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Université Blaise Pascal
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Abstract

We propose a finite volume scheme for convection-diffusion equations with nonlinear

diffusion. Such equations arise in numerous physical contexts. We will particularly focus on

the drift-diffusion system for semiconductors and the porous media equation. In these two

cases, it is shown that the transient solution converges to a steady-state solution as t tends

to infinity.

The introduced scheme is an extension of the Scharfetter-Gummel scheme for nonlinear

diffusion. It remains valid in the degenerate case and preserves steady-states. We prove the

convergence of the scheme in the nondegenerate case. Finally, we present some numerical

simulations applied to the two physical models introduced and we underline the efficiency

of the scheme to preserve long-time behavior of the solutions.

Mathematics Subject Classification (2000) 65M12, 82D37.

1 Introduction

In this article, our aim is to elaborate a finite volume scheme for convection-diffusion equations
with nonlinear diffusion. The main objective of building such a scheme is to preserve steady-
states in order to be able to apply it to physical models in which it has been proved that the
solution converges to equilibrium in long time. In particular, this convergence can be observed
in the drift-diffusion system for semiconductors as well as in the porous media equation.
In this context, we will first present these two physical models – drift-diffusion system for semi-
conductors and porous media equation. Then, we will precise the general framework of our study
in this article.

1.1 The drift-diffusion model for semiconductors

The drift-diffusion system consists of two continuity equations for the electron density N(x, t)
and the hole density P (x, t), as well as a Poisson equation for the electrostatic potential V (x, t),
for t ∈ R

+ and x ∈ R
d.
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Let Ω ⊂ R
d (d ≥ 1) be an open and bounded domain. The drift-diffusion system reads







∂tN − div(∇r(N) −N∇V ) = 0 on Ω× (0, T ),
∂tP − div(∇r(P ) + P∇V ) = 0 on Ω× (0, T ),
∆V = N − P − C on Ω× (0, T ),

(1)

where C ∈ L∞(Ω) is the prescribed doping profile.
The pressure has the form of a power law,

r(s) = sγ , γ ≥ 1.

Equations on N and P are supplemented with initial data N0(x) and P0(x). The physically
motivated boundary conditions are either Dirichlet boundary conditions on N , P , V on ohmic
contacts or homogeneous Neumann boundary conditions on r(N), r(P ) and V on insulating
boundary segments.This means that the boundary Γ = ∂Ω is split into two parts Γ = ΓD ∪ ΓN

and, if we denote by n the outward normal to Γ, the boundary conditions are Dirichlet boundary
conditions on ΓD:







N(x, t) = N(x, t), (x, t) ∈ ΓD × (0, T ),
P (x, t) = P (x, t), (x, t) ∈ ΓD × (0, T ),

V (x, t) = V (x, t), (x, t) ∈ ΓD × (0, T ),

(2)

and homogeneous Neumann boundary conditions on ΓN :

∇r(N) · n = ∇r(P ) · n = ∇V · n = 0 on ΓN × (0, T ). (3)

The large time behavior of the solutions to the nonlinear drift-diffusion model (1)-(2)-(3) has
been studied by A. Jüngel in [18]. It is proved that the solution to the transient system converges
to a solution of the thermal equilibrium state as t → ∞ if the boundary conditions (2) are in
thermal equilibrium. The stationary drift-diffusion system reads







−div(∇r(N) −N∇V ) = 0 x ∈ Ω,
−div(∇r(P ) + P∇V ) = 0 x ∈ Ω,
∆V = N − P − C x ∈ Ω,

with the boundary conditions (2)-(3). The thermal equilibrium is a particular steady-state for
which electron and hole currents, namely ∇r(N)−N∇V and ∇r(P ) + P∇V , vanish. The exis-
tence of a thermal equilibrium has been studied in the case of a linear pressure by P. Markowich,
C. Ringhofer and C. Schmeiser in [21, 20], and in the nonlinear case by P. Markowich and A.
Unterreiter in [22].
We introduce the enthalpy function h defined by

h(s) =

∫ s

1

r′(τ)

τ
dτ (4)

and the generalized inverse g of h defined by

g(s) =

{

h−1(s) if h(0+) < s <∞,
0 if s ≤ h(0+).

If the boundary conditions satisfy N,P > 0 and

h(N)− V = αN and h(P ) + V = αP on ΓD,
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the thermal equilibrium is defined by

Neq(x) = g (αN + V eq(x)) , P eq(x) = g (αP − V eq(x)) , x ∈ Ω, (5)

while V eq satisfies the following elliptic problem

{

∆V eq = g (αN + V eq)− g (αP − V eq)− C in Ω,

V eq(x) = V (x) on ΓD, ∇V eq · n = 0 on ΓN .
(6)

The proof of the convergence to thermal equilibrium is based on an energy estimate with the
control of the energy dissipation. More precisely, if we define

H(s) =

∫ s

1

h(τ)dτ, s ≥ 0, (7)

then we can introduce the deviation of the total energy (sum of the internal energies for the
electron and hole densities and the energy due to the electrostatic potential) from the thermal
equilibrium (see [18])

E(t) =

∫

Ω

(

H (N(t))−H (Neq)− h (Neq) (N(t)−Neq) +H (P (t))−H (P eq)

−h (P eq) (P (t)− P eq) +
1

2
|∇ (V (t)− V eq)|2

)

dx, (8)

and the energy dissipation

I(t) = −
∫

Ω

(

N(t) |∇(h(N(t)) − V (t))|2 + P (t) |∇(h(P (t)) + V (t))|2
)

dx. (9)

Then the keypoint of the proof is the following estimate:

0 ≤ E(t) +
∫ t

0

I(τ)dτ ≤ E(0). (10)

1.2 The porous media equation

The flow of a gas in a d-dimensional porous medium is classically described by the Leibenzon-
Muskat model,

{

∂tv = ∆vγ on R
d × (0, T ),

v(x, 0) = v0(x) on R
d,

(11)

where the function v represents the density of the gas in the porous medium.
With a time-dependent scaling (see [6]), we transform (11) into the nonlinear Fokker-Planck
equation

{

∂tu = div(xu +∇uγ) on R
d × (0, T ),

u(x, 0) = u0(x) on R
d.

(12)

J. Carrillo has proved in [6] that the unique stationary solution of (12) is given by the Barenblatt-
Pattle type formula

ueq(x) =

(

C1 −
γ − 1

2γ
|x|2
)1/(γ−1)

+

, (13)

where C1 is a constant such that ueq has the same mass as the initial data u0.
Moreover, J. Carrillo and G. Toscani have proved in [7] that the solution u(x, t) of (11) behaves
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asymptotically, as t → ∞, such as the Barenblatt-Pattle solution ueq(x). As in the case of the
drift-diffusion model, the proof of the convergence to the Barenblatt-Pattle solution is based on
an entropy estimate with the control of the entropy dissipation given by (10), where the relative
entropy is defined by

E(t) =
∫

Rd

(

H(u(t))−H(ueq) +
|x|2
2

(u(t)− ueq)

)

dx, (14)

where H is defined by (7) and the entropy dissipation is given by

I(t) = − d

dt
E(t) = −

∫

Rd

u(t)

∣

∣

∣

∣

∇
(

h(u(t)) +
|x|2
2

)∣

∣

∣

∣

2

dx. (15)

1.3 Motivation

Many numerical schemes have been proposed to approximate the solutions of nonlinear convection-
diffusion equations. In particular, finite volume methods have been proved to be efficient in the
case of degenerate parabolic equations (see [14, 15]).
On the other hand, there exists a wide literature on numerical schemes for the drift-diffusion
equations. It started with 1-D finite difference methods and the Scharfetter-Gummel scheme
([23]). In the linear pressure case (r(s) = s), a mixed exponential fitting finite element scheme
has been successfully developed by F. Brezzi, L. Marini and P. Pietra in [3, 4]. The adaptation of
the mixed exponential fitting method to the nonlinear case has been developed by F. Arimburgo,
C. Baiocchi, L. Marini in [2] and by A. Jüngel in [17] for the one-dimensional problem, and by
A. Jüngel and P. Pietra in [19] for the two-dimensional problem. Moreover, C. Chainais-Hillairet
and Y.J. Peng proposed a finite volume scheme for the drift-diffusion equations in 1-D in [10],
which was extended in [9, 11] in the multidimensional case. C. Chainais-Hillairet and F. Filbet
also introduced in [8] a finite-volume scheme preserving the large time behavior of the solutions
of the nonlinear drift-diffusion model.
Now to explain our approach, let us first recall some previous numerical results concerning the
drift-diffusion system for semiconductors. The precise definitions of schemes considered will be
presented in Section 2. We compare results obtained with three existing finite volume schemes.

• The classical upwind scheme: the diffusion terms in the two parabolic equations on
N and P are discretized classically and the convection terms are discretized with upwind
fluxes. The convergence of this scheme has been proved in [10] and [9, 11] in 1-D and in
2-D respectively.

