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Abstract. Two anonymous mobile agents (robots) moving in an asyn-
chronous manner have to meet in an infinite grid of dimension δ > 0,
starting from two arbitrary positions at distance at most d. Since the
problem is clearly infeasible in such general setting, we assume that the
grid is embedded in a δ-dimensional Euclidean space and that each agent
knows the Cartesian coordinates of its own initial position (but not the
one of the other agent). We design an algorithm permitting the agents to
meet after traversing a trajectory of length O(dδpolylog d). This bound
for the case of 2d -grids subsumes the main result of [12]. The algorithm
is almost optimal, since the Ω(dδ) lower bound is straightforward.
Further, we apply our rendezvous method to the following network design
problem. The ports of the δ-dimensional grid have to be set such that
two anonymous agents starting at distance at most d from each other
will always meet, moving in an asynchronous manner, after traversing a
O(dδpolylog d) length trajectory.
We can also apply our method to a version of the geometric ren-
dezvous problem. Two anonymous agents move asynchronously in the
δ-dimensional Euclidean space. The agents have the radii of visibility of
r1 and r2, respectively. Each agent knows only its own initial position
and its own radius of visibility. The agents meet when one agent is visible
to the other one. We propose an algorithm designing the trajectory of
each agent, so that they always meet after traveling a total distance of
O(( d

r
)δpolylog( d

r
)), where r = min(r1, r2) and for r ≥ 1.

1 Introduction

1.1 The problem and the model

Consider a Euclidean δ-dimensional space F . We construct an infinite grid Gδ

of dimension δ as follows. The set of nodes of Gδ are the points of F with
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integer coordinates. We link by an edge two nodes u = (u1, u2, . . . , uδ) and v =
(v1, v2, . . . , vδ) iff there is i ∈ {1, 2, . . . , δ}, s.t., ∀j 6= i, uj = vj and ui = vi ± 1.
At each node, the endpoints of edges incident to it are labeled by unique integers
from the set {1, 2, . . . , 2δ}, called port numbers.

The route of each agent is a sequence of adjacent edges which are subse-
quently traversed during its movement. The actual timing of the walk of each
agent along its route is asynchronous, i.e., it is controlled by an adversary. The
adversary initially places both agents at any two nodes in the grid. Given the
coordinates of its initial location v0, the route chosen by an agent is a sequence
of edges in the grid (e1, e2, . . . ), s.t., in stage i the agent traverses the edge
ei = [vi−1, vi], starting at vi−1 and finishing at vi. Stages are repeated indefi-
nitely until rendezvous is accomplished. We assume that each agent starts its
walk at any time, but both agents are placed by the adversary at their respective
initial positions at the same time, and since that moment any moving agent may
encounter the other agent, even if the other agent didn’t start its walk yet.

We describe the walk f of an agent on its route following definitions from [12,
15, 16]. Let R = (e1, e2, . . . ) be the route of an agent. Let (t1, t2, . . . ), where
t1 = 0, be an increasing sequence of reals, chosen by the adversary, that represent
points in time. Let fi : [ti, ti+1] → [vi, vi+1] be any monotonous, continuous
function, chosen by the adversary, s.t., fi(ti) = vi and fi(ti+1) = vi+1. For any
t ∈ [ti, ti+1], we define f(t) = fi(t). The interpretation of the walk f is as follows.
At time t the agent is at point f(t) of its route. The adversary may arbitrarily
vary the speed of the agent for as long as the walk of the agent in each segment
is continuous and monotonous.

Agents with routes R1 and R2 and with walks f (1) and f (2) meet at time t, if
points f (1)(t) and f (2)(t) are identical. A rendezvous is guaranteed for routes R1

and R2, if the agents using these routes meet, regardless of the walks chosen by
the adversary. The cost of the rendezvous algorithm is measured by the sum of
the lengths of the trajectories of both agents from their starting locations until
the time t of the rendezvous. Since the actual portions of these trajectories may
vary depending on the adversary, we consider the maximum of this sum, i.e.,
the worst-case over all possible walks chosen for both agents by the adversary.
In this paper we are looking for a rendezvous algorithm of the smallest possible
cost with respect to the unknown original distance d between the agents.

