solution is given by (s, Z s ) s∈[0,t) where Z is defined by (4.18). Moreover, the Kushner-Stratonovich equation for the conditional distribution of Z is given by the following:

π t s f = π t 0 f + s 0 π t r (A 0 f )dr + s 0 π t r (κ r f ) -π t r κ r π t r f dI r , (4.24) 
for all f ∈ C ∞ c (R + )(see Theorem 8.4.3 in [START_REF] Kallianpur | Stochastic Filtering Theory[END_REF] and note that the condition therein is satisfied due to Lemma A.2). Note that f can be easily made an element of D(A 0 ) by redefining it as f n where n ∈ C ∞ c (R + ) is such that n(s) = 1 for all s ∈ [0, t). Thus, the above expression is rigorous. The following theorem is a corollary to Theorem 4.1 in [START_REF] Kurtz | Unique characterization of conditional distributions in nonlinear filtering[END_REF].

Theorem 4.1 Let m t be an F τ,t,X -adapted càdlàg P-valued process such that

m t s f = π t 0 f + s 0 m t r (A 0 f )dr + s 0 m t r (κ r f ) -m t r κ r m t r f dI m r , (4.25) 
for all f ∈ C ∞ c (R + ), where I m s = X s - s 0 m t r κ r dr.
Then, m t s = π t s for all s < t, a.s..

Proof.

Proof follows along the same lines as the proof of Theorem 4.1 in [START_REF] Kurtz | Unique characterization of conditional distributions in nonlinear filtering[END_REF], even though, differently from [START_REF] Kurtz | Unique characterization of conditional distributions in nonlinear filtering[END_REF], we allow the drift of X to depend on s and X s , too. This is due to the fact that [START_REF] Kurtz | Unique characterization of conditional distributions in nonlinear filtering[END_REF] used the assumption that the drift depends only on the signal process, Z, in order to ensure that the joint martingale problem (X, Z) is well-posed, i.e. conditions of Proposition 2.2 in [START_REF] Kurtz | Unique characterization of conditional distributions in nonlinear filtering[END_REF] are satisfied. Note that the relevant martingale problem is well posed in our case by Proposition A.1. Now, we can state and prove the following corollary.

Corollary 4.1 Let f ∈ B(R + ). Then, π t s f = R + f (z)p(V (t); s, V (s), x, z) dz,
for s < t where p is as defined in (4.21).

Proof. Let ρ(t; s, x, z) := p(V (t); s, V (s), x, z). Direct computations lead to

ρ s + H x (V (t) -s, x) H(V (t) -s, x) ρ x + 1 2 ρ xx (4.26) = -σ 2 (s) H x (V (t) -V (s), z) H(V (t) -V (s), z) ρ z + 1 2 σ 2 (s)ρ zz .
Define m t ∈ P by m t s f := R + f (z)ρ(t; s, X s , z)dz. Then, using the above pde and Ito's formula one can directly verify that m t solves (4.25). Finally, Theorem 4.1 gives the statement of the corollary. Now, we have all necessary results to prove Proposition 3.6.

Proof of Proposition 3.6. Note that as X is continuous, F τ,t,X t = s<t F τ,t,X s . Fix r < t and let E ∈ F τ,t,X r . We will show that for any

f ∈ C ∞ c (R + ) E τ,t [f (Z t )|1 E ] = E τ,t R + f (z) q(V (t) -t, X t , z) H(V (t) -t, X t ) dz 1 E .
Since Z is continuous and f is bounded we have

E τ,t [f (Z t )1 E ] = lim s↑t E τ,t [f (Z s )1 E ].
As s will eventually be larger than r, 1 E ∈ F τ,t,X s for large enough s and, then, Corollary 4.1 and another application of the Dominated Convergence Theorem will yield

lim s↑t E τ,t [f (Z s )1 E ] = lim s↑t E τ,t R + f (z)p(V (t); V (s) -s, X s , z) dz 1 E = E τ,t lim s↑t R + f (z)p(V (t); V (s) -s, X s , z) dz 1 E .
Since X is strictly positive until τ by Proposition 3.5, min s≤t X s > 0. This yields that

1 H(V (t)-s,Xs) is bounded (ω-by-ω) for s ≤ t. Moreover, q(V (s) -s, X s , •) is bounded by 1 √ 2π(V (s)-s)
. Thus, in view of (4.21),

p(V (t); V (s) -s, X s , z) ≤ K(ω) V (s) -s H(V (t) -V (s), z),
where K is a constant. Since (V (s)s) -1 can be bounded when s is away from 0, H is bounded by 1, and f has a compact support, it follows from the Dominated Convergence Theorem that

lim s↑t R + f (z)p(V (t); V (s) -s, X s , z) dz = R + f (z) q(V (t) -t, X t , z) H(V (t) -t, X t ) dz, P τ,t -a.s..
This in turn shows,