• The Scharfetter-Gummel scheme: in the case of a linear diffusion, namely r(s) = s,
the Scharfetter-Gummel fluxes are widely used. These fluxes have been proposed by D.L.
Scharfetter and H.K. Gummel [23] for the numerical approximation of the one-dimensional
drift-diffusion model. We also refer to the work of A.M. Il’in [16], where the same kind of
fluxes were introduced for one-dimensional finite-difference schemes.

• The nonlinear upwind scheme: C. Chainais-Hillairet and F. Filbet proposed in [8]
a new finite volume scheme with a standard upwinding for the convective fluxes and a
new nonlinear approximation for the diffusive fluxes. Their flux preserves the thermal
equilibrium and it is proved that the numerical solution converges to this equilibrium when
time goes to infinity.

In Figure 1, we present some results obtained in the case of a linear diffusion (r(s) = s). We
represent the relative energy E and the dissipation of energy I obtained with the upwind flux
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Figure 1: Linear case: relative energy En and dissipation In for different schemes in log scale,
with time step ∆t = 10−2 and space step ∆x = 10−2.

and the Scharfetter-Gummel flux for a test case in one space dimension. The x-axis corresponds
to time and E and I are represented in log scale. We can observe a phenomenon of saturation of
E and I for the upwind flux. In addition, we clearly observe that the energy and its dissipation
obtained with the Scharfetter-Gummel flux converge to zero when time goes to infinity, which
means that densities N(t) and P (t) converge to the thermal equilibrium. It appears that the
Scharfetter-Gummel flux is very efficient, but is only valid for linear diffusion. Moreover, we can
emphasize that contrary to the upwind flux, the Scharfetter-Gummel flux preserves the thermal
equilibrium.
In Figure 2, we present numerical results obtained in the case of a nonlinear diffusion r(s) = s2.
We represent the relative energy E and the dissipation I obtained with the classical upwind flux
and with the nonlinear upwind flux for a test case in one dimension of space. We still observe
a phenomenon of saturation of E and I for the classical upwind flux. For the nonlinear flux, we
clearly notice that the energy and its dissipation converge to zero when time goes to infinity.
Looking at these results, it seems crucial that the numerical flux preserves the thermal equilibrium
to obtain the consistency of the approximate solution in the long time asymptotic limit.

Our aim is to propose a finite volume scheme for convection-diffusion equations with nonlinear
diffusion. We will focus on preserving steady-states in order to obtain a satisfying long-time
behavior of the approximate solution. The scheme proposed in [8] satisfies this property and it
provides an approximate solution whose long time behavior is very satisfactory. Nevertheless,
because of the nonlinear discretization of the diffusive terms, it leads to solve a nonlinear system
at each time step, even in the case of a linear diffusion. It is then quite difficult to implement,
as we will see in Section 2. The idea is to extend the Scharfetter-Gummel scheme, which is only
valid in the case of a linear diffusion, for convection-diffusion equations with nonlinear diffusion,
even in the degenerate case. Some extensions of this scheme have already been proposed. Indeed,
R. Eymard, J. Fuhrmann and K. Gärtner studied a scheme valid in the case where the convection
and diffusion terms are nonlinear (see [12]), but their method leads to solve a nonlinear elliptic
problem at each interface. A. Jüngel and P. Pietra proposed a scheme for the drift-diffusion
model (see [17, 19]), but there were no questions concerning long-time behavior in all these
works.
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Figure 2: Nonlinear case: relative energy En and dissipation In for different schemes in log scale,
with time step ∆t = 5.10−4 and space step ∆x = 10−2.

1.4 General framework

We will now consider the following problem:

∂tu− div(∇r(u) − qu) = 0 for (x, t) ∈ Ω× (0, T ), (16)

with an initial condition
u(x, 0) = u0(x) for x ∈ Ω. (17)

Moreover, we will consider Dirichlet-Neumann boundary conditions. The boundary ∂Ω = Γ is
split into two parts Γ = ΓD ∪ΓN and, if we denote by n the outward normal to Γ, the boundary
conditions are Dirichlet boundary conditions on ΓD

u(x, t) = u(x, t) for (x, t) ∈ ΓD × (0, T ), (18)

and homogeneous Neumann boundary conditions on ΓN :

∇r(u) · n = 0 on ΓN × (0, T ). (19)

Remark 1. We will construct the scheme and perform some numerical experiments in the case
of Dirichlet-Neumann boundary conditions. However, for the analysis of the scheme, we will
only consider the case of Dirichlet boundary conditions (∂Ω = ΓD = Γ).

We suppose that the following hypotheses are fulfilled:

(H1) Ω is an open bounded connected subset of Rd, with d = 1, 2 or 3,

(H2) ∂Ω = ΓD = Γ, u is the trace on Γ× (0, T ) of a function, also denoted u, which is assumed
to satisfy u ∈ H1(Ω× (0, T )) ∩ L∞(Ω× (0, T )) and u ≥ 0 a.e.,

(H3) u0 ∈ L∞(Ω) and u0 ≥ 0 a.e.,

(H4) r ∈ C2(R) is strictly increasing on ]0,+∞[, r(0) = r′(0) = 0, with r′(s) ≥ c0s
γ−1,

(H5) q ∈ C1(Ω,Rd).
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H. Alt, S. Luckhaus and A. Visintin, as well as J. Carrillo, studied the existence and uniqueness
of a weak solution to the problem (16)-(19) in [1] and [6] respectively.

Definition 1. We say that u is a solution to the problem (16)-(17)-(18)-(19) if it verifies:

u ∈ L∞(Ω× (0, T )), u− u ∈ L2(0, T ;H1
0 (Ω))

and for all ψ ∈ D(Ω× [0, T [),

∫ T

0

∫

Ω

(u∂tψ −∇(r(u)) · ∇ψ + uq · ∇ψ) dx dt+
∫

Ω

u(x, 0)ψ(x, 0)dx = 0. (20)

The outline of the paper is the following. In Section 2, we construct the finite volume scheme.
In Section 3, we prove the existence and uniqueness of the solution of the scheme and give
some estimates on this solution. Then, thanks to these estimates, we prove in Section 4 the
compactness of a family of approximate solutions. It yields the convergence (up to a subsequence)
of the solution uδ of the scheme to a solution of (16)-(19) when δ goes to 0. In the last section,
we present some numerical results that show the efficiency of the scheme.

2 Presentation of the numerical scheme

In this section, we present our new finite volume scheme for equation (16) and other existing
schemes. We will then compare these schemes to our new one.

2.1 Definition of the finite volume scheme

We first define the space discretization of Ω. A regular and admissible mesh of Ω is given by a
family T of control volumes (open and convex polygons in 2-D, polyhedra in 3-D), a family E of
edges in 2-D (faces in 3-D) and a family of points (xK)K∈T which satisfy Definition 5.1 in [14].
It implies that the straight line between two neighboring centers of cells (xK , xL) is orthogonal
to the edge σ = K|L.
In the set of edges E , we distinguish the interior edges σ ∈ Eint and the boundary edges σ ∈ Eext.
Because of the Dirichlet-Neumann boundary conditions, we split Eext into Eext = ED

ext ∪ EN
ext

where ED
ext is the set of Dirichlet boundary edges and EN

ext is the set of Neumann boundary edges.
For a control volume K ∈ T , we denote by EK the set of its edges, Eint,K the set of its interior
edges, ED

ext,K the set of edges of K included in ΓD and EN
ext,K the set of edges of K included in

ΓN .
The size of the mesh is defined by

∆x = max
K∈T

(diam(K)).

In the sequel, we denote by d the distance in R
d and m the measure in R

d or Rd−1.
We note for all σ ∈ E

dσ =

{

d(xK , xL), for σ ∈ Eint, σ = K|L,
d(xK , σ), for σ ∈ Eext,K .

For all σ ∈ E , we define the transmissibility coefficient τσ =
m(σ)

dσ
.

For σ ∈ EK , nK,σ is the unit vector normal to σ outward to K.
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We may now define the finite volume approximation of the equation (16)-(19).
Let (T , E , (xK)K∈T ) be an admissible discretization of Ω and let us define the time step ∆t,
NT = E(T/∆t) and the increasing sequence (tn)0≤n≤NT

, where tn = n∆t, in order to get a
space-time discretization D of Ω× (0, T ). The size of the space-time discretization D is defined
by:

δ = max(∆x,∆t).

First of all, the initial condition is discretized by:

U0
K =

1

m(K)

∫

K

u0(x)dx, K ∈ T . (21)

In order to introduce the finite volume scheme, we also need to define the numerical boundary
conditions:

Un+1
σ =

1

∆tm(σ)

∫ tn+1

tn

∫

σ

u(s, t)ds dt, σ ∈ ED
ext, n ≥ 0. (22)

We set

qK,σ =
1

m(σ)

∫

σ

q(x) · nK,σds(x), ∀K ∈ T , ∀σ ∈ EK . (23)

The finite volume scheme is obtained by integrating the equation (16) on each control volume
and by using the divergence theorem. We choose a backward Euler discretization in time (in
order to avoid a restriction on the time step of the form ∆t = O(∆x2)). Then the scheme on u
is given by the following set of equations:

m(K)
Un+1
K − Un

K

∆t
+
∑

σ∈EK

Fn+1
K,σ = 0, (24)

where the numerical flux Fn+1
K,σ is an approximation of −

∫

σ

(∇r(u)− qu) · nK,σ which remains

to be defined.