1.2 Related work

The rendezvous problem was first described in [38]. A detailed discussion of the
large literature on rendezvous can be found in the excellent book [3]. Most of
the results in this domain can be divided into two classes: those considering the
geometric scenario (rendezvous in the line, see, e.g., [7, 8, 23], or in the plane,
see, e.g., [5, 6]), and those discussing rendezvous in graphs, e.g., [2, 4]. A gener-
alization of the rendezvous problem is that of gathering [21, 27–29, 35, 41], when
more than two agents have to meet in one location.

If graphs are unlabeled, deterministic rendezvous requires breaking symme-
try, which can be accomplished either by allowing marking nodes or by labeling
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the agents. Deterministic rendezvous with anonymous agents working in unla-
beled graphs but equipped with tokens used to mark nodes was considered e.g.,
in [33]. In [43] the authors studied gathering of many agents with unique labels.
In [17, 31, 40] deterministic rendezvous in graphs with labeled agents was con-
sidered. However, in all the above papers, the synchronous setting was assumed.
Asynchronous gathering under geometric scenarios has been studied, e.g., in [13,
21, 37] in different models than ours: agents could not remember past events,
but they were assumed to have at least partial visibility of the scene. The first
paper to consider deterministic asynchronous rendezvous in graphs was [16].
The authors concentrated on complexity of rendezvous in simple graphs, such
as the ring and the infinite line. They also showed feasibility of deterministic
asynchronous rendezvous in arbitrary finite connected graphs with known upper
bound on the size. Further improvements of the above results for the infinite
line were proposed in [39]. Gathering many robots in a graph, under a different
asynchronous model and assuming that the whole graph is seen by each robot,
has been studied in [28, 29].

The assumption that the distributed mobile entities know their initial loca-
tion in the geometric environment was considered in the past, e.g., in the context
of geometric routing, see, e.g., [1, 9, 32, 34], where it is typically assumed that
the source node knows the position of the destination as well as its own position,
or broadcasting [19, 20], where the position awareness of only the broadcasting
node is admitted. Such assumption, partly fueled by the availability and the
expansion of the Global Positioning System (GPS), is sometimes called location

awareness of agents or nodes of the network, and it often leads to better bounds
of the proposed solutions.

An alternative approach to location awareness is adopted in network design

where the nodes of the network are preprocessed in order to enable or to speed up
a certain distributed process. For example, in the context of graph exploration
it was shown in [11] that a suitable a priori coloring of the nodes with 3 colors
provides a graph environment that can be explored by an agent equipped with
a constant size memory. In contrast, if the preprocessing is not allowed it is
known [22] that an agent requires Ω(log n) bits of memory to be able to explore
all graphs of order n. Another approach to network design consists in graph
preprocessing by setting the port numbers, so that the graph exploration is easy,
i.e., with constant memory, e.g. see [24, 26] or memoryless agents, [14, 18, 30].

The efficient rendezvous solutions proposed in this paper rely directly on the
use of space-covering sequences introduced recently in [12]. The space-covering
sequences are close relatives to space-filling curves studied extensively in the
literature, see, e.g., [10, 25, 36, 42]. The space-filling curves visit every point in
an infinite grid exactly once. Gotsman and Lindenbaum pointed out in [25] that
for any space-filling curve there always exist some close points in the grid that
are arbitrarily far apart on the space-filling curve, i.e., these type of curves fail in
preserving locality in the worst case. The deficiency of space-filling curves comes
from the assumption that they must visit each point in a discrete 2d-space
exactly once. The authors of [12] propose a novel structure of space-covering



4 E. Bampas, J. Czyzowicz, L. Gąsieniec, D. Ilcinkas, A. Labourel

sequences that traverse points in a discrete 2d-space repeatedly. They show that
for any two points located at an arbitrary distance d in the 2d-space there
are well defined and efficiently computable instances of these two points in the
sequence at distance O(d2+ε) apart, for any positive constant ε.

