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Abstract.

This paper is concerned with the detailed behaviour of roll-waves under-
going a low-frequency perturbation. We first derive the so-called Whitham’s
averaged modulation equations and relate the well-posedness of this set of
equations to the spectral stability problem in the small Floquet-number
limit. We then fully validate such a system and in particular, we are able to
construct solutions to the shallow water equations in the neighbourhood of
modulated roll-waves profiles that exist for asymptotically large time.
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1 Introduction

Our goal is to perform a two-scale analysis of waves in shallow flows, the fast
scale being locally generated by (unmodulated) periodic travelling waves de-
scribed by two parameters (for instance wavenumber and a discharge rate)
and the low scale obeying an averaged system for these parameters. In study-
ing such modulated waves our motivation is three-fold.

First, we are directly interested in a deeper understanding of such insta-
bilities and, in this sense, this work is a piece of a wider program [[l, B, B, [T,
L6, [5. Here we describe the motion of a shallow flow down an inclined ramp
by the evolution of (h,q), h(t,z) € RT being the fluid heigth and ¢(¢,z) € R
the averaged horizontal momentum at time ¢ > 0 and in place z € R. The
evolution we consider is governed by the Saint-Venant equations

2 2 2

8tq+8x(%+%>=h—%+5ﬁiq (1)
taking into account viscosity (6 > 0, ! being a Reynolds number), grav-
ity (F' > 0 is a Froude number) and a turbulent (quadratic) friction along
the bottom. The main (non obvious) physical flaw of this description lies
probably in the form of the viscosity term §02¢g, which should be replaced
with 00,(hd.(q/h)). But this restriction is purely motivated by writting
convenience. The full paper would translate to the more physical case and
actually even in this simplified case the only nonlinear system we solve is of
quasilinear type. Roll-waves are then depicted as periodic travelling waves
of system ([]), going down with a velocity larger than sound speed. Our first
purpose is thus to investigate the behaviour of the solutions to these shallow
water equations that are low-frequency perturbations of roll-waves.

The other two motivations consider roll-waves as representative of a wider
class of periodic travelling waves. In the context of Lagrangian systems,
Whitham explained how to derive an averaged system for the slow motion
of the local parameters describing modulated periodic travelling waves [[J]
(see in particular Chapter 14). In the following we will call such averaged
systems, Whitham’s systems. In the extension of the theory to a wider
class of systems, and in a more mathematical way, Serre brought to light a
direct relation between low-Floquet small eigenvalues of the original system
linearized about a given periodic travelling wave and hyperbolicity of the
Whitham’s system linearized about corresponding paremeters [[§]. Since
Whitham’s systems are first order partial differential systems, this is precisely
a relation between some spectral stability of the wave one wants to modulate
and the well-posedness of the corresponding averaged system. Our goal is not



only to extend this result to our situation (this is done in a straightforward
way, see Lemma [l) but also to go one step further by associating not only
eigenvalues but also eigenvectors (see Lemma [J). This is performed through
a comparison of a spectral Fourier analysis of the averaged Whitham’s system
and a spectral Bloch analysis of the original Saint-Venant system. Note that
this already provides us with at least a spectral validation of the Whitham’s
system.

Beyond the obvious interest of Lemma [ by itself, it is also a key-step
for our third goal : to extend the work of Doelman, Sandstede, Scheel and
Schneider [{], performed in the reaction-diffusion context, to system ([l]).
Here we discuss only the inviscid part of [{] and postpone to further work
the viscous and shock (in parameters) parts. This extension will validate the
Whitham’s system at a nonlinear level, in the sense that to any solution to
the Whitham’s system, close to a given wave, one will associate a family of
(higher-order) approximate solutions, with a modulated profile coincinding
with the Whitham’s solution at the linear level (see Proposition [), that
describes at high order a family of solutions to system ([[) for asymptotically
large time (see Theorem [J). Such a kind of validation of averaged equations
has been performed in other contexts [, fi]. We believe the main difference
between these cases and ours lies in the fact that we handle an averaged
system, our critical modes are not easily separated and we need a careful
spectral preparation before being able to follow the strategy in [[]. Lemma [
is precisely intended to fill this gap.

Together with the usual first-order Whitham’s system (see system ([I4))
we have discussed up to now, we also introduce an averaged second-order
system (see system (§)), both in the derivation and in the spectral parts
of our paper. In doing so we intend both to illustrate the strength of the
spectral study through Bloch-Fourier comparison (see Lemma [}), and to
prepare further work extending the viscous part of [H] to our context.

Our paper is organized as follows. In the first section, we set notations
for the rest of this work. In the second one, we derive formally modulation
systems and explain how to compute in the low-frequency regime modulated
approximate solutions up to any order with respect to € where e ! is the char-
acteristic wavelength of perturbations. Although these formal approximate
solutions are not directly related to the ones we justify in Proposition JJ, their
construction shed some light on the proof of Proposition f|. Then we perform
our spectral analysis. Afterwards, assuming the needed hyperbolicity of the
Whitham’s system, we will then provide a mathematical justification of this
system in the spirit of what was done in [fJ] in the reaction-diffusion frame-
work. Finally we explain what are the main flaws of this justification and
what may be expected from a detailed study of the second-order modulation



system, postponed to further work.

Acknowledgement: The authors warmly thank Arjen Doelman and Guido
Schneider for kind enlightment about [{].

2 Set-up

2.1 Existence of roll-waves

We start recalling some properties of the set of periodic travelling-wave so-
lutions to ().
We search for a periodic travelling wave in the form

(h,q)(z,t) = (H, Q) (wt + kx),

with H, Q) 1-periodic functions and w, k real numbers. Then w is the time fre-
quency, k the wavenumber and (H, @) should satisfy the ordinary differential
system
Q> H?., 2
H+kQ) =0 "+ k(5= 4+ =) = H- = +k*Q". 2
(WH +kQ)' =0, wQ'+ k(57 + 573) gz TR (2)
Setting ¢ = —w/k, the wave velocity, and integrating the first equation of ()
as cH — () = q yields the second order differential equation

—2 2 !/ — 2
¢  H q
5]€20H”—/{7 (ﬁ +ﬁ> —I-H— (C—E) ZO. (3)

A first result, due to Dressler, yields the existence of inwviscid roll-waves,
which are necessarily discontinuous with Lax shocks as discontinuities.

Proposition 1 (Dressler, § = 0) Let F' > 2 and (k,q) € R}, x R fized.
Then there exists a unique wavespeed ¢ = c*(q), given by

(@) =7 (F5 + F73),

such that there is a 1-periodic solution H to ([3)s—o; and this solution is
unique (up to a translation). Moreover, the roll-wave can be alternatively
parametrized by (hy,q) with hy the non dimensional minimum fluid height

satisfying
1 1
h+ > F‘I‘ﬁ(l"ﬁ‘ \/1+4F) =: h,,



in such a way that

1 H, (" h?+h+1 H,

ko F? mﬁh2—(F*2+2F*Uh+ZW4dh_"fEPU”%
1 h_ 2

JH= H. J h*+h+1 hdh=:HCQ(h+).
0 F(hy) Jp, P2 = (F24+2F Y)h+ F2 P(hy)

with H, = @F)% and h_ uniquely determined by the Rankine Hugoniot jump

condition: h_ + h, = ——.
T hah
When 6 > 0 is fixed, one can prove the existence of small amplitude
continuous periodic travelling waves through a Hopf bifurcation argument.
The existence result is even better as § — 0 where the existence of large
amplitude roll-waves, close to Dressler’s roll-waves, is proved [, [[4].

Proposition 2 Let F' > 2 and g > 0. Then for any wavespeed ¢ such that
c*(q) < ¢ < ¢y = c*(@) + O(V0b), there is a unique k(c,q) such that there is a
L-periodic solution H to (B)s; and this solution is unique up to translation.
Moreover, for any fived ¢ sufficiently small, lim.,., ks(c,q) = 0 (the contin-
uous roll-wave converges to a solitary wave).

Alternatively, for any fized § sufficiently small, roll-waves can be parametrized
by (k,q); and lims_, cs(k,q) = ¢*(q) (the continuous roll-wave converges to
a Dressler roll-wave as 6 — 0).