E τ,t [f (Z t )1 E ] = E τ,t [lim s↑t f (Z s )1 E ] = E τ,t R + f (z) q(V (t) -t, X t , z) H(V (t) -t, X t ) dz 1 E .
The claim now follows from (4.22).

with Z s = z, where

η t (r, y) := ∞ V (t)-V (r) 1 √ 2πu 5 exp -y 2 2u du ∞ V (t)-V (r) 1 √ 2πu 3 exp -y 2 2u du , (A.28) thus, η t (r, y) ∈ [0, 1 V (t)-V (t-ε)
] for any r ∈ [0, tε] and y ∈ R + . First, we show the uniqueness of the solutions to the martingale problem. Suppose there exists a weak solution taking values in R + to the SDE above. Thus, there exists ( Z, β) on some filtered probability space ( Ω, F, ( Fr ) r∈[0,t-ε] , P ) such that with Rs = z. Note that this equation is the SDE for a time-changed 3-dimensional Bessel process with a deterministic time change and the initial condition Rs = z. Therefore, it has a unique strong solution which is strictly positive on (s, tε] (see 9. 446 in Chap. XI of [START_REF] Revuz | Continuous Martingales and Brownian Motion (3rd Revised Edition)[END_REF]). Then, from Tanaka's formula (see Theorem 1.2 in Chap. VI of [START_REF] Revuz | Continuous Martingales and Brownian Motion (3rd Revised Edition)[END_REF]), since the local time of R -Z at 0 is identically 0 (see Corollary 1.9 in Chap. VI of [START_REF] Revuz | Continuous Martingales and Brownian Motion (3rd Revised Edition)[END_REF]), we have

d Zr = σ(r)d βr + σ 2 (
( Zt -Rt ) + = t 0 1 [ Zr> Rr] σ 2 (r) 1 Zr -Zr η t (r, Zr ) - 1 Rr dr ≤ 0,
where the last inequality is due to η t ≥ 0, and 1 a < 1 b whenever a > b > 0. Thus, Zr ≤ Rr for r ∈ [s, tε].

Define (L r ) r∈[0,t-ε] by L 0 = 1 and dL r = -L r Zr η t (r, Zr ) d βr .

If (L r ) r∈[0,t-ε] is a true martingale, then Q on Ft-ε defined by

dQ d P = L t-ε ,
is a probability measure on Ft-ε equivalent to P . Then, by Girsanov Theorem (see, e.g., Theorem 3.5.1 in [START_REF] Karatzas | Brownian Motion and Stochastic Calculus[END_REF]) under

Q d Zr = σ(r)d βQ r + σ 2 (r) 1 Zr dr, for r ∈ [s, t -ε],
with Zs = z, where βQ is a Q-Brownian motion. This shows that ( Z, βQ ) is a weak solution to (A.29). As (A.29) has a unique strong solution which is strictly positive on (s, tε], any weak solution to (4.18) is strictly positive on (s, tε]. Thus, due to Theorem 6.4.2 in [START_REF] Stroock | Multidimensional Diffusions Processes[END_REF], the martingale problem for (δ z , A ε 0 ) has a unique solution. Note that although the drift coefficient is not bounded, Theorem 6.4.2 in [START_REF] Stroock | Multidimensional Diffusions Processes[END_REF] is still applicable when L is a martingale. Markov property by Theorem 21.11 in [START_REF] Kallenberg | Foundations of Modern Probability[END_REF]. Thus, by Proposition 1.6 in Chap. III of [START_REF] Revuz | Continuous Martingales and Brownian Motion (3rd Revised Edition)[END_REF] the map z → P z is Borel measurable, thus P µ := R + µ(dz)P z is well-defined and solves the martingale problem for (µ, A ε 0 ). Suppose there is another solution, say P µ of (µ, A ε 0 ). Then, by Proposition 1.6 in Chap. III of [START_REF] Revuz | Continuous Martingales and Brownian Motion (3rd Revised Edition)[END_REF], for any A ∈ H t-ε

P µ (A) = R + µ(dz)P z (A),
by the uniqueness of the martingale problem for (δ z , A ε 0 ). Hence, P µ = P µ and the martingale problem for (µ, A ε 0 ) is well-posed.