1.3 Our results

In this paper, we design efficient rendezvous algorithms for anonymous agents
asynchronously moving in multidimensional infinite grids. In section 2, we con-
sider the location aware agents, i.e., agents knowing the Cartesian coordinates
of their own initial positions in the integer grid. We give an almost optimal
O(dδpolylog d) rendezvous algorithm where δ is the space dimension of the grid.
Our approach, applied to the 2-dimensional grid, results in an O(d2polylog d) al-
gorithm, improving the recent main result from [12], i.e., a O(d2+ε) upper bound.
This may be seen as an exponential improvement on the deficiency factor that
leads to an almost optimal solution since a straightforward lower bound on the
worst case distance is Ω(d2). The consequence of our approach is the design of
the more efficient and simpler space-covering sequences introduced in [12]. In
section 3 we show how this approach may be applied to the case of rendezvous
of two agents with positive visibility radii, moving in a Euclidean space. Again
each agent is aware of its original position (but not the position of the other
agent). Finally, in section 4, we show that it is possible to set the port numbers
of the integer grid in the δ-dimensional space to achieve an efficient rendezvous.
In this case, the anonymous agents are not location aware.

2 Rendezvous algorithm for location aware agents in the

grid

In this section we assume that the grid belongs to the Euclidean δ-dimensional
space F and each agent knows the integer Cartesian coordinates of its initial
position in the space. We assume that the agents have coherent compasses and
a common unit of length permitting to refer to the same system of Cartesian
coordinates.

The general idea of our approach is the following. The rendezvous algorithm
constructs the trajectory of the agents following the integer grid lines of the
Euclidean space. Hence each such line contains points (x1, x2, . . . , xδ), where
xi, for some fixed 1 ≤ i ≤ δ is any real value, and each xj , for j 6= i, 1 ≤
j ≤ δ is some integer. We will define an infinite sequence of grids, each grid
inducing a partition of the space into δ-dimensional hypercubes. The size of these
hypercubes increases when following this sequence of partitions. We then define
a directed acyclic graph whose nodes are the hypercubes of all such partitions,
with arcs between intersecting hypercubes belonging to consecutive partitions
(the arcs are directed from the larger to the smaller hypercubes). For any initial
position p of the agent, we consider an infinite tree T (p) containing all hypercubes
of the family containing point p, such that for each node in T (p) its successors
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are also in T (p) and if the same hypercube is obtained this way more than once it
is duplicated so that T (p) remains a tree. The route produced for each agent will
correspond to the upward movement along T (p) interleaved with some depth-
first-search type traversals of the siblings of the newly visited node. We show
that the two agents will eventually visit some hypercube, belonging to both their
respective trees, which contains the two initial positions of the agents. The route
corresponding to the visit of such a hypercube will result in rendezvous.

2.1 Euclidean space partitions induced by multidimensional grids

We consider an infinite sequence of partitions Π = π1, π2, . . . of the grid Gδ

into hypercubes of dimension δ in F . For the sake of simplicity, in the rest
of the paper, we will use the term hypercube for a hypercube of dimension δ.
The corners of hypercubes in πi are points u = (u1, u2, . . . , uδ) such that ∀j ∈
{1, 2, . . . , δ}, uj = 2i−1 + k2i for some integer k. Each grid πi partitions space F
into hypercubes of side length 2i. To assure that each πi forms an exact partition,
we assume that each hypercube H contains, besides its interior points, the corner
v having maximum coordinates, as well as all open f -faces containing v, for
f = 1, 2, . . . , δ − 1. Such corner v is called the reference point of the hypercube
containing it. For example, a 3-dimensional hypercube, having points (0, 0, 0)
and (1, 1, 1) as its corners, is a union of its reference point v = (1, 1, 1), the three
open edges of the cube incident to v, the three open square faces incident to v,
and the interior of the cube.

Lemma 1. For positive integers i and k, such that i ≥ k + 1, any hypercube
located in partition πi intersects (2k +1)δ hypercubes belonging to partition πi−k.