In order to get a full idea of the bifurcation scenario, the reader is referred
to [[3, [Z, B where it is described. Yet note that there the viscosity term
is really non physical and does not even provides us with the right jump
condition in the small viscosity limit. However, we believe the scenario is the
right one anyway and we check it numerically in [, B, B] (with a Lagrangian
formulation).

We could work under the regime describe by Proposition ] but we rather
choose to take as an assumption that we will work in domains where the so-
lutions to profile equation (f), identified when coinciding up to translation,
are uniquely and smoothly parametrized by (k,q). Of course this assumption
is stronger than the mere full-rank assumption in [[§]. We develop conse-
quences of this assumption at the linear level in the next subsection.

2.2 Abstract set-up

In this subsection, we set some abstract notations for the rest of the paper.



For the sake of simplicity, let us first rewrite ([]) as

0iq + 0:G(h,q) = S(h,q) + 002q
where we have denoted
2 2 2
¢, T

When looking for periodic travelling-wave solutions (h, ¢) to (f]) with wavenum-
ber k € R*, and frequency w € R, one must find 1-periodic solutions (H, Q)
to

(WH+kQ) =0, wQ +k(G(H,Q)) =S(H,Q) + 5k*Q" (6)

and set (h,q)(t,z) = (H,Q)(wt + kx). For writting convenience, from now
on we denote

G(H,Q;k) =6k Q" —k(G(H,Q)) + S(H,Q) (7)

and for later use

wG(H,Q: k)[f] = —k(0wG(H,Q)f) + 0nS(H,Q)f (8)
0,G(H,Q; k)[f] = 0k*f" — k(6,G(H,Q)f) + 0,S(H,Q)f (9)

and
HWG(H,Q; k) =62kQ" — (G(H,Q))" . (10)

Denote also wave speed ¢ as ¢ = —w/k. Then system (f]) may be reduced

o : there exists ¢ € R such that cH — ¢ = q and H is a 1-periodic solution
to

k*H' + G(H,cH —q;k) = 0. (11)

We will work in a context where, once (k,q) € R* x R fixed, profile equa-
tion ([[1]) possesses a 1-periodic solution for one and only one speed c(k,q)
(therefore one frequency w(k,q) = —kc(k,q)) and, for ¢ = c¢(k,q), equa-
tion ([LI) possesses a unique 1-periodic solution, up to translation. Func-
tions ¢ and w are smooth and we also make a smooth choice of corre-
sponding solution H(k,q) = H(-;k,q). Accordingly let us also denote
Qk,q) = Q(-;k,q) = c(k,q9)H(-;k,q) —gq. All these assumptions are of
course generic and justified at least in the small-amplitude regime.
Now differentiating equation ([L1) in (k,g)-variables leads to

‘C(k*vq*) [dH(k*aq*)(kvq)] = [dw(k*aq*) (k )] (k ) (12)
+ kA (k.,q,) + gAY (k.. q.)

6



or alternatively to

L(k.,q,) [dH (ks,q,) - (k,9)] = —kde(ks,q.) - (K, Q)] A“(ks,q.)

~ - 13
+ kAk(kﬂq*) + qu(kHQ*) ( )

where L(k,,q,) is the linear operator associated to the linearization of equa-
tion ([]) around H = H (k.,q,), namely

‘c(kh q*)f = —W(k*, q*)C(k*, q*)fl + ahg(H(kh q*)7 Q(k*a q*)v k*)[f]
+ c(ki, 7,)0,G(H (K., 7,), Q(ks 4,); kL]

(1)
and
k) = 2288 g gy (15
+ G (0., Qb )5 k) 7.
Ak T) = AG(H(E7.),Qk. ) R[] (16)
Ake@) = elkeq)” Hke @) = &G(H (K., 7.),Qk.,T): k)  (17)
) 5 G (k. 1), Qb ) ) H (k)

Ek(k*aq*) = Ak(kﬂq*) - C(k*uq*)Aw(k*uq*) (18>
= —c(ke,q.)? H(ka, @) — G(H (K, T), QK T b)) -
Note that, associated to uniqueness of ¢ once (ki,q,) fixed comes the fact
that A“(k,,q,) does not belong to the range of L(k,,q,) acting on L2 (R),
the space of 1-periodic functions square-integrable on 0, 1[.
Before going on with properties of L(k.,q,), let us choose to denote, for
any function f, f, = f(ks,q,). Likewise, in the modulational context, once

fixed functions (ko, q,) of variables (X, T'), for any function f, we will denote
by fo corresponding values ; for instance

[Lof1(y; X, T) = [L(ko(X, T), G (X, T))f (-3 X, T)(y) - (19)

Coming back to L,, note that, due to translation invariance of equation
(I0), H. belongs to the kernel of L,. Moreover L, is a Fredholm operator
with index 0. Let us denote £24(k,,q,) the formal adjoint operator of £, and
choose H*(k,,q,) in its kernel such that

< () > = 1 (20)
where < -; - > is the scalar product on L?_(R), namely, for f,ge L?_(R),

per per

<fig9>= Llfg-
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Then, for any function f belonging to Lf)er (R), f belongs to the range of L,
on L?_(R) if and only if

per
<HY f>=0. (21)
And we may define in a unique way an inverse
L7k, q,) = {HMY — {(HM)

In the following, £7! will always be meant to be defined in this way.
We will also need a projection on the range of £,. This may be done in
a natural way by defining

< H}; f >

k@) = —F—o—
plhe@)f = — ot Ao =

and (k,7.)f = f—p()A.  (22)

Then, for any f in L2, (R), equation

L.h = wAY + f

has a solution h € L?_(R) if and only if w = —p.(f), and in this case a

per
solution may be defined in a unique way by h = LI, f, and any solution
may be written in a unique way

h = LULf + oH.

with a € R.

More generally note that, for any f in L?

per

(R), equation
L.h = kEAY + GAT + wAY + f
has a solution h € L2 (R) if and only if
w = dw.(k,s) — p.(f)
and in this case a solution may be defined in a unique way by
h = dH.(k,q) + L ILf,
and any solution may be written in a unique way
h = dH,(k,q) + L7ULf + oM.

with a € R.



Likewise, for any f in L2, (R), equation
L.h = kAF 4+ GAT + wA® + f
has a solution h € L2 (R) if and only if
w = —kde(k,s) — p(f)
and in this case a solution may be defined in a unique way by
h = dH,(k,q) + L7Lf,
and any solution may be written in a unique way

ho= dH.(kq) + L7'ILS + oH,

with a € R.
For later use, we will denote

K(k.,q,) = LI, . (23)

As we will also have to solve equations like i’ = f for some f in L2 . (R),

it is worthwhile to note that this can be done in L?_(R) if and only if

per

< f>:= Llfz()

and a solution may be defined in a unique way by

hy) = j = 1)) (24)

Correspondingly, two more functions of (k,q) will play a major role in the
modulation analysis:

M(k,7) = f Hykgdy, Nkg) = ckMEg)-7.  (25)

Note that, whereas we made some choice in the parametrization of solutions
H(k,q), functions M and N do not depend on this choice.

Besides the assumption of smooth parametrization by (k,q), we will al-
most always work with (k,q) such that

0;M(k,q) # 0 (26)

9



which may be seen to hold both in small-amplitude and small-viscosity
regimes. At last, let us say that we will also assume

ore(k,q) # 0 and  Jge(k,q) # 0. (27)

The first part is motivated by the fact that sometimes we will switch to a
(¢, q)-parametrization and for this purpose we will need such an assump-
tion but of course this assumption can be removed when we work with the
usual (k,q)-parametrization. The second part is intended to simplify some
discussions when solving linearized equations, and is not crucial.

3 Formal derivation of modulation systems

3.1 First order Whitham’s equations

We follow the method proposed by Serre [[§] to derive Whitham’s equations
and first introduce rescaled variables (X, T) = (ex, et). This yields

S(h,q)

(28)

{aTh—i-an:O

8Tq + 8XG(h,q) = + 558§(q .