2.2 Definition of the numerical flux

2.2.1 Existing schemes

We presented in introduction some numerical results obtained with different choices of numerical
fluxes for the drift-diffusion system. We are now going to define precisely these fluxes.

The classical upwind flux. The classical upwind flux is valid both in the case of a linear
diffusion and in the case of a nonlinear diffusion. It was introduced and studied for the drift-
diffusion system for semiconductors in [9], [10] and [11]. The definition of this flux is

Fn+1
K,σ =















τσ

(

r
(

Un+1
K

)

− r
(

Un+1
L

)

+ dσ

(

q+K,σU
n+1
K − q−K,σU

n+1
L

))

, ∀σ = K|L ∈ Eint,K ,
τσ

(

r
(

Un+1
K

)

− r
(

Un+1
σ

)

+ dσ

(

q+K,σU
n+1
K − q−K,σU

n+1
σ

))

, ∀σ ∈ ED
ext,K ,

0, ∀σ ∈ EN
ext,K ,

(25)
where s+ = max(s, 0) and s− = max(−s, 0) are the positive and negative parts of a real number
s.
The upwind flux with nonlinear discretization of the diffusion term. This flux was
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introduced in [8] in the context of the drift-diffusion system for semiconductors. The idea is

to write the flux −
∫

σ

(∇r(u) − qu) · nK,σ as −
∫

σ

(u∇h(u)− qu) · nK,σ, where h is the enthalpy

function defined by (4). The flux is then defined with a standard upwinding for the convective
term and a nonlinear approximation for the diffusive term:

Fn+1
K,σ =














−τσ
(

min
(

Un+1
K , Un+1

L

)

Dh
(

Un+1
)

K,σ
+ dσ

(

q+K,σU
n+1
K − q−K,σU

n+1
L

))

, ∀σ = K|L,
−τσ

(

min
(

Un+1
K , Un+1

σ

)

Dh
(

Un+1
)

K,σ
+ dσ

(

q+K,σU
n+1
K − q−K,σU

n+1
σ

))

, ∀σ ∈ ED
ext,K ,

0, ∀σ ∈ EN
ext,K ,

where for a given function f , Df(U)K,σ is defined by

Df(U)K,σ =







f(UL)− f(UK), if σ = K|L ∈ EK,int,
f(Uσ)− f(UK), if σ ∈ ED

K,ext,

0, if σ ∈ EN
K,ext.

The Scharfetter-Gummel flux. This flux has been proposed and studied in [16] and [23] in
the semiconductor framework. It is only valid in the case of a linear diffusion (r(s) = s). It is
defined by:

Fn+1
K,σ =







τσ
(

B(−dσqK,σ)U
n+1
K −B(dσqK,σ)U

n+1
L

)

, ∀σ = K|L ∈ EK,int,
τσ
(

B(−dσqK,σ)U
n+1
K −B(dσqK,σ)U

n+1
σ

)

, ∀σ ∈ ED
K,ext,

0, ∀σ ∈ EN
K,ext,

where B is the Bernoulli function defined by

B(x) =
x

ex − 1
for x 6= 0, B(0) = 1.

2.2.2 Extension of the Scharfetter-Gummel flux

Now we will extend the Scharfetter-Gummel flux to the case of a nonlinear diffusion. Firstly, if
we consider the linear case with a viscosity coefficient ε > 0, namely

∂tu− div(ε∇u− qu) = 0 for (x, t) ∈ Ω× (0, T ),

then the Scharfetter-Gummel flux is defined by:

Fn+1
K,σ = τσε

(

B

(−dσqK,σ

ε

)

Un+1
K −B

(

dσqK,σ

ε

)

Un+1
L

)

∀σ = K|L ∈ Eint,K . (26)

Using the following properties of the Bernoulli function:

B(s) −→
s→+∞

0 and B(s) ∼
−∞

−s,

it is clear that if ε tends to zero, this flux degenerates into the classical upwind flux for the
transport equation ∂tu− div(qu) = 0:

Fn+1
K,σ = m(σ)

(

q+K,σU
n+1
K − q−K,σU

n+1
L

)

∀σ = K|L ∈ Eint,K . (27)
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Now considering a nonlinear diffusion, we can write ∇r(u) as r′(u)∇u. We note drK,σ an
approximation of r′(u) at the interface σ ∈ EK , which will be defined later. We consider this
term as a viscosity coefficient and then, using (26), we extend the Scharfetter-Gummel flux by
defining:

Fn+1
K,σ =























τσdrK,σ

(

B

(−dσqK,σ

drK,σ

)

Un+1
K −B

(

dσqK,σ

drK,σ

)

Un+1
L

)

, ∀σ = K|L ∈ Eint,K ,

τσdrK,σ

(

B

(−dσqK,σ

drK,σ

)

Un+1
K −B

(

dσqK,σ

drK,σ

)

Un+1
σ

)

, ∀σ ∈ ED
ext,K ,

0, ∀σ ∈ EN
ext,K .

(28)
In the degenerate case, drK,σ can vanish and then this flux degenerates into the upwind flux
(27). Now it remains to define drK,σ.

Definition of drK,σ. A first possibility is to take the value of r′ at the average of UK and
Uσ:

drK,σ =















r′
(

UK + UL

2

)

, ∀σ = K|L ∈ Eint,K ,

r′
(

UK + Uσ

2

)

, ∀σ ∈ ED
ext,K .

(29)

This choice is quite close to the one of A. Jüngel and P. Pietra (see [17, 19]). However, considering
the numerical results presented in the introduction, it seems important that the numerical flux
preserves the equilibrium. Therefore, we define the function dr as follows: for a, b ∈ R+,

dr(a, b) =















h(b)− h(a)

log(b)− log(a)
if ab > 0 and a 6= b,

r′
(

a+ b

2

)

elsewhere,
(30)

and we set for all K ∈ T

drK,σ =

{

dr(UK , UL), for σ = K|L ∈ EK,int,
dr(UK , Uσ), for σ ∈ ED

K,ext.
(31)

Remark 2. Let K ∈ T and σ ∈ EK . We assume that drK,σ is defined by (31) in (28) and that
UK > 0 and Uσ > 0. If dσqK,σ = Dh(U)K,σ, then FK,σ = 0.
Indeed,

FK,σ = τσdrK,σ

(

B

(

−Dh(U)K,σ

drK,σ

)

UK −B

(

Dh(U)K,σ

drK,σ

)

Uσ

)

= τσDh(U)K,σ









exp

(

Dh(U)K,σ

drK,σ

)

UK − Uσ

exp

(

Dh(U)K,σ

drK,σ

)

− 1









.

But using the definition (30) of dr, we obtain

exp

(

Dh(U)K,σ

drK,σ

)

=
Uσ

UK
,

and then FK,σ = 0. Thus the scheme preserves this type of steady-state.
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Time discretization. We choose an explicit expression of drK,σ:

drnK,σ =

{

dr(Un
K , U

n
L), for σ = K|L ∈ EK,int,

dr(Un
K , U

n
σ ), for σ ∈ ED

K,ext.
(32)

Thus we obtain a scheme which leads only to solve a linear system of equations at each time
step.
To sum up, our extension of the Scharfetter-Gummel flux is defined by

Fn+1
K,σ =































τσdr
n
K,σ

(

B

(

−dσqK,σ

drnK,σ

)

Un+1
K −B

(

dσqK,σ

drnK,σ

)

Un+1
L

)

, ∀σ = K|L ∈ EK,int,

τσdr
n
K,σ

(

B

(

−dσqK,σ

drnK,σ

)

Un+1
K −B

(

dσqK,σ

drnK,σ

)

Un+1
σ

)

, ∀σ ∈ ED
K,ext,

0, ∀σ ∈ EN
K,ext,

(33)
where drnK,σ is defined by (32). This flux preserves the equilibrium.

2.3 Consistency of the numerical flux

Lemma 1. Let a, b ∈ R, a, b ≥ 0. Then there exists η ∈ [min(a, b),max(a, b)] such that

dr(a, b) = r′(η).

Proof. The result is clear if ab = 0 or a = b. Let us suppose that ab > 0 and a < b (the proof is
the same if a > b). If we consider the change of variables x = log(a) and y = log(b), we obtain

dr(a, b) =
h(exp(y))− h(exp(x))

y − x

and using Taylor’s formula, there exists θ ∈ [x, y] such that

dr(a, b) = exp(θ)h′(exp(θ)) = r′(exp(θ)) (using the definition of h).

Finally, there exists η = exp(θ) ∈ [a, b] such that

dr(a, b) = r′(η).