Proof. Let C be a hypercube drawn from partition πi. Consider any edge e of C
along dimension l ∈ {1, . . . , δ}. This edge is of length 2i. Due to the definition of
Π the edge e cannot be aligned with edges in partition πi−k and each endpoint
of e is located in the centre of some hypercube in this partition. Since hyper-
cubes in partition πi−k are of size 2i−k, the edge e must penetrate (including

its endpoints) exactly 2i

2i−k + 1 = 2k + 1 hypercubes in πi−k. Finally, since this
phenomenon applies to every dimension, the number of hypercubes in partition
πi−k intersected by a hypercube in partition πi is (2k + 1)δ. ⊓⊔

By Γ we denote the subsequence γ1 = πi1 , γ2 = πi2 , . . . , of the above sequence
of partitions, such that the indices ij are defined by the recurrence:

i1 = 1
ij+1 = ij + max{1, ⌈log ij⌉}

We consider the infinite, directed acyclic graph T , whose nodes are the hy-
percubes of the partitions γ1, γ2, . . . and there is a directed edge in T from
hypercube P to Q, if

– P and Q are from two consecutive grids γk and γk−1, respectively, and
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– P and Q have a nonempty intersection

For any point p of the Euclidean space, we call the ascending path Ak(p)
the path of T formed of the hypercubes S1(p), S2(p), . . . , Sk(p), such that each
hypercube Si(p) belongs to grid γi and p ∈ Si(p). By Tk(p) we denote the tree
containing the ascending path Ak(p), rooted at Sk(p), obtained from T in such
a way that, each time a hypercube has more than one predecessor in T , it is
split (duplicated together with all its succession class) so eventually a tree is
obtained. By T (p) we denote the infinite tree obtained in the similar way.

Lemma 2. For a given point p of the Euclidean space and for s ≥ 4, any hy-
percube of size s · 2⌈log log s⌉ belonging to T (p) has (2⌈log log s⌉ + 1)δ children.

Proof. The proof follows directly from the definition of T (p) and from Lemma 1.
⊓⊔

Lemma 3. For any pair of points p1, p2 at distance d in the Euclidean space and
any δ + 1 partitions γj1 , γj2 , . . . , γjδ+1

,∈ Π, each one composed of hypercubes of
size at least 4d, there exists a hypercube of one of the partitions which contains
both points p1, p2.

Proof. First, we have to show the following claim.

Claim. Let H1 and H2 be two hyperplanes (of dimension δ− 1) in F separating
hypercubes in distinct partitions of γj1 , γj2 , . . . , γjδ+1

. If H1 and H2 are parallel
then they are at distance at least 2d of each other.

Proof of the claim. Let H1 and H2 be hyperplanes separating hypercubes in
γi and γj respectively. H1 is defined by xl = 2i−1 + k2i for some l ∈ {1, 2, . . . , δ}
and k ∈ Z. Similarly, H2 is defined by xl′ = 2j−1+k′2j for some l′ ∈ {1, 2, . . . , δ}
and k′ ∈ Z). Notice that the normal vector of H1 is parallel to the xl-axis and
that the normal vector of H2 is parallel to the xl′ -axis. H1 and H2 are parallel
if and only if l = l′. Assume without loss of generality that i < j. The distance
between the hyperplanes is equal to :

dist(H1, H2) = |(2i−1 + k2i)− (2j−1 + k′2j)|
= 2i−1|(1 + 2k)− 2j−i(1 + 2k′)|

Notice that |(1 + 2k)− 2j−i(1 + k′2k′)| is an integer since k, k′ and 2j−i are
integers. Moreover, |(1+2k)−2j−i(1+k′2k′)| is odd and so it is greater than zero,
since (1+2k) is odd and 2j−i(1+2k′) is even. It follows that dist(H1, H2) ≥ 2i−1.
Finally, since the size of the hypercubes in γi is 2i ≥ 4d, the hyperplanes are at
distance at least 2d. This ends the proof of the claim.

Assume, by contradiction, that there are two points p1, p2 at distance d that
are not in the same hypercube in any partition in γj1 , γj2 , . . . , γjδ+1

. Since p1 and
p2 are not in the same hypercube in each γji

, there is at least one hyperplane Hi
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separating p1 and p2, i.e., the segment joining p1 and p2 intersects Hi. Let H be
the set {H1, H2, . . . , Hδ+1}. There are at least two parallel hyperplanes H and
H ′ in H since the normal vector of each Hi is parallel to an axis of the space
F . The segment s joining p1 and p2 intersects H in u and H ′ in v. The distance
between p1 and p2 is at least the distance between u and v, hence, at least the
distance between H and H ′. However, by the Claim, H and H ′ are at distance
at least 2d, a contradiction. It follows, that there exists a hypercube in one of
the partitions containing both points p1 and p2. ⊓⊔