We then search for an expansion of (h,¢) in the form

o) = Yot ().

with (A%, ¢") 1-periodic in their first argument y € R. Identifying O(1) terms,
one finds

Ord 0yh° + ox¢ d,q" = 0,
or¢ 0,q° + 0x$ 0,(G(h°,¢")) = S(h°, ¢°) + 6(0x9)*02q".

Let us denote k(X,T) = ox¢(X,T), w(X,T) = 0r¢(X,T) and ¢ = —% so

that k is the local wavenumber, w the local frequency and ¢ the local wave
speed. The previous system is solved by

o(X,T) = e(k(X,T),3(X.T)), w(X,T)=wk(X,T),qX,T))

and (R, ¢)(y; X, T) = (H,Q)(y; k(X,T),g(X, T)), where g(X,T) is a local
discharge rate. Note that ¢ may be recovered from k and g if and only if

ork + 0x (k c(k, 7)) = 0. (29)

10



We further identify O(1) terms in (§). On the one hand, the mass
conservation law yields

Oy(w(k,Pn" — kq') = —(0rh° + 0xq").
This equation has a solution if and only if
or <h’>+0x <¢">=10. (30)

Using the fact that ¢ h°—q° = @, equation (B0)) can be equivalently written
as

where M and N are defined in (B3). The system (9B]) forms the system
of Whitham’s equations. Assumption (26) is equivalent to this system being
of evolution-type for (k,q). This is a first order differential system of partial
differential equations: in what follows , we will study the hyperbolicity of
such a system and relate the hyperbolicity to the stability of roll-waves in
the small wavenumber regime. We will use this set of equations to construct
approximate solutions to the full shallow water system in the neighbourhood
of roll-waves on asymptotically large time intervals.

3.2 Higher order approximations

In the following, we show how to construct a higher-order approximation of
solutions to (B§): for that purpose, we need also to expand the phase ¢ with
respect to € just as in a classical WKB-type calculation. Solutions (A, q) to
(BY) are then expanded in the form

)=S0y (B2 ). oonn) = Y own

with (h',¢") 1-periodic in their first argument y € R. Identifying O(e~') still
yields a differential system in the form

6T¢>0 6yh0 + anf)O 6yq0 = 0,
0r¢” 0,¢° + 0x¢° 0,(G(h°, ¢°)) = S(B°,¢°) + 6(0x¢°)*0¢".

As previously, we set

ko = 6ng50, w’ = 5T¢0, =7

11



There must be some g, such that c°h°(y) — ¢°(y) = g,. This yields

WO = w(kjmaO)? CO = C(kj0760)

and the profile equation in the y-variable
kocgoyh® + G(h°, coh® — Ggi ko) = 0

solved by h%(y; X,T) = H(y; ko, qy). As already mentioned, the compatibil-
ity condition drdx¢° = 0x0r¢° yvields an evolution equation for the local
wavenumber kg:

Orko + Ox (koCO) =0. (32)

Next, we identify O(1) terms. First, we consider the mass conservation law:
1_ 1 1 0 oy, L 1 1A 7,0
ay(COh —(q ) = k—(éTh + 6Xq ) + k—(@ﬂb + Coang) )8yh .
0 0

Note that the expansion of ¢ with respect to ¢ yields a new term that does
not change the other compatibility condition

orMy + 0xNy = 0.

However the presence of this extra term will be necessary in order to com-
pute an approximation to the next order of the solution to the Saint-Venant
equations. Integrating this equation with respect to y yields

1 H,
coh' —q¢' = k_(aTI(HO) +0xI(Qo)) + (w1 + Colﬁ)k,—o +qy, (33)
0 0

where @, is a constant of integration depending on (X, T') which plays the
role of a correction to the relative discharge rate q,, I was defined in (24)

and
wy = opd', ki = Oxo' (34)

There remains to determine h', ¢'. For that purpose, we consider the mo-
mentum equation to order O(1). This yields

Loh' = ki A + G AL + wi AY + Ry (35)
with Ry a function that depends only on Hy, ko, q, and is defined as

Ry = 0rQo + 0x[G(Ho, Qo)] — 0 9x [k, Qo] — 0 ko0y(0x Qo) (36)
Coay[aT[(H(]) + axl(Qo)] + kioaqg(Ho, QQ, ]{Zo) [aT[(H()) + axl(Qo)] .

12



Then equation (BF) has a solution if and only if

wr — dwo(k1,g,) = — po(Ro) (37)

where p is the function defined in (). Once again, in order to recover ¢!
from k; and wy, one must impose

orkr — Ox[dwo(k1,q,)] = —0x[po(Ro)] - (38)
With our choice for wy, equation (BY) may be solved by
ht = dHo(k1,q,) + KoRo, (39)

KC being the operator defined in (B3). We still need an equation to couple
with (Bg) in order to determine (k1,;): this is done by considering the mass
conservation law to order O(e). One finds

8, (coh® — @) = kio((aThl L oxd') +0,(...)). (40)

This equation has a solution provided that
or <h' > +0x < ¢' >=0. (41)
Combining (89), (B1) and (B9) yields

aT (dMO(kMQI)) + aX (dNO(klaql))

= —0r < KoRy > —0x < coKoRy > —0x (— pO(RO)) (42)

T oy (ki (@r < I(Ho) > +ox < I(Qo) >)> .
0

The system (B, f2) on (k1,q,) is linear hyperbolic provided that the nonlin-
ear system (P9, B1) is hyperbolic and this former hyperbolicity is discussed
in the next section. Under the assumption of hyperbolicity, we can com-
pute (k1,q,). Then, hl, ¢!, ¢ are fully determined by (h°,¢°, ¢°). The next
steps are done similarly: assume that we have determined (h‘, ¢', ¢");<, and
let us compute (h"*1 g™l ¢"*1). First, we determine ¢"*! as a function
of h"*1 ¢"*t1 (h',¢",¢")i<n and a y-independent G, , with the help of an
equation similar to (f(). Indeed, this equation has a solution due to the
compatibility condition similar to ([]) with (h", ¢") replacing (h',¢'). Then,
one inserts the expansion of ¢"*! into the momentum equation written at
order O(e™). This yields an equation in the form

Loh™™ = ko A + G, AT + w1 A+ R,

13



with R, a function of (h?, ¢*, ¢")i<,, and k,y1 = Ox "™, wpy1 = Opd™+1. This
equation has a solution provided that

Wp+1 — dwo(k:n+1aan+1) = _pO(Rn)-

This yields an evolution equation for k, ;. Then one can solve the equation
on h™*! by setting

R = dHo(kns1,Gnse1) + KoRn -

One finishes the construction at the (n+ 1)-step by writing the compatibility
condition
or < h""'> 40y <¢"" >=0

which provides (ky11,G,41) With an equation similar to (f2) for (ki,q,). As
a consequence, we build (k,11,G,.,) by solving a linear hyperbolic system.
This gives a full description of an approximate solution of order O (") and
completes the construction of approximate solution to (R§) up to any order
with respect to e.

In another section, we will rigorously validate this formal construction

and use its principle to justify modulation system (B9, BI)).

3.3 Two modulation systems

In this subsection we extract from the analysis of previous subsections two
nonlinear systems for local wavenumber and local discharge rate (k,q) that
we think of great importance for the understanding of low-frequency pertur-
bations of periodic travelling-wave solutions.
First, equations (B9, B1) form the Whitham’s averaged system for the
system ([) :
ork — ox[w(k,q)] = 0

which stays unchanged when coming back to physical variables (z,t) by set-
ting (k,q)(z,t) = (k,q)(eX,eT):

(43)

Ok — O Jw(k, )] = 0
{ oMk, Q] + [N(k,q)] = 0. (44)

From (R6) may be seen that this system is of evolution type. Note that,
though this system does not contain second order terms, the presence of
a viscosity in system ([J) was proeminent in order to obtain it. Moreover,

whereas working with a realistic viscosity term would not have changed the

14



form of the system (and the definition of M, N and w), it may indeed have
changed the actual values of M,N and w.

Concerning the well-posedness of system (), the best one can expect
is that the system is hyperbolic and thus possesses local-in-time smooth
solutions. In the next section, we will connect this hyperbolicity to the
spectral stability of periodic travelling-wave solutions to system ([l) under
low-frequency perturbations. Then, under this spectral stability assumption,
we will validate system ({J) by proving that any smooth solution to ([3)
describes at first order an e-family of modulated true solutions to () on
asymptotically large time.