Remark 3. The flux (33) can also be written as

Fn+1
K,σ = m(σ)qK,σ

Un+1
K + Un+1

σ

2
− m(σ)qK,σ

2
coth

(

dσqK,σ

2drnK,σ

)

(Un+1
σ − Un+1

K ). (34)

The first term is a centred discretization of the convective part. The second term is consistent

with the diffusive part of equation (16), since coth(x) ∼
0

1

x
.
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3 Properties of the scheme

3.1 Well-posedness of the scheme

The following proposition gives the existence and uniqueness result of the solution to the scheme
defined by (21)-(22)-(24)-(33) and an L∞-estimate on this solution.

Proposition 1. Let us assume hypotheses (H1)-(H5). Let D be an admissible discretization
of Ω × (0, T ). Then there exists a unique solution {Un

K ,K ∈ T , 0 ≤ n ≤ NT } to the scheme
(21)-(22)-(24)-(33), with Un

K ≥ 0 for all K ∈ T and 0 ≤ n ≤ NT .
Moreover, if we suppose that the two following assumptions are fulfilled:

(H6) div(q) = 0,

(H7) there exist two constants m > 0 and M > 0 such that m ≤ u, u0 ≤M ,

then we have
0 < m ≤ Un

K ≤M, ∀K ∈ T , ∀n ≥ 0. (35)

Proof. At each time step, the scheme (21)-(22)-(24)-(33) leads to a system of card(T ) linear
equations on Un+1 = (Un+1

K )K∈T which can be written:

AnUn+1 = Sn,

where :

• An is the matrix defined by

An
K,K=

m(K)

∆t
+
∑

σ∈EK

τσdr
n
K,σB

(

−dσqK,σ

drnK,σ

)

∀K ∈ T ,

An
K,L =− τσdr

n
K,σB

(

dσqK,σ

drnK,σ

)

∀L ∈ T such that σ = K|L ∈ Eint,K ;

• Sn =

(

m(K)

∆t
Un
K

)

K∈T

+ Tbn, with

TbnK =















0 if K ∈ T such that m(∂K ∩ Γ) = 0,
∑

σ∈ED
ext,K

τσdr
n
K,σB

(

dσqK,σ

drnK,σ

)

Un+1
σ if K ∈ T such that m(∂K ∩ Γ) 6= 0.

The diagonal terms of An are positive and the offdiagonal terms are nonnegative (since B(x) > 0
for all x ∈ R and drnK,σ ≥ 0 for all K ∈ T , for all σ ∈ EK). Moreover, An is strictly diagonally
dominant with respect to the columns. An is then an M-matrix so An is invertible, which gives
existence and uniqueness of the solution of the scheme. Moreover, (An)−1 ≥ 0 and since U0

K ≥ 0
for all K ∈ T (using (H3)) and Un+1

σ ≥ 0 for all n ≥ 0, for all σ ∈ ED
ext (using (H2)), it is easy

to prove by induction that Un
K ≥ 0 for all K ∈ T , for all n ≥ 0.

Now, we suppose that (H6) and (H7) are fulfilled. We prove that Un
K ≤M for all K ∈ T , for all

n ≥ 0 by induction. Thanks to hypothesis (H7), we have clearly U0
K ≤M for all K ∈ T .

Let us suppose that Un
K ≤M ∀K ∈ T . We want to prove Un+1

K ≤M ∀K ∈ T .
Let us define M = (M, ...,M)T ∈ R

card(T ). Since An is an M-matrix, we have (An)−1 ≥ 0 and
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then it suffices to prove that An
(

Un+1 −M
)

≤ 0.
We first compute AnM. Using the following property of the Bernoulli function:

B(x) −B(−x) = −x ∀x ∈ R, (36)

we obtain that for all K ∈ T ,

(AnM)K =M





m(K)

∆t
+

∑

σ∈Eint,K

m(σ)qK,σ +
∑

σ∈ED
ext,K

τσdr
n
K,σB

(

−dσqK,σ

drnK,σ

)



 .

Then we compute An
(

Un+1 −M
)

: for all K ∈ T

(

An
(

Un+1 −M
))

K
=

m(K)

∆t
(Un

K −M) +
∑

σ∈ED
ext,K

τσdr
n
K,σB

(

dσqK,σ

drnK,σ

)

Un+1
σ

−M
∑

σ∈Eint,K

m(σ)qK,σ −M
∑

σ∈ED
ext,K

τσdr
n
K,σB

(

−dσqK,σ

drnK,σ

)

.

By induction hypothesis, the first term is nonpositive. Moreover, using hypothesis (H7) and the
property (36), we obtain

(

An
(

Un+1 −M
))

K
≤ −M

∑

σ∈Eint,K

m(σ)qK,σ −M
∑

σ∈ED
ext,K

m(σ)qK,σ

≤ −M
∑

σ∈EK

m(σ)qK,σ .

However, using hypothesis (H6) and the definition of qK,σ (23), we get

∑

σ∈EK

m(σ)qK,σ =
∑

σ∈EK

∫

σ

q · nK,σ ds =

∫

K

div(q) = 0,

and then
(

An
(

Un+1 −M
))

K
≤ 0 for all K ∈ T .

So we have An
(

Un+1 −M
)

≤ 0, therefore we deduce that Un+1−M ≤ 0, hence Un+1
K ≤M ∀K

and we can show by the same way that Un+1
K ≥ m ∀K.

Remark 4. In the case of the drift-diffusion system for semiconductors, the hypothesis (H6) is
not fulfilled (∆V 6= 0). Nevertheless, if we assume that

• the doping profile C is equal to 0,

• there exist two constants m > 0 and M > 0 such that m ≤ N,N0, P , P0 ≤M ,

• M∆t ≤ 1,

then we have, using the same kind of proof as in [9],

0 < m ≤ Nn
K ≤M, ∀K ∈ T , ∀n ≥ 0,

0 < m ≤ Pn
K ≤M, ∀K ∈ T , ∀n ≥ 0.
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Definition 2. Approximate solutions uδ and ũδ to the problem (16)-(17)-(18)-(19) associated
to the discretization D are defined as piecewise constant functions by:

uδ(x, t) = Un+1
K , ∀(x, t) ∈ K × [tn, tn+1[, (37)

ũδ(x, t) = Un
K , ∀(x, t) ∈ K × [tn, tn+1[,

where {Un
K ,K ∈ T , 0 ≤ n ≤ NT } is the unique solution to the scheme (21)-(22)-(24)-(33).

3.2 Discrete L2 (0, T ;H1) estimate on uδ

In this section, we prove a discrete L2
(

0, T ;H1
)

estimate on uδ in the nondegenerate case, which
leads to compactness and convergence results.
For a piecewise constant function vδ defined by vδ(x, t) = vn+1

K for (x, t) ∈ K × [tn, tn+1[ and
vδ(γ, t) = vn+1

σ for (γ, t) ∈ σ × [tn, tn+1[, we define

‖vδ‖21,D =

NT
∑

n=0

∆t









∑

σ∈Eint

σ=K|L

τσ
∣

∣vn+1
L − vn+1

K

∣

∣

2
+
∑

K∈T

∑

σ∈ED
ext,K

τσ
∣

∣vn+1
σ − vn+1

K

∣

∣

2









.

Proposition 2. Let assume (H1)-(H7) are satisfied. Let uδ be defined by the scheme (21)-(22)-
(24)-(33) and (37).
There exists D1 > 0 only depending on r, q, u0, u, Ω and T such that

‖uδ‖21,D ≤ D1. (38)

Proof. We follow the proof of Lemma 4.2 in [12]. Throughout this proof, Di denotes constants
which depend only on r, q, u0, u, Ω and T . We set

U
n+1

K =
1

∆tm(K)

∫ tn+1

tn

∫

K

u(x, t) dx dt, ∀K ∈ T , ∀n ∈ N,

and
wn+1

K = Un+1
K − U

n+1

K , ∀K ∈ T , ∀n ∈ N.

We multiply the scheme (24) by ∆twn+1
K and we sum over n and K. We obtain A + B = 0,

where:

A =

NT
∑

n=0

∑

K∈T

m(K)
(

Un+1
K − Un

K

)

wn+1
K ,

B =

NT
∑

n=0

∆t
∑

K∈T

∑

σ∈EK

Fn+1
K,σ w

n+1
K .

Estimate of A. This term is treated in [12]. We get:

A ≥ −1

2
‖u0 − u(., 0)‖2L2(Ω) − 2‖∂tu‖L1(Ω×(0,T ))|M −m| = −D2. (39)

Estimate of B. A discrete integration by parts yields (using that wn+1
σ = 0 for all σ ∈ ED

ext

and for all n ≥ 0):
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B =

NT
∑

n=0

∆t
∑

σ∈Eint

σ=K|L

Fn+1
K,σ

(

wn+1
K − wn+1

L

)

+

NT
∑

n=0

∆t
∑

K∈T

∑

σ∈ED
ext,K

Fn+1
K,σ

(

wn+1
K − wn+1

σ

)

,

which delivers B = B′ −B, with:

B′ =

NT
∑

n=0

∆t
∑

σ∈Eint

σ=K|L

Fn+1
K,σ

(

Un+1
K − Un+1

L

)

+

NT
∑

n=0

∆t
∑

K∈T

∑

σ∈ED
ext,K

Fn+1
K,σ

(

Un+1
K − Un+1

σ

)

,

B =

NT
∑

n=0

∆t
∑

σ∈Eint

σ=K|L

Fn+1
K,σ

(

U
n+1

K − U
n+1

L

)

+

NT
∑

n=0

∆t
∑

K∈T

∑

σ∈ED
ext,K

Fn+1
K,σ

(

U
n+1

K − U
n+1

σ

)

.