2.2 The algorithm

In the beginning the agent is at its original position p. The agent calls procedure
Initialize (line 2) to move to the reference point of the hypercube H1 from
γ1 (the lowest level grid of the construction) containing p. H1 is the starting
point in the ascending path A(p) of the infinite tree T (p), represented also by
the single-node tree T1(p). The execution of the algorithm corresponds to the
traversal of the ascending path A(p), constructing iteratively the sequence of
trees T1(p), T2(p), . . . . We say that, when an agent advances on the ascending
path to a new hypercube Hi+1, which is the root of the tree Ti+1(p), the agent
explores the new hypercube Hi+1. The exploration of a new hypercube is an
attempt to meet the other agent, which, at this time, may be exploring the same
hypercube or one of its ancestors.

The exploration of the hypercube Hi+1 is made during the i-th iteration of
the main loop of the RV algorithm. At the beginning of the i-th iteration the agent
is placed in the reference point of hypercube Hi – the root of Ti(p). The first
phase of the loop consists in moving to the reference point of Hi+1. Iteratively,
each preceding sibling of Hi is traversed in the backward sense by Traverse

procedure and the previous sibling is reached by the corresponding connector
(lines 7-9). Eventually, when the smallest sibling is reached and traversed, the
connector to its parent is traversed (line 11), leading to the reference point of
Hi+1. Finally, Hi+1 is traversed in the forward sense by Traverse procedure
(line 13).

The entire route of the agent is the concatenation of a sequence of connectors
between different hypercubes of the construction (most of them repeated many
times). Each such connector either joins consecutive siblings or it joins the first
child (the smallest among all siblings) and its parent. In order to use efficient
(i.e., short) connectors, the children of each node are arranged in such a way
that the first child contains the reference point of its parent, and the consecutive
siblings are adjacent hypercubes, i.e., they share a (δ − 1)-face, cf. Lemma 4
below. Then, when children are of diameter r, all connectors between them or
joining them to parents are of length O(r).

The algorithm uses a variable height which is the height of the hypercube
in the tree T (p), which is currently being explored. The variable H corresponds
to the hypercube at the reference point of which the agent currently is. The
operation Connect(H, C) generates a connector from the reference point of the
current hypercube H to the reference point of the hypercube C. Notice
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Algorithm RV(point p)
1 height← 1;
2 H ← Initialize(v);
3 Traverse(H, 1, forward);
4 repeat

5 P ← Parent(H, p)
6 Traverse(H, height, backward);
7 while PrevSib(H, P ) exists do

8 Connect(H, PrevSib(H, P )); H ← PrevSib(H, P );
9 Traverse(H, height, backward);
10 height← height + 1;
11 Connect(H, P );
12 H ← P ;
13 Traverse(H, height, forward);
14 until rendezvous

that C must be either the first child, parent, next sibling or previous sibling of
H . The next sibling and previous sibling of a node can be obtained by procedure
NextSib(H, P ) and PrevSib(H, P ) respectively. Observe that these procedures
use a parent P of the hypercube H as a parameter since a hypercube can have
one of several parents and so one of several potential next or previous siblings.
The procedure Parent(H, p) returns the parent of H containing point p.

The procedure Traverse(H, height, sense) performs essentially the depth-
first-search traversal of the subtree of T (p) rooted at hypercube H at height
height. The parameter sense permits to indicate an orientation for the traversal
of T (p), either backward or forward. The traversal of a hypercube performed
with parameter sense equal to backward is the reverse of the traversal done with
sense equal to forward. The procedure TraverseUnit performs the traversal
of a hypercube of size 2 in γ1.

procedure Traverse(H, height, sense)
1 if (height = 1) then

2 TraverseUnit(H, 1, sense)
3 else

4 C ← FirstChild(H);
5 Connect(H, C);
6 while NextSib(C, H) exists do

7 if(sense = forward) then

8 Traverse(C, height− 1, forward);
9 Connect(C, NextSib(C, H)); C ← NextSib(C, H);
10 Traverse(C, height− 1, sense);
11 while PrevSib(C, H) exists do

12 Connect(C, PrevSib(C, H)); C ← PrevSib(C, H);
13 if(sense = backward) then

14 Traverse(C, height− 1, backward);
15 Connect(C, H);
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Lemma 4. The total length of the connectors linking the space-covering of the
children of a hypercube H of size s · 2⌈log log s⌉ is O(s · 2δ(log log s+1)).