To be able to go beyond the shock formation in finite time for solutions
to (), we derive now a second-order modulation system. This will be done

by combining (B§, [2)) and (B9, BI]). In order to do so, let us rewrite (Bf) as
Ry = Bri(ko,qy) Orko + Bxi(ko,qy) Oxko
+ Brg(ko, o) 01y + Bxg(ko, Qo) 0xo
where By and By are defined by

BT(k*aq*)(kvq) = [QC*dH* + dc* H*]( 76)

k
b LaGUH. Quk) IR ()] — ¢ )

and

Bx (ke 7.)(k,7) = 3:0,G(H., Qu; k)[I(H.)]des (k. 7)
[c. H, + 0,G(H.,Q.)H, — 26k, H']dc.(k,q)
[2dH, + dG(H.,Q.)(dH., c.dH.) — 20k.c.dH!] (k,q)

£20,0(H.. Qui k) (AH.(E.D)] — S .k
= e+ FAGH.QuRIIW] + A,0(H. Q)] 7.
(46)

+ 4+ A+

Then, at order O(e?), the pair (k,q) = (ko,q,) + (k1,q;) satisfies
( ork — 6X[w(kvq)] = —00x (p kv_)[

|
<
SN
~
N
i~
—
&
'Q
S~

(M) + [N D)) = —00x (XD p(k,)[Br(k,9)0r (k,9)])
[
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which in physical variables turns into

( atk: — aﬂc[w(kaa)] = _ax (p(k’,_ [BT(kvq)at(k: )a)])

alMk )] + [Nk = =0 (MEDp(k,9)[Br(k, 9o (k,7)])
[

o e e

Eal el :
=
>
Ql
=

N

A A

|
PO

—~
O
~—~

\

In the next section, we will connect the issue of the well-posedness of sys-
tem ([I§) with some second-order properties of spectral stabilty of periodic
travelling-wave solutions to system () under low-frequency perturbations.
However we postpone nonlinear validation of this second-order modulation
system to further work. Nevertheless in the last section we do explain what

gain may be expected from its sudy.

4 Spectral validation of modulation systems

In this section, we carry out a spectral validation of systems (f4) and (Eg)
by connecting their spectral properties to spectral properties of system ([l])
in the low-frequency regime.

Let us fix (k., q,) € R*xR. Linearization will be performed for modulation
systems around (k.,q,), and correspondingly for the Saint-Venant equations
around (H,, Q). Moreover, as it is classical when studying the stability of
a travelling wave, we will work in a co-moving frame, either (z — c.t,t) or
(ke + wit, t).

4.1 The Whitham’s system and Evans function

In this subsection, we show that the dispersion relation that determines the
hyperbolicty of the Whitham’s equations provides the principal part of the
expansion of the Evans function, associated to the spectral stability of roll-
waves. Namely we prove the following lemma.

Lemma 1 There is a I’ # 0 such that
Ee) Y D) + O((N+v])?)
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where E is the Evans function associated to the Saint-Venant equations (see

(BA) below) and D is the dispersion of the Whitham’s system (see (b9) below).

For that purpose, we follow the computation carried in [[I§] and consider a
parametrization of viscous roll-waves by (¢, q) rather than (k,q). The equiv-
alence between the two parametrizations relies on assumption (P7). This
assumption is fulfilled on the small-amplitude regime but degenerates in the
small-viscosity limit. We will work right here in regimes where the assump-
tion holds ; however note that some information may be obtained directly in
(k,q)-variables as we will show with the Bloch analysis of the last subsection
of this section.

In this subsection let us then denote L(c,q) € R* a period and H(-;¢,q)
a L(k,q)-periodic function such that H(L-;¢c,q)) is a 1-periodic solution to
@) with & = [L(c,q)] . Accordingly M(c,q) = L(i@ Sg(c’q) H(y; ¢, q)dy and
more generally

1 (F
<f>L=sz. (49)
0
Since we are working with continuous roll-waves, we may choose a para-
metrization of H such that H(0;¢,q) = M(c,q). Recall that this does not
change the Whitham’s system. This sligthly simplifies computations since
then

dM = [—%+@]dL+ <dH >; = <dH >, .
Writting (f4) in frame (z — c,t,t) and linearizing yields
dL, 0i(c,q) — L.0.c = 0,
<dH, >, 0(c,q) + M. 0,c—0,q = O. (50)
or equivalently
dL, 0:(c,q) — L.0,c = 0,
[< dH, >1. +]g—:dL*] aleq) — g = O (51)
Searching for solutions in the form e****(c, 7,), with (ci,q,) constant and

non-zero and (A, v) € C x iR, yields dispersion relation 0 = D(\, v) where

D\ v) = N (0.L. < 0;H, >, —05L. < 0.H, >1,)

—\v (‘9L—L+ < H, >, +M%af“> + 02 (52)

Now we recall the construction of the Evans function given in [[Lf]. Writ-
ting the Saint-Venant equations in the frame (x —c.t,t) and linearizing gives
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a linear equation dyu — A,u = 0 for u = (h,q), whose operator A, has a
spectrum on L*(R) composed of A € C such that there exist functions (h, q)
and o € S! such that

0:(q—c.h) + A\h = 0, (53)
0, [dG(H,, Q) (h, q) — cuql + Ag = dS(H., Q.)(h,q) + 607,
and
(Q7 h7 h,) (L*) =0 (q7 h’7 h'l) (O) . (54>

Setting Y = (q, h, 1), system (B3) can be written as a first order differential
system with periodic coefficients:

Y = A\Y. (55)

Let U(-; ) denote the fundamental resolvent matrix of (53). Then the Evans
function is

E(\ o) = det(V(L; \) — ol3). (56)

To compute an expansion of E in the neighbourhood of (A, o) = (0, 1), we
first choose a basis of solution to (b3) for A = 0 and then continue this basis
of solutions for small A\. We choose Y;(-;0) = (c. H., H,, H!) and Y3(-;0) =
(cu0gH. —1,07H.,0zH.). Note that Y; and Y5 are indeed independent. For
Y5(-;0), any choice completing the basis would do. But in order to compare
with 1G] let us choose Y5(:;0) = (ciho, ha, hly) where hy(-;0) is a function
such that ho(L,-;0) belongs to the kernel of £, on L*(R), provided by
the Floquet analysis of profile equation (fJ), being associated to the Floquet
multiplyier p < 1 given by

L.
p = exp (51* J dG(H.,Q.)(1,¢c.) — cf) :

0

These eigenvectors can be continued analytically with respect to .
Let us denote, for any function f, [f], = f(L.) — o f(0) and [f] = [f]1,

and perform the expansion

(5N hs(N) = D N (g), 1) -

leN
Integrating (B3)); and performing the line substitution L; — ¢, Ly — L gives

—)\J () + (0 — Dg;(V)

A NEN o) =] Jo



with A%(X) = det(Y1(0; A), Y2(0; A), ¥3(0; A)) and G;()) some constants such
that

Note that 7,(0) = 7»(0) = 0 and g3(0) = 1. Now, expanding 7;(\) =
Y en A'g5 and looking at (E3)2, one finds

L.[m(L.:0)] = —L[0H.(Le+)] = (@ — H.(0))Lu[0gH (L. -)].
Therefore there are «, 3 such that
hi = —0.H, — (q; — H.(0))0;H, + oh{ + BhJ.

As a consequence, after column substitution C;—A3Cy—\(q —H,.(0))C3 —
C1, comes

L

0 A2f C0H, + Mo — ) HL(0) —A§Z B A (F O H, + 0 — 1
AOEN) = R H] - (- D) 1] [0,H.]
AOH] — (o — DAY(0)  [hY) [0, H!]

+ (9((|>\|+ |g—1|)3).

Differentiating H(L(c,q),¢,q) = H(0,¢,q) and H'(L(c,q),¢,q) = H'(0,¢,q)
with respect to (¢, q) leads to

[0.H.] = —0.L, H.(0), [0.H!]=—0.L.H"(0),

(whereas [h9] = (p — 1)h2(0;0) and [hY] = (p — 1)hs'(0;0)). This is now a
straightforward computation to show that for some I' # 0

E(\e") = TD\v) + O((Al+v])?).