Estimate of B. Using the expression (34) of Fn+1
K,σ , we have B = B1 +B2 with

B1 =

NT
∑

n=0

∆t
∑

σ∈Eint

σ=K|L

m(σ)qK,σ

2

(

Un+1
K + Un+1

L

)

(

U
n+1

K − U
n+1

L

)

+

NT
∑

n=0

∆t
∑

K∈T

∑

σ∈ED
ext,K

m(σ)qK,σ

2

(

Un+1
K + Un+1

σ

)

(

U
n+1

K − U
n+1

σ

)

,

B2 =

NT
∑

n=0

∆t
∑

σ∈Eint

σ=K|L

m(σ)qK,σ

2
coth

(

dσqK,σ

2drnK,σ

)

(

Un+1
K − Un+1

L

)

(

U
n+1

K − U
n+1

L

)

+

NT
∑

n=0

∆t
∑

K∈T

∑

σ∈ED
ext,K

m(σ)qK,σ

2
coth

(

dσqK,σ

2drnK,σ

)

(

Un+1
K − Un+1

σ

)

(

U
n+1

K − U
n+1

σ

)

.

The term B1 is treated like in [12], which leads to

|B1| ≤M‖q‖∞‖uδ‖1,Ddm(Ω) = D3.

We apply Young’s inequality for B2: for any α > 0, we have

∣

∣B2

∣

∣ ≤ α

2

NT
∑

n=0

∆t
∑

σ∈Eint

σ=K|L

τσ
(

drnK,σ

)2

(

dσqK,σ

2drnK,σ

coth

(

dσqK,σ

2drnK,σ

))2
(

Un+1
K − Un+1

L

)2

+
α

2

NT
∑

n=0

∆t
∑

K∈T

∑

σ∈ED
ext,K

τσ
(

drnK,σ

)2

(

dσqK,σ

2drnK,σ

coth

(

dσqK,σ

2drnK,σ

))2
(

Un+1
K − Un+1

σ

)2

+
1

2α
‖uδ‖21,D.

By the hypothesis (H4), we have inf
s∈[m,M ]

r′(s) > 0. Then, using the Lemma 1, the L∞ estimate

on uδ (35) and the hypothesis (H5), we have

dσqK,σ

2drnK,σ

≤ ‖q‖∞diam(Ω)

inf
s∈[m,M ]

r′(s)
, ∀n ∈ N, ∀K ∈ T , ∀σ ∈ EK .
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Moreover, since x 7→ x coth(x) is continuous on R, we obtain

(

dσqK,σ

2drnK,σ

coth

(

dσqK,σ

2drnK,σ

))2

≤ D4, ∀n ∈ N, ∀K ∈ T , ∀σ ∈ EK .

Thus we can bound B:

∣

∣B
∣

∣ ≤ D3 +
α

2
D4

(

sup
s∈[m,M ]

r′(s)

)2

‖uδ‖21,D +
1

2α
‖uδ‖1,D. (40)

Estimate of B′. First, using the expression (34) of the flux and the Lemma 1, we have for
all n ≥ 0, for all K ∈ T and for all σ = K|L ∈ Eint,K

Fn+1
K,σ

(

Un+1
K − Un+1

L

)

=
m(σ)qK,σ

2

(

(

Un+1
K

)2 −
(

Un+1
L

)2
)

+τσr
′(ηnK,σ)

dσqK,σ

2r′(ηnK,σ)
coth

(

dσqK,σ

2r′(ηnK,σ)

)

(

Un+1
K − Un+1

L

)2
.

Then, since x coth(x) ≥ 1 for all x ∈ R, we get:

Fn+1
K,σ

(

Un+1
K − Un+1

L

)

≥ m(σ)qK,σ

2

(

(

Un+1
K

)2 −
(

Un+1
L

)2
)

+ τσ inf
s∈[m,M ]

r′(s)
(

Un+1
K − Un+1

L

)2
.

We obtain the same type of inequality for Fn+1
K,σ

(

Un+1
K − Un+1

σ

)

.Thus we get

B′ ≥ inf
s∈[m,M ]

r′(s)‖uδ‖21,D +

NT
∑

n=0

∆t
∑

σ∈Eint

σ=K|L

m(σ)qK,σ

2

(

(

Un+1
K

)2 −
(

Un+1
L

)2
)

+

NT
∑

n=0

∆t
∑

K∈T

∑

σ∈ED
ext,K

m(σ)qK,σ

2

(

(

Un+1
K

)2 −
(

Un+1
σ

)2
)

.

Through integrating by parts and using the hypothesis (H6), we get

NT
∑

n=0

∆t
∑

σ∈Eint

σ=K|L

m(σ)qK,σ

2

(

(

Un+1
K

)2 −
(

Un+1
L

)2
)

+

NT
∑

n=0

∆t
∑

K∈T

∑

σ∈ED
ext,K

m(σ)qK,σ

2

(

(

Un+1
K

)2 −
(

Un+1
σ

)2
)

= −
NT
∑

n=0

∆t
∑

K∈T

∑

σ∈ED
ext,K

1

2

∫

σ

q(x) · nK,σ ds(x)
(

Un+1
σ

)2
= −D5,

and then
B′ ≥ inf

s∈[m,M ]
r′(s)‖uδ‖21,D −D5. (41)
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Conclusion. Using A + B = 0 and estimates (39), (40) and (41), we finally get for any
α > 0:



 inf
s∈[m,M ]

r′(s)− α

2
D4

(

sup
s∈[m,M ]

r′(s)

)2


 ‖uδ‖21,D ≤ D2 +D3 +D5 +
1

2α
‖uδ‖21,D,

thus for α <

2 inf
s∈[m,M ]

r′(s)

D4

(

sup
s∈[m,M ]

r′(s)

)2 , we obtain ‖uδ‖21,D ≤ D1.

4 Convergence

In this section, we prove the convergence of the approximate solution uδ to a weak solution u of
the problem (16)-(17)-(18)-(19). Our first goal is to prove the strong compactness of (uδ)δ>0 in
L2 (Ω×]0, T [). It comes from the criterion of strong compactness of a sequence by using estimates
(35) and (38). Then, we will prove the weak compactness in L2(Ω×]0, T [) of an approximate
gradient. Finally, we will show the convergence of the scheme.

4.1 Compactness of the approximate solution

The following Lemma is a classical consequence of Proposition 2 and estimates of time translation
for uδ obtained from the scheme (21)-(22)-(24)-(33). The proof is similar to those of Lemma 4.3
and Lemma 4.7 in [14].

Lemma 2 (Space and time translate estimates). We suppose (H1)-(H7). Let D be an admissible
discretization of Ω× (0, T ). Let uδ be defined by the scheme (21)-(22)-(24)-(33) and by (37).
Let û be defined by ûδ = uδ a.e. on Ω× (0, T ) and ûδ = 0 a.e. on R

d+1 \ Ω× (0, T ).
Then we get the existence of M2 > 0, only depending on Ω, T , r, q, u0, u and not on D such
that

∫ T

0

∫

Ω

(ûδ(x+ η, t)− ûδ(x, t))
2
dx dt ≤M2|η|(|η|+ 4δ), ∀η ∈ R

d, (42)

and
∫ T

0

∫

Ω

(ûδ(x, t+ τ)− ûδ(x, t))
2
dx dt ≤M2|τ |, ∀τ ∈ R. (43)

Now, we define an approximation ∇δuδ of the gradient of u. Therefore, we will define a dual
mesh. For K ∈ T and σ ∈ EK , we define TK,σ as follows:

• if σ = K|L ∈ Eint,K , then TK,σ is the cell whose vertices are xK , xL and those of σ = K|L,

• if σ ∈ Eext,K , then TK,σ is the cell whose vertices are xK and those of σ.

See [11] for an example of construction of TK,σ. Then
(

(TK,σ)σ∈EK

)

K∈T
define a partition of

Ω. The approximation ∇δuδ is a piecewise function defined in Ω× (0, T ) by:

∇δuδ(x, t) =















m(σ)

m(TK,σ)

(

Un+1
L − Un+1

K

)

nK,σ if (x, t) ∈ TK,σ × [tn, tn+1[, σ = K|L,
m(σ)

m(TK,σ)

(

Un+1
σ − Un+1

K

)

nK,σ if (x, t) ∈ TK,σ × [tn, tn+1[, σ ∈ Eext,K .
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Proposition 3. We suppose (H1)-(H7).
There exist subsequences of (uδ)δ>0 and (∇δuδ)δ>0, still denoted (uδ)δ>0 and (∇δuδ)δ>0, and a
function u ∈ L∞(0, T ;H1(Ω)) such that

uδ → u in L2(Ω×]0, T [) strongly, as δ → 0,
∇δuδ ⇀ ∇u in (L2(Ω×]0, T [))d weakly, as δ → 0.