Proof. Note first that the children of H form also a hypercube of size
s(2⌈log log s⌉ + 1) composed of smaller hypercubes of size s (this is not a hy-
percube which is an element of any of the grid partitions considered). In each
hypercube of size s, the corner with the largest coordinates is chosen as its repre-

sentative. The representatives can be interpreted as nodes of another hypercube
Hr of size s · 2⌈log log s⌉ in which edges are of length s. It is possible to find a
Hamiltonian path in Hr connecting the representatives, sharing the (δ−1)-faces,
and further use the edges of this tour as connectors. Since the number of repre-
sentatives is 2δ(log log s+1) and the edges of the tour are of length s, the length of
the Hamiltonian path and in turn the total length of the connectors is bounded
by O(s · 2δ(log log s+1)). ⊓⊔
Lemma 5. The length of the trajectory of the agent corresponding to the explo-
ration of a hypercube of size s is O(sδ log s).

Proof. A hypercube of size s ·2⌈log log s⌉ has (2⌈log log s⌉+1)δ children by Lemma 2
and the total length of the connectors of its children is O(s · 2δ(log log s+1)) by
Lemma 4. Hence, the function λ(s) defining the length of the portion of the
trajectory corresponding to the exploration of a hypercube of size s is given by
the following recurrence :

λ(1) = c1

λ(s · 2⌈log log s⌉) = (2⌈log log s⌉ + 1)δλ(s) + O(s · 2δ(log log s+1))

Let c2 ≥ 1 be a constant whose exact value will be defined later. We prove by
induction that there is a constant c3, such that for s ≥ c2, we have the following
property:

Ps : λ(s) ≤ c3s
δ log s

We assume that the constant c3 is large enough such that c3 ≥ λ(c2)

cδ

2 log c2
. Hence,

Pc2
is true. Now, we assume by induction that Ps is true. We have:

λ(s · 2⌈log log s⌉) ≤ (2⌈log log s⌉ + 1)δλ(s) + c4s · 2δ(log log s+1)

≤ (2⌈log log s⌉ + 1)δc3s
δ log s + c4s · 2δ(log log s+1)

Hence to prove that Ps2⌈log log s⌉ is true, it is sufficient to prove that:

(2⌈log log s⌉ + 1)δc3s
δ log s + c4s · 2δ(log log s+1) ≤ c3s

δ2δ⌈log log s⌉ log(s · 2⌈log log s⌉)

(2⌈log log s⌉ + 1)δ

2δ⌈log log s⌉ log s +
c42

δ

c3sδ−1
≤ log s + log log s

Notice that:

(2⌈log log s⌉ + 1)δ = 2δ⌈log log s⌉ +
δ−1
∑

k=0

(

δ

k

)

2k⌈log log s⌉

≤ 2δ⌈log log s⌉ + 2δ2(δ−1)⌈log log s⌉
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Hence it is sufficient to prove that:

2δ⌈log log s⌉ + 2δ2(δ−1)⌈log log s⌉

2δ⌈log log s⌉ log s +
c42

δ

c3sδ−1
≤ log s + log log s

2δ

2⌈log log s⌉ log s +
c42

δ

c3sδ−1
≤ log log s

2δ +
c42

δ

c3sδ−1
≤ log log s since log s ≤ 2⌈log log s⌉

2δ +
2δ

sδ−1
≤ log log s assuming that c3 ≥ c4

The left term tends to 2δ for s going to the infinity. Since the right term tends to
the infinity and is positive for s going to the infinity, there must exist a constant
c5 such that the inequality is satisfied for all s ≥ c5. By taking c2 = c5 and

c3 = max
{

c4,
λ(c2)

cδ

2 log c2

}

, all the assumptions made during the proof are fulfilled.