Remark: the expansion of the Evans function found here is slightly different
from the one derived in [[G]: this latter one is not correct because of an
uncorrect expansion of [g;(A) —cihi(AN)]+ (1 —0)(q1 —c.h1)(0; N) with respect
to A.

For the sake of completeness, in an appendix, we provide a more geometric
description of this subsection that makes it more comparable with [[].
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4.2 Formal asymptotics in the Whitham’s system

To make some direct formal use of Lemma [I], in this subsection we study
formally the hyperbolicity of (£4) in the regime of small viscosity, § — 0, that
is when viscous roll-waves are close to Dressler roll-waves. For that purpose,
we use (hy,q)-parametrization (as in Proposition fl) and will suppose that
all concerned quantities are regular with respect to (9, hy,q). Moreover, we
write equations in the reference co-moving frame (z — c,t,t). One obtains
asymptotically

Hc _* / Hé _* — %! [— —
@pron, + Tp oz - Lev@yes = o
_ 2\’ ' Q _ = _
H.(q,) (;) ohy + H.T,) (;) oq + (M.c*'(g,)—1) d.q = 0.

so that (hy,q)(x) = €”*(1,0) defines a solution for any v. Therefore 0 is
always a trivial eigenvalue and the 2 x 2-system is always hyperbolic. The
Whitham’s system being always hyperbolic in the vanishing viscosity limit
0 — 0, one can expect, using a pertubation argument, that the Whitham’s
equations are hyperbolic for 6 > 0 sufficiently small. This is in contrast
with the results of Boudlal and Liapidevskii [[] that suggested that inviscid
roll-waves are stable under long wavelength perturbation (in the sense that
the Whitham’s system is hyperbolic) only for roll-waves of limited periods.
This discrepancy may come from the fact that the modulation procedure was
not carried out properly in [[]. Besides, the formal asymptotics carried out
here confirms formally the spectral analysis of inviscid roll-waves performed
rigorously in [[[7].

Let us emphasize that trivial hyperbolicity in the formal asymptotic sys-
tem comes from the fact that wave speed ¢ does not depend on k (nor on
hy) but only on g.

In contrast, a discussion in the neighbourhood of Hopf’s bifurcation points
using a perturbation argument from the constant case would show instabil-
ity (see B]). Yet, some numerical evidence shows that somewhere between
bifurcation points and limiting homiclinics there are some stable roll-waves
and that, in the weak stable sense of hyperbolicity of the Whitham’s system,
roll-waves are even stable up to the homoclinic travelling-waves. A detailed
discussion of these former points (instablity close to bifurcation, numerical
check of stability for roll-waves) may be found in [, P, B].

4.3 Second-order modulation and Bloch-wave analysis

In this subsection, we validate spectral properties of (ig) by a spectral Bloch-
wave analysis of ([). Also we obtain relations between eigenvectors of the
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Saint-Venant system and those of the modulation systems (both (f4) and

().

We are thus lead to perform a Bloch study of the operator A., defined as

k.0y(cih — q)
Aulh,q) = ( 0. [H] + 206 ] = wordg ) - (57)

Yet, the reader is referred to next section for a definition of the Bloch trans-
form. Let us only introduce, for | € [—7, x|, the operator A, (l) acting on

L2..(R) and defined by
[A.()(HI(y) = e AL FO)©) -

The following lemma is a version of Lemma 2.1 in [[[(], stated for the
Saint-Venant equations in Lagrangian coordinates and used to prove that,
for viscous roll-waves, linear stability implies nonlinear stability.

Lemma 2 The critical eigenvalues A\, 5 = 1,2 of A, are analytic functions
of the Floquet number . 5

The Jordan structure of the zero eigenspace of A.(0) = A, consists of a
1-dimensional kernel and a single Jordan chain of height 2. The left kernel
of A, is spanned by the constant function (1,0) and (H., Q") spans the right
eigendirection lying at the base of the Jordan chain.

Moreover, for |l| sufficiently small, there exist dual right and left eigen-
functions w;(+,1) and w;(-,1) of ./L(l) associated with \;(1), for j = 1,2, of
form

2 2
w; = 2 Bikvk ,  wWj = Z Bj KUk
k=1 k=1
where

o (vg)k—12 and (Ux)r—12 are dual bases of the total eigenspace of ./L(l)
associated with small eigenvalues, analytic in l, and such that

02(-,0) = (1,0) ,  wi(+,0) = (H,, QL) 5

° (1—16]»,1(1),5]-72(1)), J =12, and (18;1(1), B;2(1)), j = 1,2 are analytic
m L.

The role of (1,0) is a direct consequence of the fact that the first equation
of the Saint-Venant system is a conservation law. As already pointed out,
the role of (H., (') stems form translational invariance of system ([l]). The
rest of the lemma, the analyticity issue, may be obtained in a standard way
(see [[Q]) and is directly related to the existence of an averaged modulation
system.

We come to the main part of this subsection.
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Lemma 3 Forj =1,2,

1
—H. +ilo,H,
) b 0zH,

1 % (%)
= - +G; + O(1)
%a+mw* T\ G

wy (1) = o (K2 )

with (k:?,q?) the first term in a low-frequency expansion of a corresponding
eigenvector of the linearized Whitham’s system. Thereby vy and vo may be
choosed so that

1
() = | rOE), w0 =y (T ) + oo
QL+ i10.Q. O \ a2

Lemma 4 Forj =1,2,
A1) = ) + OF)

where (1) is a Fourier eigenvalue of system ([§) corresponding to fre-
quency [.

Lemma ] is a consequence of the proof of Lemma [, so we focus on the
proof of the latter. Moreover, we choose to write this proof in a wave analysis
spirit. Lemma []] also comes with a better description of critical eigenvectors
but we do not write it here.

Writting (1) in frame (k.z + w.t,t) and linearizing yields, after some
simplification in the second equation with help of the first one,

( atk + kde*(}z(k@) = - k*a:v (p*[BT,*at(k7q)])
s (pu[b. B0k )])

dM.,o,(k,q) — J‘If Ork

<:k@4i<1@m@@@pﬁ +k@ri<uhmpﬂm@mm)

— kOp (£ < k(1) > 8@)

— 0,(< K[Br.d,(k,7)] >) — @@mqmém@w@ﬂ>)

\

with N
BX7* = BX7* - C*BT,* . (59)

Looking for solutions of type e\ *%(k(v),q(v)) with constant (k(v),q(v))
expanded into >,y V' (k',7"), one finds at order O((|A] + [v])?)

\ 1 0 K° k kO kulgc. KN (0
oM, — 2 o, |\ g 10 1 )~ \o)
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From (@) stems that A = 0 is the unique eigenvalue corresponding to v = 0.
We now write
A = kawA(v) = >N
leN
to get further information.
With this notations, we obtain

0 1 0 K° k.Owe,  k.Ogc. KO 0
A + q —
O M, — ]\]:[—: 05 M. 7’ 0 -1 7’ 0/

Naturally we recover the same dipersion relation as for (f4), thus spectral
Bloch-wave validation of ({§) contains some spectral validation of (f4).
At next order, holds
(AR + 2Ok + kodel (R )
== _k*p*[()\OBT* + §X ) (ko _0)]
{ )\ldM (ko —O) + )\OdM (k‘l —1) )\IM*]{?O )\OM*kjl

_ k*(;_fd(dﬂ*(ko,a)) )—’f( <I(H)>%>

e (E <1 > ) = k(< IC*[()\ B+ Bx.) (0,0)] >)

since
MNE + Ede (K°,3°) = 0. (60)

Moreover, using again (B0), one may obtain

()\OBT,* + EX,*> (k°,7%)

= [~c2dH, — dG(dH,, c.dH,) — 26k dH.] (K°, )

— SeHIK — | £0,6(H., Qui k)[I(D)] + 0,G(H..Q.) |7y

N [L0,G(H., Qi k)I(H.)] + 6,G(H., Q) H, — 20k, H,

+ 20|26, + -0,0(H.. Qui k) I(AHL)]| (K, 7°)

. )\OGO . ()\O)QkOH

= BY(k°,¢°) + )\OBl(kO ) + (\?B2(k°,7°) = B.\°)(K°, ") .