Proof. Using estimates (42)-(43) and applying the Riesz-Fréchet-Kolmogorov criterion of strong
compactness [5], we obtain the first part of this Proposition. The result concerning ∇δuδ is
proved in [9].

Since ũδ(x, t + ∆t) = uδ(x, t) for all (x, t) ∈ Ω×]0, T [, it is clear using the time translate
estimate (43) that (uδ)δ>0 and (ũδ)δ>0 have the same limit u in L2(Ω×]0, T [). Then we have
the following Corollary:

Corollary 1. We suppose (H1)-(H7). Let u be the function defined in Proposition (3).
There exists a subsequence of (ũδ)δ>0, still denoted by (ũδ)δ>0, such that

ũδ → u in L2(Ω×]0, T [) strongly, as δ → 0.

4.2 Convergence of the scheme

Now it remains to prove that the function u defined in Proposition 3 satisfies Definition 1 of a
weak solution. The main difficulty in proving this comes from the fact that the diffusive and
convective terms are put together in the Scharfetter-Gummel flux.

Theorem 1. Assume (H1)-(H7) hold. Then the function u defined in Proposition 3 satis-
fies the equation (16)-(17)-(18)-(19) in the sense of (20) and the boundary condition u − u ∈
L∞(0, T ;H1

0 (Ω)).

Proof. Let ψ ∈ D(Ω× [0, T [) be a test function and ψn
K = ψ(xK , t

n) for all K ∈ T and n ≥ 0. We
suppose that δ > 0 is small enough such that Supp(ψ) ⊂ {x ∈ Ω; d(x,Γ) > δ}× [0, (NT − 1)∆t[.
Let us define an approximate gradient of ψ by

∇δψ(x, t) =















m(σ)

m(TK,σ)
(ψn

L − ψn
K)nK,σ if (x, t) ∈ TK,σ × [tn, tn+1[, σ = K|L,

m(σ)

m(TK,σ)
(ψn

σ − ψn
K)nK,σ if (x, t) ∈ TK,σ × [tn, tn+1[, σ ∈ Eext,K .

We get from [13] that (∇δψ)δ>0 weakly converges to ∇ψ in (L2(Ω× (0, T )))d as δ goes to zero.
Let us introduce the following notations:

B10(δ) = −
(

∫ T

0

∫

Ω

uδ(x, t)∂tψ(x, t) dx dt +

∫

Ω

uδ(x, 0)ψ(x, 0) dx

)

,

B20(δ) =

∫ T

0

∫

Ω

r′(ũδ(x, t))∇δuδ(x, t) · ∇ψ(x, t) dx dt,

B30(δ) = −
∫ T

0

∫

Ω

uδ(x, t)q(x) · ∇δψ(x, t) dx dt,

and
ε(δ) = −B10(δ)−B20(δ)− B30(δ).
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Multiplying the scheme (24) by ∆tψn
K and summing through K and n, we obtain

B1(δ) +B2(δ) +B3(δ) = 0,

where

B1(δ) =

NT
∑

n=0

∑

K∈T

m(K)
(

Un+1
K − Un

K

)

ψn
K ,

B2(δ) = −
NT
∑

n=0

∆t
∑

K∈T

∑

σ∈EK

m(σ)qK,σ

2
coth

(

dσqK,σ

2drnK,σ

)

(

Un+1
σ − Un+1

K

)

ψn
K ,

B3(δ) =

NT
∑

n=0

∆t
∑

K∈T

∑

σ∈EK

m(σ)qK,σ
Un+1
K + Un+1

σ

2
ψn
K .

From the strong convergence of the sequences (uδ)δ>0 and (ũδ)δ>0 to u in L2(Ω×]0, T [) and the
weak convergence of the sequences (∇δuδ)δ>0 to ∇u and (∇δψ)δ>0 to ∇ψ in (L2(Ω×]0, T [))d, it
is easy to see that

ε(δ) −→
∫ T

0

∫

Ω

(u(x, t)∂tψ − r′(u(x, t))∇u(x, t) · ∇ψ + u(x, t)q(x) · ∇ψ) dx dt

+

∫

Ω

u(x, 0)ψ(x, 0) dx, as δ → 0.

Therefore, it suffices to prove that ε(δ) −→ 0 as δ → 0 and to this end we are going to prove
that ε(δ) +B1(δ) +B2(δ) +B3(δ) −→ 0 as δ → 0.

Estimate of B1(δ)−B10(δ). This term is discussed for example in [9] (Theorem 5.2) and it
is proved that:

|B1(δ)−B10(δ)| ≤
[

(T + 1)m(Ω)M‖ψ‖C2(Ω×(0,T ))

]

δ −→ 0 as δ → 0.

Estimate of B2(δ)−B20(δ). Using a discrete integration by parts, we write

B2(δ) =

NT
∑

n=0

∆t
∑

σ∈Eint

σ=K|L

m(σ)qK,σ

2
coth

(

dσqK,σ

2drnK,σ

)

(

Un+1
L − Un+1

K

)

(ψn
L − ψn

K).

Then we rewrite B2(δ) = B21(δ) +B22(δ) +B23(δ), with

B21(δ) =

NT
∑

n=0

∆t
∑

σ∈Eint

σ=K|L

τσr
′(Un

K)
(

Un+1
L − Un+1

K

)

(ψn
L − ψn

K),

B22(δ) =

NT
∑

n=0

∆t
∑

σ∈Eint

σ=K|L

τσ

(

dσqK,σ

2drnK,σ

coth

(

dσqK,σ

2drnK,σ

)

− 1

)

drnK,σ

(

Un+1
L − Un+1

K

)

(ψn
L − ψn

K),

B23(δ) =

NT
∑

n=0

∆t
∑

σ∈Eint

σ=K|L

τσ
(

drnK,σ − r′(Un
K)
) (

Un+1
L − Un+1

K

)

(ψn
L − ψn

K) .
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Using the definition of ũδ and ∇δuδ, we rewrite B20(δ) as B210(δ) +B220(δ) with:

B210(δ) =

NT
∑

n=0

∑

σ∈Eint

σ=K|L

r′(Un
K)

m(σ)

m(TK,σ)

(

Un+1
L − Un+1

K

)

∫ tn+1

tn

∫

TK,σ

∇ψ(x, t) · nK,σ dx dt

B220(δ) =

NT
∑

n=0

∑

σ∈Eint

σ=K|L

(r′(Un
L)− r′(Un

K))
m(σ)

m(TK,σ)

(

Un+1
L − Un+1

K

)

∫ tn+1

tn

∫

TK,σ∩L

∇ψ(x, t) · nK,σdx dt.

Now we prove that B21(δ)−B210(δ) → 0 as δ → 0 and B22(δ), B23(δ), B220(δ) → 0 as δ → 0.

Estimate of B21(δ)−B210(δ). We have

B21(δ)−B210(δ) =

NT
∑

n=0

∑

σ∈Eint

m(σ)r′(Un
K)

[

∫ tn+1

tn

(

ψn
L − ψn

K

dσ
− 1

m(TK,σ)

∫

TK,σ

∇ψ(x, t) · nK,σ dx

)

dt

]

.

Since the straight line xKxL is orthogonal to the edge K|L, we have xL − xK = dσnK,σ and
then from the regularity of ψ,

ψn
L − ψn

K

dσ
= ∇ψ(xK , tn) · nK,σ +O(∆x)

= ∇ψ(x, t) · nK,σ +O(δ), ∀(x, t) ∈ TK,σ ×
(

tn, tn+1
)

.

Then by taking the mean value over TK,σ, there exists D6 > 0 depending only on ψ such that

∣

∣

∣

∣

∣

∫ tn+1

tn

(

ψn
L − ψn

K

dσ
− 1

m(TK,σ)

∫

TK,σ

∇ψ · nK,σ dx

)

dt

∣

∣

∣

∣

∣

≤ D6δ∆t,

and then

|B21(δ)−B210(δ)| ≤ δD6 sup
s∈[m,M ]

r′(s)

NT
∑

n=0

∆t
∑

σ∈Eint

m(σ)
∣

∣Un+1
L − Un+1

K

∣

∣ .

Since the straight line xKxL is orthogonal to the edge σ = K|L for all σ ∈ Eint,K and the mesh
is regular, there is a constant D7 > 0 depending only on the dimension of the domain and the
geometry of T such that m(σ)dσ ≤ D7m(TK,σ) for all K ∈ T , all σ ∈ Eext,K and then using the
Cauchy-Schwarz inequality and the L2(0, T ;H1) estimate (38), we obtain

|B21(δ)−B210(δ)| ≤ δD6 sup
s∈[m,M ]

r′(s)
√

D1TD7m(Ω) −→ 0 as δ → 0.