We are now ready to show that the joint martingale problem for (X, Z) defined by the operator

A : B([0, t) × R 2 + ) → B([0, t) × R 2 + ) which is given by Aφ(s, x, z) = ∂φ ∂s (s, x, z) + 1 2 ∂ 2 φ ∂x 2 (s, x, z) + 1 2 σ 2 (s) ∂ 2 φ ∂z 2 (s, x, z) (A.31) + q x q (V (t) -V (s), x, z) ∂φ ∂x (s, x, z) + σ 2 (s) H z H (V (t) -V (s), z) ∂φ ∂z (s, x, z),
with the domain

D(A) = C ∞ c ([0, t) × R 2 + ).
Proposition A.1 Let µ ∈ P 2 where P 2 is the set of probability measures on the Borel sets of R 2 + topologized by weak convergence. Then, the martingale problem (µ, A) is well-posed.

Proof.

Clearly, if (µ, A ε ) is well-posed for any ε > 0, where A ε is the restriction of A to B([0, tε], R + ), then (µ, A) is well-posed. As in the proof of Lemma A.1, the problem of wellposedness of (µ, A ε ) can be reduced to that of (δ x,z , A ε ) for any fixed (x, z) ∈ R 2 + due to Theorem 21.11 in [START_REF] Kallenberg | Foundations of Modern Probability[END_REF] and Proposition 1.6 in Chap. III of [START_REF] Revuz | Continuous Martingales and Brownian Motion (3rd Revised Edition)[END_REF]. To this end, in view of Proposition 5.4.11 and Corollary 5.4.8 in [START_REF] Karatzas | Brownian Motion and Stochastic Calculus[END_REF], it suffices to show the existence and the uniqueness of weak solutions to the system of SDEs defined by (4.18) and (4.19) with the initial condition that X s = x and Z s = z for a fixed s ∈ [0, tε]. We will consider the following three cases to finish the proof.

Case 1: x > 0, z > 0. In Lemma A.1 we have proved the existence and the uniqueness of a weak solution to the SDE (4.18) for any initial condition Z s = z for s ∈ [0, tε] and z ≥ 0. Thus, there exists ( Z, β) on some filtered probability space ( Ω, F, ( Fr ) r∈[0,t-ε] , P ) such that ( Z, β) solves the SDE (4.18) with the initial condition Z s = z. Without loss of generality we can assume that the space ( Ω, F, ( Fr ) r∈[0,t-ε] , P ) supports another Brownian motion, B, independent of β. Then, Proposition 3.2 yields that there exists a unique strong and strictly positive solution to (4.19) on ( Ω, F, ( Fr ) r∈[0,t-ε] , P ). Indeed, the proof of Proposition 3.2 would remain the same as long as the initial condition for Z is strictly positive and one observes that although Z is not a Brownian motion, the finiteness of (3.14) still follows from (3.15) since Z is strictly positive and bounded from above by a time-changed 3-dimensional Bessel process and the time change is given by V (t). This demonstrates that there exists a weak solution to the system of SDEs. Moreover, the solution is unique in law since X is pathwise uniquely determined by Z, which is unique in law.

Case 2: x = 0, z ≥ 0. We can use the same arguments as in the previous case once we establish Lemma 3.2 over the time interval [s, tε]. Note that we only need to show the strict positivity of the solution as the existence of a nonnegative weak solution follows along the same lines. Consider the sequence of stopping times (τ n ) n≥1

τ n := inf{r ∈ [s, t -ε] : U r = 1 n },
where inf ∅ = tε. On (τ n , tε] the solution exists and is strictly positive as in Case 1 since Z τn > 0 and U τn = 1 n when τ n < tε. Consider τ := inf n τ n . If τ = s, we are done. Suppose τ > s with some positive probability. Then, on this set U t = 0 for t ≤ τ . However, this contradicts the fact that U solves (3.11) on [s, tε].

Case 3: x > 0, z = 0. As in the previous case it only remains to establish the strict positivity of the solution of (3.11), which exists by the same arguments. Again consider the following sequence of stopping times:

τ n := inf{r ∈ [s, t -ε] : Z r = 1 n },
where inf ∅ = tε. 