We now carry out a spectral Bloch-wave analysis of system ([[]). Writting
the system in frame (k.o + w,t,t) and linearizing gives

{ oth = ki0i(cih —q),

O = —wi0pq + WG(Hs, Quik)[h] + 0,G(H., Qu; k)[q] (61)

that is
at(haq) = A*(h’aq) .
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We look for solutions to (FI]) in the form e****(h,(z),q,(x)) with (h,,q,)
1-periodic functions. We are only interested in spectrum near (A, v) = (0,0).
Therefore we set

A= kaoA(v), Ap) = D VN

leN

(hu7QI/) = Zyl(h17Ql) :

leN
First, there must be g € R such that c.hg — ¢ = g, and then

L.ho = GAT = L,0;H, —Gow.A®

and

which in turn imposes g = 0 (since dyw, # 0). Hence there is £ € R* such

that

K° K°

hO — _Hl 0 _ *hO — —H,.
k* * 7 q C k* *
Now there is g° € R such that
kO
cht—¢t =7 + X\° k_H*

and then N
L.ht = KAY + AT + \OR0Av

This forces

NE + kde (K2, 7°) = 0 (62)
and the existence of k' € R such that

kl
' = dH,(K°,3°) + k—H; :
Then equation
Ou(cih®> —¢*) = —(cht —q') + M'A° + MOA!
implies
co<hl>—<¢d>=XN<h>

thus

M,
A (dM*(kO,q)—k—k()) -3 =0. (63)

Note that equations (63/63) already provides a first-order spectral justifica-
tion. Moreover there exists g' € R such that

=gt = 7 — qI) — NFI(H.)
0 —
+ MEH, + NEH, + MNI(dH (K, 7)) .
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Now N
L0 = KA + AT £ (MO 4+ 20k AY + R
with
R' = kBN, 7).
This sets

MK 4+ AN 4 kde (2 7°) = —kopBJAJ(R0, 0] . (64)

Moreover there exists k? such that
2

k
p* = dH, (k' q") + K.R' + k—Hﬁ.

Now equation

G<h®>—<¢@F>=XN<h> + N <h>

leads to
AldM*(kO’GO) + )\OdM*(k17ql) + )‘0 <IC*B*[)\O](]€O760) >
= MNEEED 4 NBEEY + 7+ X < T(dH.(K°, ")) > (65)

—)\0<1'(H*)>’,‘§—iJ - P <I(1)>

which completes our spectral justification.

Indeed writting a linear system for (k°,¢°) + v(k',g"), which is non-zero,
leads to the same dispersion relation for A\° + vA! in both cases.

Let us comment somewhat on the spectrum we just described. For v = 0
in the Bloch-wave analysis, A = 0 is an eigenvalue corresponding to a 2 x 2-
Jordan block, with (H,Q.) as an eigenvector (and =(0.H.,0.Q.) as its
antecedent in the (¢, q)-parametrization). For v € iR* small, two eigenvalues
emerge from 0, tangent to the imaginary axis when hyperbolicity of (E4)
is met, with first order k,v\°, A\° being well-described by both modulation
systems. Curvatures of the eigenvalue curves may then be extracted from

system ({S).

5 Nonlinear validation
of the Whitham’s system

In this section, we prove the existence of a family of solutions to the shal-
low water equations, close to a given roll-wave, converging towards a mod-
ulated roll-wave profile described at first order by a solution to the inviscid
Whitham’s system.
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Firstly we enumerate here all our assumptions. Not all of them will be re-
called in Theorem [ll. Beyond the assumptions of smooth (k, §)-parametrization
and that the Whitham’s system is of evolution-type (see (Bf)) and hyperbolic,
we will also ask for :

e the spectrum of A, is of upper bounded real part ;

e for any [ € [—7, 7| and any cut-off parameter [;, the non critical part

A (D)Pg of A.(1) is invertible (see ([1]), ([2) and ([73) for definitions).

We write the latter points as assumptions to emphasize what we really use
in our proof. But these former assumptions may be removed. For instance,
the upper-boundedness is a consequence of high-frequency estimates in [[L{].
Alternatively, invertibility assumption, as hyperbolicity, can be rigourously
reduced to numerical investigation in an explicit finite box of eigenvalue phase

space and then numerically checked with techniques in [, B, f].

5.1 Spaces

Following the strategy introduced in [[[1] for the Ginzburg-Landau equations
and developped in [fj] for reaction-diffusion systems, we will prove the con-
vergence to a roll-wave profile in a set of analytic functions. Indeed, in
the hyperbolic scaling considered here, there is no smoothing effect arising
from equations whereas, in the modulation context, some terms are neglected
precisely because they contain more derivatives. We will correspondingly re-
strict the class of admissible solutions to the Whitham’s system and to the
Saint-Venant equations.

Let a > 0 and m € R*. We first introduce a space for solutions to the
Saint-Venant system. Let us define

Ls(a,m) = {v e L'([-m, 7], HZ)

per

f (-, l)||Hgérea“|dl < oo}

—T

where H;. denotes the classical Sobolev space of 1-periodic functions. Also,

for any Schwartz-class function u, u is the Bloch transform of u defined by,
for any (y,l) e R x [—7, 7]

iy, 1) = Ju(y,1) = Y, e Fu(l + 27j),

JEZ

1 = Fu being the Fourier transform of u, explicitely for [ e R

a(l) = Fu(l —ilry(z)de
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Note that a justification for restricting attention to R x [—m, 7] is that ex-
tending definition to R x R would lead to : for any (y,l) € R x R,

Uy, L +27) = e *™a(y,l) .

Moreover, the Bloch transform comes with an inverse formula

u(z g (x, 1)dl

) - |
21 J
and a Plancherel formula

lullce@y = ] L2(—nm.L2,,)-

Admissible solutions will be considered in the Banach space
X% ={u:R—>C*ucLs(a,m)}

endowed with norm | - |ye defined as, for any Schwartz u,

el = il oy = | Dllng, eV

—Tr

Due to Sobolev embedding theorems, X% is an algebra when equipped with
usual multiplication provided m > 1. Namely, if m > 1, there is a C(m) > 0
(independent of a) such that for any u,v e X%

[uvlxg < Clm)lullag [v] xg, -

Correspondingly we introduce a space for solutions to the Whitham’s
system. First

Lr(a,m) = {v e L'(R,C) ‘ JR w@)[(1 + (i)™ < oo}

and
Vi ={u:R—->Clue Lz(a,m)}

endowed with | - |ya :

lullye, =l zz@m) = JR ()| (L + [1))™eMar .

Note that such w are analytic on strip {z € C||Sz| < a}. Moreover, when
m =1, Y4 is also an algebra.
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An important link between two kinds of settings is provided by the fact
that if u is 1-periodic and the Fourier transform of v is supported in [—m, 7]
then

T (uwo)(y, 1) = uly) F(v)({1)
and in particular, for such a low-frequency v, J(v)(y,l) = F(v)(l). Con-
versely, averaging in y yields, for a general u,

(T ) = Fu)l)

for any I € R (with an extended Bloch transform).

To make our theorem more readible we also introduce more common
spaces : uniformly local Sobolev spaces. Let us first introduce an intermedi-
ate space

H™ = {u eLli,

SUp [|we, w11 | (e +1]) < OO}
z€R
endowed with norm
lullzn = sup |[wpe ey |mm ey -
z€R

Then we define the subspace

R—>]:Im,
T—u(-—7T)

H = {uef]m

1S continuous} .

5.2 Main statement

Before stating the main result of this section, which we will prove in the
following, we still need to introduce some change of variables. Let (k.,q,) €
R* x R and then write equations in usual frame (k.x 4+ w.t,t). Then, for any
phase , we introduce a time-dependent change of variable X¥ defined by

Xy, t) =y — »yt) .
If 0,4 is small enough, it can be inverted into Y¥ satisfying
XY (x,t),t) = x.