Estimate of B22(δ). Since x 7→ x coth(x) is a 1-Lipschitz continuous function and is equal
to 1 in 0, we have

|B22(δ)| ≤
NT
∑

n=0

∆t
∑

σ∈Eint

m(σ)

2
|qK,σ|

∣

∣Un+1
L − Un+1

K

∣

∣ |ψn
L − ψn

K |

≤ 2δ‖q‖∞
NT
∑

n=0

∆t
∑

σ∈Eint

τσ
∣

∣Un+1
L − Un+1

K

∣

∣ |ψn
L − ψn

K | , since dσ ≤ 2δ.
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Then using the Cauchy-Schwarz inequality, the regularity of ψ and the L2(0, T ;H1) estimate
(38), there exists D8 > 0 only depending on T and Ω such that:

|B22(δ)| ≤ δ‖q‖∞D8‖ψ‖C1

√

D1 −→ 0 as δ → 0.

Estimate of B23(δ). Using Lemma 1 and hypothesis (H4), we have

∣

∣drnK,σ − r′(Un
K)
∣

∣ ≤ sup
s∈[m,M ]

|r′′(s)| |Un
L − Un

K | , ∀σ ∈ Eint, σ = K|L.

Using the regularity of ψ and the Cauchy-Schwarz inequality, we obtain

|B23(δ)| ≤ δ sup
s∈[m,M ]

|r′′(s)|‖ψ‖C1

NT
∑

n=0

∆t
∑

σ∈Eint

τσ |Un
L − Un

K |
∣

∣Un+1
L − Un+1

K

∣

∣ ,

and then using the L2(0, T ;H1) estimate (38), we get

|B23(δ)| ≤ δ sup
s∈[m,M ]

|r′′(s)|‖ψ‖C1D1 −→ 0 as δ → 0.

Estimate of B220(δ). We obtain the same type of estimate as for B23(δ):

|B220(δ)| ≤ 2δ sup
s∈[m,M ]

|r′′(s)|‖ψ‖C1D1 −→ 0 as δ → 0.

Estimate of B3(δ)−B30(δ). Using a discrete integration by parts, we obtain

B3(δ) = −
NT
∑

n=0

∆t
∑

σ∈Eint

m(σ)qK,σ
Un+1
K + Un+1

L

2
(ψn

L − ψn
K) ,

and then we rewrite B3(δ) as B31(δ) + B32(δ), with

B31(δ) = −
NT
∑

n=0

∆t
∑

σ∈Eint

m(σ)qK,σ
Un+1
L − Un+1

K

2
(ψn

L − ψn
K) ,

B32(δ) = −
NT
∑

n=0

∆t
∑

σ∈Eint

m(σ)qK,σU
n+1
K (ψn

L − ψn
K) .

Using the definition of ∇δψ, we get

B30(δ) = −
NT
∑

n=0

∑

σ∈Eint

∫ tn+1

tn

∫

TK,σ

uδ(x, t)
m(σ)

m(TK,σ)
(ψn

L − ψn
K)q(x) · nK,σ dx dt,

which gives, using the definition of uδ, B30(δ) = B310(δ) +B320(δ), where

B310(δ) = −
NT
∑

n=0

∆t
∑

σ∈Eint

m(σ)
(

Un+1
L − Un+1

K

)

(ψn
L − ψn

K)
1

m(TK,σ)

∫

TK,σ∩L

q(x) · nK,σ dx,

B320(δ) = −
NT
∑

n=0

∑

σ∈Eint

m(σ)Un+1
K (ψn

L − ψn
K)

1

m(TK,σ)

∫

TK,σ

q(x) · nK,σ dx.
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Now we prove that B32(δ)−B320(δ) → 0 as δ → 0 and B31(δ), B310(δ) → 0 as δ → 0.
Using the regularity of q, there exists D9 > 0 which does not depend on δ such that

∣

∣

∣

∣

∣

1

m(σ)

∫

σ

q(x) · nK,σ ds(x) −
1

m(TK,σ)

∫

TK,σ

q(x) · nK,σ dx

∣

∣

∣

∣

∣

≤ D9δ.

Then we can estimate B32(δ)−B320(δ):

|B32(δ)−B320(δ)| ≤ δD9M

NT
∑

n=0

∆t
∑

σ∈Eint

m(σ) |ψn
L − ψn

K |

≤ δD8D9M‖ψ‖C1

√

D7m(Ω) −→ 0 as δ → 0.

Moreover, we have

|B31(δ)| ≤ δ‖q‖∞
NT
∑

n=0

∆t
∑

σ∈Eint

τσ
∣

∣Un+1
L − Un+1

K

∣

∣ |ψn
L − ψn

K |

≤ δ‖q‖∞‖ψ‖C1D8

√

D1 −→ 0 as δ → 0.

We obtain in the same way that B310(δ) −→ 0 as δ → 0.

Hence u satisfies
∫ T

0

∫

Ω

(u(x, t)∂tψ(x, t) + r′(u(x, t))∇u(x, t) · ∇ψ(x, t) + u(x, t)q(x) · ∇ψ(x, t)) dx dt

+

∫

Ω

u(x, 0)ψ(x, 0) dx = 0,

and then
∫ T

0

∫

Ω

(u(x, t)∂tψ(x, t) +∇(r(u(x, t))) · ∇ψ(x, t) + u(x, t)q(x) · ∇ψ(x, t)) dx dt

+

∫

Ω

u(x, 0)ψ(x, 0) dx = 0.

It remains to show that u − u ∈ L∞(0, T ;H1
0 (Ω)). This proof is based on the L2(0, T ;H1(Ω))

estimate (38) and is similar to the one of Theorem 5.1 in [9].

5 Numerical simulations

5.1 Order of convergence

We consider the following one dimensional test case, picked in the paper of R. Eymard, J.
Fuhrmann and K. Gärtner [12]. We look at the case where, in (16) we take Ω = (0, 1), T = 0.004,
r : s 7→ s2, q = 100, in (17) we take u0 = 0 and in (18) we take, for v = 200,

u(0, t) = (v − q)vt/2

u(1, t) =

{

0 for t < 1/v,
(v − q)(vt− 1)/2 otherwise.
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The unique weak solution of this problem is then given by

u(x, t) =

{

(v − q)(vt − x)/2 if x < vt,
0 if x ≥ vt.

The time step is taken equal to ∆t = 10−8 to study the order of convergence with respect to
the spatial step size ∆x. In Tables 1 and 2, we compare the order of convergence in L∞ and
L2 norms of the scheme (21)-(22)-(24) defined on one hand with the classical upwind flux (25)
and on the other hand with the Scharfetter-Gummel extended flux (33). We obtain the same
order of convergence as in [12]. Moreover, it appears that even if we are in a degenerate case,
the Scharfetter-Gummel extended scheme is more accurate than the classical upwind scheme.

j ∆x(j) ‖u− uδ‖L∞ Order ‖u− uδ‖L∞ Order
Upwind SG extended

0 2.5.10−2 1.110 2.137.10−1

1 1.25.10−2 7.237.10−1 0.62 1.107.10−1 0.95
2 6.3.10−3 4.485.10−1 0.69 5.631.10−2 0.98
3 3.1.10−3 2.685.10−1 0.74 2.84.10−2 0.99
4 1.6.10−3 1.568.10−1 0.78 1.426.10−2 1
5 8.10−4 9.10−2 0.80 7.15.10−3 1

Table 1: Experimental order of convergence in L∞ norm for spatial step sizes ∆x(j) =
0.1

2j+2
of

the classical upwind scheme and of the Scharfetter-Gummel extended scheme.

j ∆x(j) ‖u− uδ‖L2 Order ‖u− uδ‖L2 Order
Upwind SG extended

0 2.5.10−2 3.336.10−1 4.806.10−2

1 1.25.10−2 1.852.10−1 0.85 1.642.10−2 1.55
2 6.3.10−3 9.911.10−2 0.9 5.695.10−3 1.53
3 3.1.10−3 5.182.10−2 0.94 2.10−3 1.51
4 1.6.10−3 2.669.10−2 0.96 7.142.10−4 1.49
5 8.10−4 1.361.10−2 0.97 2.695.10−4 1.41

Table 2: Experimental order of convergence in L2 norm for spatial step sizes ∆x(j) =
0.1

2j+2
of

the classical upwind scheme and of the Scharfetter-Gummel extended scheme.

5.2 Large time behavior

5.2.1 The drift-diffusion system for semiconductors

We may define the finite volume approximation of the drift-diffusion system (1)-(2)-(3). Initial
and boundary conditions are approximated by (21) and (22). The doping profile is approximated
by (CK)K∈T by taking the mean value of C on each volume K. The scheme for the system (1)
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is given by:































m(K)
Nn+1

K −Nn
K

∆t
+
∑

σ∈EK

Fn+1
K,σ = 0, ∀K ∈ T , ∀n ≥ 0,

m(K)
Pn+1
K − Pn

K

∆t
+
∑

σ∈EK

Gn+1
K,σ = 0, ∀K ∈ T , ∀n ≥ 0,

∑

σ∈EK
τσDV

n
K,σ = m(K) (g(αN + V n

K)− g(αP − V n
K)− CK) , ∀K ∈ T , ∀n ≥ 0,

where

Fn+1
K,σ = τσdr (N

n
K , N

n
σ )

(

B

( −DV n
K,σ

dr (Nn
K , N

n
σ )

)

Nn+1
K −B

(

DV n
K,σ

dr(Nn
K , N

n
σ )

)

Nn+1
σ

)

, ∀σ ∈ EK ,

and

Gn+1
K,σ = τσdr(P

n
K , P

n
σ )

(

B

(

DV n
K,σ

dr(Pn
K , P

n
σ )

)

Pn+1
K −B

( −DV n
K,σ

dr(Pn
K , P

n
σ )

)

Pn+1
σ

)

, ∀σ ∈ EK .