) E t 0 1 [τ >s] qx q (V (s) -s, X s , Z s ) 2 ds < ∞. ii) E τ,t t 0 qx q (V (s) -s, X s , Z s ) 2 ds < ∞. iii) E τ,t t-ε 0 σ 2 (s) Hx H (V (t) -V (s), Z s ) ds 2 < ∞, for any ε > 0. Proof. Recall that dP τ,t dPt = 1 [τ >t] P[τ >t]
and that E τ,t denotes the expectation operator with respect to P τ,t . Hence, under P τ,t , (Z, X) satisfy (4.18) and (4.19) with the initial condition X 0 = Z 0 = 1, which implies that they solve the corresponding martingale problem.

i) & ii) Note that P[τ > t] E τ,t t 0 q x q (V (s) -s, X s , Z s ) 2 ds = E 1 [τ >t] t 0 q x q (V (s) -s, X s , Z s ) 2 ds ≤ E t 0 1 [τ >s] q x q (V (s) -s, X s , Z s ) 2 ds .
Thus, it suffices to prove the first assertion since P[τ > t] > 0 for all t ≥ 0. Recall from (3.8) that q x (t, x, z) q(t, x, z)

= z -x t + exp -2xz t 1 -exp -2xz t 2z t = z -x t + f 2xz t 1 x ,
where f (y) = e -y 1-e -y y is bounded by 1 on [0, ∞). As The last inequality obviously holds when t 0 E 1 [τ >s] X 2 s ds = ∞, otherwise, it is a consequence of Ito isometry. Let T > 0 be a constant, then for all t ∈ [0, T ] it follows from Gronwall's inequality that

t
E[1 [τ >t] X 2 t ] ≤ 2 + 3T + (V (T ) + 1) T 0 1 V (s) -s ds e T .
2. In view of Proposition 3.4 we have

1 [τ >s] 1 X 2 s ≤ 1 R 2 s
where R is the unique strong solution of (3.17). Thus, it is enough to show that iii) Recall that H x H (V (t) -V (s), Z s ) = 1 Z s -Z s η t (s, Z s ), where η t is as defined in (A.28). Fix an ε > 0. Then,

t-ε 0 σ 2 (s) H x H (V (t) -V (s), Z s ) ds = V (t-ε) 0 H x H (V (t) -s, Z V -1 (s) ) ds.
Consider the process S r := Z V -1 (r) for r ∈ [0, V (t)). Then, Hence, by Gronwall's inequality, we have E τ,t [S 2 s ] ≤ (3s + 1)e s . In view of (A.33) to demonstrate iii) it suffices to show that

E τ,t t-ε 0 σ 2 (s) H x H (V (t) -V (s), Z s ) ds 2 = E τ,t V (t-ε) 0 1 S s -S s η t (V -1 (s), S s ) ds 2 ≤ 2   E τ,t V (t-ε) 0 1 S s ds 2 + V (t -ε) (V (t) -V (t -ε)) 2 V (t-ε) 0 E τ,
E τ,t V (t-ε) 0 1 S s ds 2 < ∞.
However,

V (t-ε) 0 1 S s ds 2 = S V (t-ε) -S 0 -W t V (t-ε) + V (t-ε) 0 η t (V -1 (s), S s )S s ds 2 ,
which obviously has a finite expectation due to earlier results.

Lemma 3 . 1

 31 Pathwise uniqueness holds for the SDE in (3.7).

Proposition 3 . 2

 32 There exists a unique strong solution to (3.7) which is strictly positive on [0, τ ].

t 0 E 1 R 2 s 1 V 3 √- 1 s 0 qπe 1 t

 1213101 ds < ∞. Recall from Proposition 3.3 that the law of R s is that of λ s ρ Λs where ρ is a 3-dimensional Bessel process starting at 1 andλ t = exp -t 0 (s)sds , the explicit form of the probability density of 3-dimensional Bessel process (see Proposition 3.1 in Chap. VI of[START_REF] Revuz | Continuous Martingales and Brownian Motion (3rd Revised Edition)[END_REF]) one has s , 1, y) dy ds + 3 3 Λ t Λsλ y (Λ s , 1, y * ) dy ds + 3 3 Λ t where the last equality is due to the Mean Value Theorem and y * ∈ [0, y]. It follows from direct computations that |q y (t, 1, y)| ≤ 2 for all y ∈ R and t ∈ R + . Therefore, we have

  Brownian motion. Thus, Y is a weak solution to (3.7) on [0, T ]. Therefore, due to Lemma 3.1 and Corollary 5.3.23 in [9], there exists a unique strong solution to (3.7) on [0, T ], and it is strictly positive on [0, τ ] since Y has this property. Since T is arbitrary, this yields a unique strong solution on [0, ∞) which is strictly positive on [0, τ ].