Note that

p B 1
N R o
)

1 —0,0(Y?(x,t),t)

0 Y ¥ (x,t) (67)
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In particular, whenever 0, is small, 0,Y ¥ (x, t) is close to 14+, (Y ¥(x, 1), 1),
corresponding local wavenumber is close to k.(1 + d,¢(Y?(x,t),t)), and cor-
responding local frequency close to

Oip(Y¥P(x,t),t) + we(1 + 0yp(Y?(x,1),1)) .

Moreover all derivatives are written as functions of Y¥(z,t) and t.
Now the following theorem provides us with a nonlinear justification of
the Whitham’s equations

{ aTk + k*&X(kC(kf,a) - C*k:) = O
aTM(kuq) + k*aX (N(kaq) - C,,M(]{Z,G)) =0

here written in frame (k. X + w,T,T).

(68)

Theorem 1 Let (k.,q,) € Ry x R. Assume that in a neighbourhood of
(kv,q,) system (BY) is of evolution type and strictly hyperbolic.

For anya >0, m >3 and M > 1, there exist positive 1,11, Cy and T} such
that, for any Ty €10, T1], for any solution (k,q) to (BY) on [0, Ty] satisfying

sup |[(k,9)( T) = (ke 7.) |y <
TE[O,TQ]

and for all £ €]0, &1, there exist ((k.,q.),r%) and po. such that

sup |(ke, @) (-, 1) — (k, @) (e, t) [y < C1 [e +077]
te[0,To /<] ,
sup [rZ(, t)|[mm < Cin’,

te[0,To /<]
2

sup (1) < Gy
te[0,To /¢] €

where

n = sup ||(kvq)(7T) - (k*uq*)HHZlL
Te[0,To]

and a solution (h,q) to the Saint-Venant system ([]) such that

sup  sup | (1. q)(x. 1) — (Happ, Qup) (V¥ (2,1), 1)] < Cr™,
te[0,To/c] zeR

where

(HGPP’ QGPP) (ya t) = (H7 Q) (ya ke(ya t)a qe(y’ t)) + r;(ya t),
and @.(y, 1) = o () + §y (22 — 1) de.

Our result is partially stated in | - |[gm norm, whereas we will work
with Fourier, Bloch, or mixed types, multipliers. To fill this gap we need
a multiplier theorem and thus refer to Lemma 5 in [I7] (also stated in [{] as
Lemma 3.6).
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5.3 Separation of critical modes

Our proof of the above theorem starts simultaneously rewriting the shallow
water equations in an appropriate form so as to separate critical modes from
others and plugging into the equations a roll-wave ansatz that we will mod-
ulate afterwards when looking for long wavelength approximate solutions.
Recall that, in frame (k.x 4+ w,t,t), the Saint Venant system is written as

{ O + kudu(q — cih) = 0 (69)

0rq + k02 (G(h,q) — cuq) = S(h,q) + k102q

or equivalently
Oh + ko0p(q —cih) = 0
0 + wi0pq — G(h,qi k) = 0

Following [{], we introduce a roll-wave ansatz for (h, q)(z, 1),

(H.Q) (mx, : k. 74TV, t>,t>) L0V, 0), ).

11— ay@(yw(xa t)at)
Since dy¢ should remain small, (h,¢)(X¥(y,t),t) is then well-approximated
by

(H*7 Q*)(y) + (dH*7 dQ*)(k*aySO(?/a t)v q(ya t))(y) + (hv @(ya t)

Using (B@,67) in a chain rule differentiation turns (B9) into a set of equa-
tions for (, §) and (¢, 7). We added two more unknowns and therefore should
later add two more constraints. These constraints will perform a separation
of low-Floquet critical modes.

As an example, note that

k.
"1 aygp(Y‘P(-, t)7t)

6 (.0 (v A ATC0,0) k) (0.0

would turn into

g* + ahg* [dH*(k’*ﬁyQOa a)] + aqg* [dQ*(k*ay(pa G)] + akg*k*ay(p + 51{33@:@3%0 + gR

(taken in (y,t)), with Gg at least quadratic in (k.0y¢,7q).
Setting u = (h, §), the shallow water system (£9) leads to

[Bg1 + B?(U, k*ay(b? q)] (k*ath7 atq) + atu

BN (koo d) — Au = Rwkdeg), O
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with A, the linear differential operator studied in previous sections, defined in
(BQ) and that corresponds to the linearisation of the Saint Venant equations
about the steady roll-wave (H,, Q.). Recall that

~ ko0, (coh — §)
«(h,q) = ~ Y N 2.
A0 ( 0,0.7] + 2,8.11] - .0, )

Operator Bl is given by

b
ks

,{%@: +dQ.(3,.7)

H, + dH.(0,¢,9)
BY (p,q) =

9

and B* by the fact that BX(k,q) is

( K.y ((eudH, — dQ.) (k7)) )
OnG[AH.(k,9)] + 0,G.[dQu (k. @)] + uGuk + k. QLK — w.0,(dQu (K, 7))

and thus may also be written as

1
— - HRdeu (k) — Ho kode (9, 0,0) + k.0,

1, B ~ 3
- k2de, (k,q) + BX(6,k, 0,7)

where BY is some differential operator with 1-periodic coefficients. At last,
BT (u, k,q) is a linear differential operator whose coefficients depend at least
linearly on (u, k,g) and R is a nonlinear operator acting at least quadratically,
informally

Bl (u, k,q) = O(|k| + g| + |u]), R(u,k,q) = O(k]* + [q]* + [u]?).

We will split equation ([/0)) by projecting it on low Floquet-number critical
modes of A,. Therefore we first introduce a projection on critical modes of
A, for small enough Floquet numbers.

First recall that, for [ € [—m, 7], A.(l) is the operator defined by

[A.()(N](y) = e [A(e" (D))

so that . 5

AfC D) = ADF(,1)
A positive [; €]0, 7] can be chosen small enough so that for any [ such that
]| < I, the spectrum of A,(I) in a small O-centered ball is given by two

31



spectral curves \;(1), j = 1,2, studied in previous section, and may be defined
the associated A, (l)-invariant spectral projection

- 1 -

Q) = — | A—=A.(1) X, (71)

21t Jp

[' being the boundary of our neighbourhood of 0.
We further choose a non-increasing C* cut-off function, y : R — [0, 1],

so that, for [ € R,
1t i<t
x(h) = { 0 it I =2 (72)

and define (with a slight abuse of notation), for [ € [—m, 7], truncated pro-
jections

P -0 (T). Po-1-50x (1),
P =G0 (). P -1-0 ™)

Pralt) = &0 (1) Paalt) = 1= o)

To these operator-valued Bloch-symbols, we associate operators (and use an
obvious notation for them). These operators commute and

(1-PPos = 0, (1-=P)P; = 0. (74)

We now replace system ([[0) with

-

| PLBE + Pl (u, kdy0,9) | (k. 00)
=PEBX (k.dyp,q) + PrfR(u, by, q)

< oru — Avu =PEBX (k0yp, Q) + PiR(u, kidyp, q) (75)
k = [PEBY + P (u, kidyp, @) | (kudugp, 011)
supplemented with constraints
(1-P)u =0 (76)

T weesm e () @

Obviously any solution to our new formulation of the problem does provide
us with a solution to ([70).
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A straightforward consequence of ([[4) is that we only need to check that
constraint ([7@)) is satisfied at ¢ = 0. In order to check whether it is so also
for assumption ([(7), we need to describe precisely PEBL. Of course we also
need this detailed description to compare first equation of system ([[3) with
the Whitham’s system.

But our spectral study of previous section (see Lemmas P] and ) does
give us the needed expansion of o Correspondingly, we can write eigenpro-
jection Pf, as

7\D/fcs'a(yal) =X (Z) (< 61('7 l)aﬂ(al) > 'Ul(yv l)+ < 62('7 l),'ib(', l) > UQ(yv l))

where again < -, - > is the scalar product of Lpe]r
Besides, one readlly obtains that, for any pair (p,q) such that ([[7) is
satisfied,

TBs (kup, 9)1(1) = kup(1) (01 (1) + O(2)) +4(1)(05M.v2(1) + O(1)) - (78)
therefore (using also 0 =< 0,02(0),v1(0) > + < 02(0), dv1(0) >)

<00 T Gep. 010 == (14 BLO) ) b

< 0a(1), T[Bg (kup, @)I() >= (M. + g&@)) [k.0y0(1),q(1)]

with formally |57, ()], |57, (1) = O(1) and |BL,(1)] = O(?).
Likewise, ([(7) implies

<), TB* (k,](1) >= —kde.(k(1),4(D)) + ! ),

< 00, J[B* (kD)) >= —M.kuden(9,k(1), 2,9(D) + k.0,a(0)
+i < 612}2( ), )

k()

with B, (1) = O(1) and |Ig§f2(l)|| = O(?).