We compute an approximation (Neq
K , P eq

K , V eq
K )K∈T of the thermal equilibrium (Neq, P eq, V eq)

defined by (5)-(6) with the finite volume scheme proposed by C. Chainais-Hillairet and F. Filbet
in [8].
Then we introduce the discrete version of the deviation of the total energy from the thermal
equilibrium (8): for n ≥ 0,

En =
∑

K∈T

m(K) (H(Nn
K)−H(Neq

K )− h(Neq
K ) (Nn

K −Neq
K ))

+
∑

K∈T

m(K) (H(Pn
K)−H(P eq

K )− h(P eq
K )(Pn

K − P eq
K ))

+
1

2

∑

σ∈Eint

σ=K|L

τσ

∣

∣

∣DV n
K,σ −DV eq

K,σ

∣

∣

∣

2

+
1

2

∑

K∈T

∑

σ∈ED
ext,K

τσ

∣

∣

∣DV n
K,σ −DV eq

K,σ

∣

∣

∣

2

,

and the discrete version of the energy dissipation (9): for n ≥ 0,

In =
∑

σ∈Eint

σ=K|L

τσ min
(

Nn+1
K , Nn+1

L

)

[

D
(

h
(

Nn+1
)

− V n
)

K,σ

]2

+
∑

K∈T

∑

σ∈Eext,K

τσ min
(

Nn+1
K , Nn+1

σ

)

[

D
(

h
(

Nn+1
)

− V n
)

K,σ

]2

+
∑

σ∈Eint

σ=K|L

τσ min
(

Pn+1
K , Pn+1

L

)

[

D
(

h
(

Pn+1
)

+ V n
)

K,σ

]2

+
∑

K∈T

∑

σ∈Eext,K

τσ min
(

Pn+1
K , Pn+1

σ

)

[

D
(

h
(

Pn+1
)

+ V n
)

K,σ

]2

.

We present a test case for a geometry corresponding to a PN-junction in 2D picked in the paper
of C. Chainais-Hillairet and F. Filbet [8]. The doping profile is piecewise constant, equal to +1
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Figure 3: Evolution of the relative energy En and its dissipation In in log-scale for different
schemes.

in the N-region and −1 in the P-region.
The Dirichlet boundary conditions are

N = 0.1, P = 0.9, V =
h(N)− h(P )

2
on {y = 1, 0 ≤ x ≤ 0.25},

N = 0.9, P = 0.1, V =
h(N)− h(P )

2
on {y = 0}.

Elsewhere, we put homogeneous Neumann boundary conditions.
The pressure is nonlinear: r(s) = sγ with γ = 5/3, which corresponds to the isentropic model.
We compute the numerical approximation of the thermal equilibrium and of the transient drift-
diffusion system on a mesh made of 896 triangles, with time step ∆t = 0.01.
We then compare the large time behavior of approximate solutions obtained with the three
following fluxes:

• the upwind flux defined by (25) (Upwind),

• the Scharfetter-Gummel extended flux (33) with the first choice (29) of drK,σ , close to that
of Jüngel and Pietra (SG-JP),

• the Scharfetter-Gummel extended flux (33) with the new definition (31) of drK,σ (SG-ext).

In Figure 3 we compare the discrete relative energy En and its dissipation In obtained with the
Upwind flux, the SG-JP flux and the SG-ext flux. With the third scheme, we observe that
En and In converge to zero when time goes to infinity, without a saturation phenomenon. This
scheme is the only one of the three which preserves thermal equilibrium, so it appears that this
property is crucial to have a good asymptotic behavior.

5.2.2 The porous media equation

We recall that the unique stationary solution ueq of the porous media equation (12) is given
by the Barenblatt-Pattle type formula (13), where C1 is such that ueq as the same mass as the
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initial data u0. We define an approximation (Ueq
K )K∈T of ueq by

Ueq
K =

(

C̃1 −
γ − 1

2γ
|xK |2

)1/(γ−1)

+

, K ∈ T ,

where C̃1 is such that the discrete mass of (Ueq
K )K∈T is equal to that of

(

U0
K

)

K∈T
, namely

∑

K∈T

m(K)Ueq
K =

∑

K∈T

m(K)U0
K . We use a fixed point algorithm to compute this constant C̃1.

We introduce the discrete version of the relative entropy (14)

En =
∑

K∈T

m(K)

(

H(Un
K)−H(Ueq

K ) +
|xK |2
2

(Un
K − Ueq

K )

)

,

and the discrete version of the entropy dissipation (15)

In =
∑

σ∈Eint

σ=K|L

τσ min
(

Un+1
K , Un+1

L

)

∣

∣

∣

∣

∣

D

(

h(Un) +
|x|2
2

)

K,σ

∣

∣

∣

∣

∣

2

+
∑

K∈T

∑

σ∈Eext,K

τσ min
(

Un+1
K , Un+1

σ

)

∣

∣

∣

∣

∣

D

(

h(Un) +
|x|2
2

)

K,σ

∣

∣

∣

∣

∣

2

.

We consider the following one dimensional test case: r(s) = s2, with initial condition

u0(x) =
1

2
√
2π

(

exp

(−(x− 2)2

2

)

+ exp

(−(x+ 2)2

2

))

.

Then we compute the approximate solution on (−6, 6) × (0, 10). The space step is fixed to
∆x = 0.01 and the time step to ∆t = 0.001.
In Figure 4, we plot the evolution of the numerical solution u computed with the SG-ext flux
at three different times t = 0, t = 0.7 and t = 3 and the approximation of the Barenblatt-Pattle
solution. In Figure 5 we compare the relative entropy En and its dissipation In computed with
the scheme (24) and different fluxes: the Upwind flux, the SG-JP flux and the SG-ext flux. We
made the same findings as in the case of the drift-diffusion system for semiconductors: the third
scheme is the only one of the three for which there is no saturation phenomenon, which confirms
the importance of preserving the equilibrium to obtain a consistent asymptotic behavior of the
approximate solution. Moreover it appears that the entropy decays exponentially fast, which has
been proved in [7].
In Figure 6, we represent the discrete L1 norm of U − Ueq (obtained with the SG-ext flux) in
log scale. According to the paper of J. Carrillo and G. Toscani, there exists a constant C > 0
such that, in this case,

‖u(t, x)− ueq(x)‖L1(R) ≤ C exp

(

−3

5
t

)

, t ≥ 0.

We observe that the experimental decay of u towards the steady state ueq is exponential, at a

rate better than
3

5
.
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Figure 4: Evolution of the density of the gas u and stationary solution ueq.
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Figure 5: Evolution of the relative entropy En and its dissipation In in log-scale for different
schemes.
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6 Conclusion

In this article, we presented how to build a new finite volume scheme for nonlinear convection-
diffusion equations. To this end, we have to adapt the Scharfetter-Gummel scheme, in such way
that ensures that a particular type of steady-state is preserved. Moreover, this new scheme is
easier to implement than existing schemes preserving steady-state.
In addition, we have shown that there is convergence of our scheme in the nondegenerate case.
The proof of this convergence is essentially based on a discrete L2

(

0, T ;H1
)

estimate (38). A
first step to then prove the convergence in the degenerate case would be to show this estimate
without using the uniform lower bound of uδ.
Finally, we have observed that this scheme appears to be more accurate than the upwind one,
even in the degenerate case. Indeed, we have applied it to the drift-diffusion model for semi-
conductors as well as to the porous media equation. In these two specific cases, we clearly
underlined the efficiency of our scheme in order to preserve long-time behavior of the solutions.
At this point, it still remains to prove rigorously this asymptotic behavior, by showing a similar
estimate to the one of the continuous framework (7) for discrete energy and discrete dissipation.

Acknowledgement: The author would like to thank C. Chainais-Hillairet and F. Filbet for
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References

[1] H.W. Alt, S. Luckhaus, and A. Visintin. On nonstationary flow through porous media. Ann.
Mat. Pura. Appl., 136:303–316, 1984.

[2] F. Arimburgo, C. Baiocchi, and L.D. Marini. Numerical approximation of the 1-D nonlin-
ear drift-diffusion model in semiconductors. In Nonlinear kinetic theory and mathematical
aspects of hyperbolic system (Rapallo, 1992), volume 9 of Ser. Adv. Math. Appl. Sci., pages
1–10. World Sci. Publ., River Edge, NJ, 1992.

[3] F. Brezzi, L. D. Marini, and P. Pietra. Méthodes d’éléments finis mixtes et schéma de
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