Finally, Ps is true for every s by induction. ⊓⊔

Theorem 1. Suppose that a pair of agents is originally placed at any two points
p1, p2 at distance at most d in the δ-dimensional infinite integer grid. Consider
the trajectories computed by RV(p1) and RV(p2). Any asynchronous walk along
these trajectories results in the rendezvous of the agents after traversing trajec-

tories of length O(dδ logδ2+δ+1 d).

Proof. We show first that all the connectors may be correctly computed by the
agent using RV algorithm. Consider first the connectors used in algorithm RV.
Suppose that the agent stores in its memory the global variable height - the
height of the hypercube actually explored, the coordinates of its initial position
p as well as the number of iterations of the loop from lines 7-9 that have already
been performed within the current iteration of the main loop from lines 4-14.
From this information and from the knowledge how the siblings at each level
have been arranged, the agent may compute in which direction (i.e., positive
or negative direction of some of the δ axes of the grid) the connector to the
next or the previous sibling goes. The length of this connector is a function
of height solely. Similarly the connector between a parent and its first child is
easily computed since the position of the reference point of the first child is easily
computed from the reference point of the parent.

In order to compute correctly the connectors computed in the Traverse

procedure, we suppose that for each active call of Traverse we keep on the
recursive stack the local variable height as well as the number of the sibling in
lines 8 and 14 for which the current recursive call from its parent node is made.
The data stored on the recursive stack and the knowledge how the siblings at
each level are arranged allow to compute the direction and the length of each of
the connectors.

In order to consider the moment of termination of the algorithm take (δ +1)
consecutive grids γk, γk+1, . . . , γ(k+δ) of Γ , such that γk is the first grid of Γ
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containing hypercubes of size at least 4d. By Lemma 3, one of the grid parti-
tions contains some hypercube H containing both points p1 and p2. Suppose, by
symmetry, that the agent originally placed at point p1 is the first one to com-
plete the traversal of H . Since the other agent is all the time situated inside the
segment of the trajectory corresponding to H the agents must meet.

The largest such hypercube H (the one belonging to γk+δ) has the size in
O(d logδ+1 d). By an application of Lemma 5 for s = O(d logδ+1 d), we obtain
the statement of the theorem. ⊓⊔

To show that the above result is almost optimal observe that there are Ω(dδ)
integer grid points in the d-neighborhood of any point. Since the adversary may
hold one of the agents for arbitrary long time close to its initial position, the
second agent must eventually explore its entire d-neighborhood using a trajectory
of length Ω(dδ).

3 Location aware agents in Euclidean space with non-zero

visibility

We now consider a model in which an agent at point p in the δ-dimensional Eu-
clidean space F sees all points in the δ-dimensional ball of radius r ≥ 1 centered
at p. We say that the agent has visibility range r. In this model, rendezvous oc-
curs when one of the agents sees the other. Agents may have different visibility
radii, thus it is not necessary that they both see each other at the same time.
Each agent is aware of the coordinates of its own location at any time.

The idea is to apply the algorithm developed in the previous section for
location-aware agents with zero visibility, but choosing the size of the lowest-
level hypercubes in such a way that it is as large as possible and whenever an
agent traverses the portion of its trajectory that corresponds to the lowest level
hypercubes, it sees all of their interior points.

Each agent, knowing its visibility radius r, determines the maximum integer
k (possibly negative) such that k ≤ log r√

δ
. Note that this implies r ≥ 2k

√
δ,

therefore the visibility radius of the agent is at least the diameter of a hypercube
of size 2k. This implies that an agent visiting a node of this hypercube sees all
the interior points. Having computed the value of k, the agent moves from its
original position to the closest reference point of some hypercube of size 2k of
the appropriate layer in the hierarchy Π . From that point, it starts executing
the algorithm of the previous section with a unit hypercube of size 2k.

In a more general setting, the two agents have different visibility radii r1

and r2. As explained above, they compute their respective values k1 and k2 and
they start executing the rendezvous algorithm with hypercubes of respective
sizes 2k1 and 2k2 . Essentially, the two agents ascend the same tree-like structure
T as before, except that they start at a higher level which is possibly not the
same for the two agents. In any case, one of the agents will start exploring first
a hypercube that is guaranteed to contain both starting points, according to
Lemma 3, and thus it will be able to see the other agent effecting rendezvous.
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Due to the modification of the size of the unit hypercubes of the agents, the
algorithm behaves in the worst case as if the distance between the starting points

of the agents is scaled by 2−k < 2
√

δ
r

, where r = min{r1, r2}. This results in a

trajectory of length O((2d
√

δ
r

)δ logδ2+δ+1(2d
√

δ
r

)) = O((d
r
)δ logδ2+δ+1(d

r
)).