  0 1 (V (s)-s) 2 ds < ∞ and sup s∈[0,t] E[Z 2s ] ≤ V (t) + 1, the result will follow once we obtain1. sup s∈[0,t] E[X 2 s 1 [τ >s] ] < ∞, and 2. E Observe that the elementary inequality 2ab ≤ a 2 + b 2 implies 21 [τ >t] t 0 X s dB s ≤ 1 + 1 [τ >t]

	t 0 1 [τ >s]	1 X 2 s	ds < ∞,									
	demonstrated below.									
	1. By Ito formula,									
	1 [τ >t] X 2 t = 1 [τ >t] 1 + 2	0	t	X s dB s + 2	0	t	Z s X s -X 2 s V (s) -s	+ f	2Z s X s V (s) -s	+	1 2	ds . (A.32)
							0	t	X s dB s	2	≤ 1 +	0	τ ∧t	X s dB s	2	, and
	2 As f is bounded by 1, using the above inequalities and taking expectations of both sides t 0 Z s X s -X 2 s V (s) -s ds ≤ t 0 Z 2 s -X 2 s V (s) -s ds ≤ t 0 Z 2 s ds. V (s) -s
	of (A.32) yield									
	E[1 [τ >t] X 2 t ] ≤ 2 + E ≤ 2 + 3t + (V (t) + 1) t 0 1 [τ >s] X s dB s t 0 V (s) -s 2 + t 0 1	E[Z 2 s ] V (s) -s ds +	ds + 3t

t 0 E 1 [τ >s] X 2 s ds.

  2S 2 s η t (V -1 (s), S s ))ds + 2S s dW t

			
	t [S 2 s ]ds	 .	(A.33)
	Moreover, under P τ,t		
	dS 2 s = (3 -		

s for all s < V (t) for the Brownian motion W t defined by W t s :=

V -1 (s) 0 σ 2 (r)dβ t r . Thus, E τ,t [S 2 s ] ≤ 3s + 1 + s 0 E τ,t [S 2 r ]dr.

A Appendix

In the next lemma we show that the martingale problem related to Z as defined in (4.18) is well posed. Recall that A 0 is the associated infinitesimal generator defined in (4.23). We will denote the restriction of A 0 to B([0, tε] × R + ) by A ε 0 .

Lemma A.1 Fix ε > 0 and let µ ∈ P. Then, the martingale problem (A ε 0 , µ) is well-posed. Moreover, the SDE (4.18) has a unique weak solution for any nonnegative initial condition and the solution is strictly positive on (s, tε] for any s ∈ [0, tε].

Thus, it remains to show that L is a true martingale when Z is a positive solution to (A.27). For some 0

The expression in (A.30) is bounded by

where Y * t := sup s≤t |Y s | for any càdlàg process Y . Recall that R is only a time-changed Bessel process where the time change is deterministic and, therefore, R2 r is the square of the Euclidian norm at time V (r) of a 3-dimensional standard Brownian motion, starting at (z, 0, 0) at time V (s). Thus, by using the same arguments as in Proposition 3.2, we get that the above expression is going to be finite if

where β is a standard Brownian motion and E x s is the expectation with respect to the law of a standard Brownian motion starting at x at time s. In view of the reflection principle for standard Brownian motion (see, e.g. Proposition 3.7 in Chap. 3 of [START_REF] Revuz | Continuous Martingales and Brownian Motion (3rd Revised Edition)[END_REF]) the above expectation is going to be finite if

.

Clearly, we can find a finite sequence of real numbers 0 = t 0 < t 1 < . . . < t n(T ) = T that satisfy above. Now, it follows from Corollary 3.5.14 in [START_REF] Karatzas | Brownian Motion and Stochastic Calculus[END_REF] that L is a martingale.

In order to show the existence of a nonnegative solution, consider the solution, R, to (A.29), which is a time-changed 3-dimensional Bessel process, thus, nonnegative. Then, define (L -1 r ) r∈[0,t-ε] by L -1 0 = 1 and dL -1 r = L -1 r Rr η t (r, Rr ) d βr . Applying the same estimation to L -1 as we did for L yields that L -1 is a true martingale. Then, Q on Ft-ε defined by

is a probability measure on Ft-ε under which R solves

with Zs = z and βQ is a Q-Brownian motion. This means that the nonnegative process R is a weak solution of (A.27). Therefore, the martingale problem (δ z , A ε 0 ) has a solution by Proposition 5.4.11 and Corollary 5.4.8 in [START_REF] Karatzas | Brownian Motion and Stochastic Calculus[END_REF] since σ is locally bounded. Thus, the martingale problem (δ z , A ε 0 ) is well-posed for any z ∈ R + .

In order to show the well-posedness of the martingale problem for (µ, A ε 0 ) observe that family (P z ) z∈R + , where P z is the unique solution of the martingale problem for (δ z , A ε 0 ), satisfies strong