4 Setting the grid port numbers for efficient rendezvous

We now sketch how to convert the algorithm we developed in Section 2 into
an algorithm suitable for anonymous grids with local port numbering. The idea
is to put labels on the nodes of the grid, and then using these labels simulate
the rendezvous algorithm in the absence of location awareness on the part of
the agents. We then discuss how to manipulate the local port numbers at each
node so that the agent is able to extract each node’s label by performing a short
exploration of its neighborhood.

Omitting the details of the labeling process due to lack of space, we just men-
tion that for dimension δ we need O(2δ) different labels. By choosing carefully
the order of the children of each hypercube, we can make sure that the labels
provide the agent with enough information to execute the rendezvous algorithm.
We now elaborate on the port setting scheme that we use. Let x = (x1, . . . , xδ)
be an arbitrary node in the δ-dimensional grid. For i in the range 1 ≤ i ≤ δ,
we assign port number i of node x to the edge connecting node x to node
(x1, . . . , xi−1, xi +1, xi+1, . . . , xδ). The remaining port numbers from δ +1 to 2δ

may be assigned in any of δ! ways to the remaining edges outgoing from x. This
assignment is described by a permutation σx of {1, . . . , δ}, such that for all i in
the range 1 ≤ i ≤ δ, port number δ + σx(i) of node x is assigned to the edge
connecting node x to node (x1, . . . , xi−1, xi − 1, xi+1, . . . , xδ).

Now, suppose that the agent finds itself at node x. It is possible to recover
the permutation σ−1

x
, thus also the permutation σx, in the following way: for

each i in the range 1 ≤ i ≤ δ, (a) follow port number δ + i of node x, (b) observe
the port number j (1 ≤ j ≤ δ) that corresponds to the edge just traversed in
the local port order of the new node, (c) follow port number j of the new node
to go back to the original node x. Then, the agent can deduce that σ−1

x
(i) = j.

Knowing σx, the agent knows exactly which port number corresponds to each
direction out of node x in the δ-dimensional grid. Furthermore, the port setting
scheme we just described endows each node with one out of δ! distinct labels.
Therefore, for large enough dimension δ, it is possible to encode the required
node labels using the available port number permutations.

We modify the rendezvous algorithm so that whenever an agent arrives at a
node x, it performs the following trajectory: it follows port numbers δ+1, . . . , 2δ,
in that order, and then if follows port numbers 2δ, . . . , δ + 1, in that order,
each time returning to node x. During the first phase of this trajectory (ports
δ + 1, . . . , 2δ), the agent recovers the permutation σx, and thus the label of x.
This modification increases the length of the trajectory of each agent by a factor
of O(δ). Moreover, since the interjected trajectory is a palindrome and both
agents perform it at each node they visit, in the worst case they will meet while
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exploring the neighborhood of the same node as the one on which they would
meet using the original algorithm.

Thus, we arrive at the following theorem:

Theorem 2. For large enough δ, it is possible to preprocess the local port num-
bers in the δ-dimensional infinite grid so that two agents originally placed at
distance at most d in the grid can achieve rendezvous after traversing trajecto-

ries of size O(dδ logδ2+δ+1 d).

For smaller number of dimensions δ, it is still possible to encode all the
required labels in the grid, by coarsening the grid on which the algorithm is
executed and using more than one node of the original grid to encode the label
of a node in the coarsened grid. Details are omitted due to lack of space.

5 Final remarks

Several interesting questions remain unanswered. E.g., is it possible to design
an optimal O(dδ) rendezvous algorithm in δ-dimensional grids? Is it possible to
extend the location aware approach to some classes of graphs other than grids?
In Section 4 there seems to be a lot of freedom when choosing possible port
arrangements. Is it possible to use a more sophisticated port arrangements so
that the mobile agent uses o(log d) or even a constant number of its memory
bits?
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