Now, from definition of Py is derived for any function f

won e =[x (£) -1}

. 1 . . . .
Since oM. ﬁq(]]\/[* ] is invertible, as a result, assumption ([7) is seen to be
satisfied whenever it is at ¢ = 0. From now on we do not repeat but always

assume ([(7) is satisfied.
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We still need to relate the first equation of system ([(f) with the Whitham’s
system but it is now a straightforward task. Let us split BT (u, k,q) into

BY (u, k,9)(,7) = B, (u, k, Q)¢ + B (u, k, 77

and define 7; by ﬂjf(l) =< 0;(+1), f(-,1) >. Setting k = k.0, and applying
m to the first line of ([3) leads to

(1 + gg,Q + WIPICnfB,%:cp(Uﬂ ka q)) at (k,,g@)
= —k2de.(k,q) + g,ifl(k, Q) + mPR(u, k,q)
—m Pl (u, k,q)0q — B, 0:q -

If {1 is small enough, then, as long as (k,q, u) is kept small enough, this can
be turned into

O (ko) + kideu(k,q)
- - [(1 + BTy + mPeBT(u, /Yf:,q))1 - 1] (k2de.(k,q))
+ (1 + 5{2 +mPLBL L (u, k,q)) B (5;{1(/%,@) + m PR (u, k q))
— (1 + 5%2 + ﬂngfo¢(u, k,ﬁ)) o ((ﬂﬂ? fB J(u, k,q) + Bk 1) 6tq>
and, denoting the right-hand side of the former equation by
Fi(u,k,q) — Blg(u,k,9)aq — BY (k,7),

with formally ||5’T (u, k) ()| = O] + |u| + |k + [7]), |BY]| = O(l) and
| Fr(u, k, Q)| = (|U|2 + |k|2 + [g]?), gives
O (ko) + Bk (U, k,9)0g
) _ (80)
+ kde(k,7) + BE(k7) = Fu(uk,9)
therefore
ok + 0, (Blg(u k,9)0) -

+ R0k, 0,0) + 0, (BY () = 0, (Fi(u,k,9)).
Applying 7y rather than 7 leads to
(ang. +BL,) (k. 0@) + maPiBY (., )0, (ugp)
= —k.M.dc.(0,k, 0,9) + k.0,q + BX,(k,7)
+ m PR (u, k,q) — m Py fB (u k., q)0iq
+ i < 002(0),v1(0) > [0k + kfdc*(ayk, 2y0)] -
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Using (B(), the equation may be written as

+ koM.de.(0,k, 0,7) — k0,3 + BX (k,9) = Fy(u, k,7)
with formally |BT (u, k,q)()| = O(I| + |ul + [k| + [7]), [BY| = O(?) and
| Fo(u, k&, @) | = O(Jul” + [k* + [a]).

Again, under smallness assumptions, one can invert

[ 1 il B (u, k,9)(1)
8kM* + gg,k(uv ka q) (l) aEM* + ggﬁ(u’ k’ q) (l)

Thus equations (B1,B2) yield an evolution system for (k,g). As a result,
setting V = ((k,q), u), system ([/J) may be written in short as

&Y — AV = N(V), (83)

where A is a lower triangular linear operator written in Fourier-Bloch vari-
ables (Fourier in (k,q), Bloch in u) asf]

K@) = ( AW 0 ) ,
b (1) A1)

with 5Y1) = O(1) a bounded operator (from C2 to 1-periodic functions) and
Ac(1) € My(C) such that A°(1) = O(1), and N a nonlinear operator such that
N (V) = O(|V]?). From the derivation of the critical system, the spectrum of
./’l\c(l) is easily seen to be given by the values \;(il), j = 1,2, of the previously
introduced spectral curves \;, j = 1, 2.

In order to emphasize the mode separation, we write V = (v¢,v®) with
v¢ = (k,q) and v° = u = (h,§). Then system (83) may be written

ot — A = N°(v°v®) (84)

o® — A 08— bt = NZ(v°0%)

where N¢(v¢, v®), N*(v¢, v%) = O(|v°]* + |[v°]?) and N is of the following form
N, v%) = f(u°,0°) 0,F(v°,v°) + pN°(v°,v°)

with f(v,v°), F(v°,0°) = O(|v°] + [v]), Ne(ve,v°) = O(|v] + |[v°[2) and p
is such that p(l) = O(l). This former fact is trivial for the part coming from

fWith a slight abuse of notations in the use of ™.
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m through equation (BI)). As for the contribution of s, it follows from the
following fact:

mh o)1) = <h(,0) > + O0[(hg)] = h(l) + OW[(h,q)].

This is the end of our preparation of the system and we can now build
a family of approximate solutions according to the desired ansatz and then
achieve the proof with the construction of a family of solutions close to our
family of approximate solutions. For this purpose we are now in such a
position that we can follow the strategy explained in [} and therefore we
will mostly sketch the end of the proof.

5.4 Approximate solutions

We now fix a > 0, m > 3, and Ty > 0 small enough and consider a smooth
solution (k,q) to system (B§) in L® ([0, Tp]; V§). For further implicit uses,
note that for some C'(a, m) stands

|- e < Cla,m) |- g
and that, for any € > 0, || - |ys is turned into || - [yze by the transformation
f = f(e-) so that in particular | - |ys is invariant under this transformation

whenever ¢ < 1.
In order to build approximate solutions in the long-wavelength regime
we associate to long-wavelength profiles (V¢ V®) and any ¢ > 0 e-residuals
Res;(V¢, V®) and Res:(V°, V*®) through
Rest(VE, V)X, T) = [0 — A% — N¢(v¢, v%)] (5 I)

€

Res(VE, V)X, T) = [0p° — A® —bv® — N5(v°, v°
where (v°, v®) is defined by

vi(y,t) = V(ey,et), v(y,t) = V3(ey,et) .

Obviously, for a given € > 0, the above (v° v®) is a solution to (B4) if and
only if Res: (V¢ V?®) and Res:(V¢, V®) vanish.

The next proposition provides us with the needed approximate solutions.
Yet, to be able to prove it we need to understand the behaviour of operators,
defined in Bloch variables, with respect to dilatation. For this purpose, let
us denote D, the dilatation operator, D, (f) = f(a-).

First recall the diagonalisation formula

1 " ilx [y i3
T1e) = <= | TOF DN
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where
[T()g)(x) = e ™[T(e"g()]() .

From this one deduces

DATDA(e) = = | P DATEN DTl

Note that one can not infer form this formula a Bloch transform since the
periodicity may be lost in the process. For instance, in the case where
T(l) = P(l,y,0,) with P a symbol 1-periodic in y, in the formula appears
P (5l, %,5(%). However note that even in this case thanks to the original
periodicity the y/e-dependency is almost harmless.

As for Bloch-Fourier operators, let us look at an operator defined through

Ti0) = | Fafeolmdy

0

(with an extended definition of the Bloch transform). Then formally

Fao~ToAm @ = S F (1427 f 7 (D[] (5)dy

JEZ

which, when 7Y (I) = P(l,y, d,), turns into

i) [l ea) [ w2

Note that, when f is low-frequency, it only involves bounded j/e so that,
when moreover P is 1-periodic in y, again oscillations are harmless.
At last, let us consider an operator defined through

1 " ilx [ £
T10) = o= | il

with 77-) 1-periodic. Then

D116 = e [ e[ (L) 0] ()]

which, when 7(y) = P(l,y), turns into

\/%f et p (. 2) Foar

Again, when f is low-frequency, oscillations (here in 7/e and x/¢) are harm-
less.
We are now in position to state the following proposition.
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Proposition 3 Let m =3, M > 1 and ag > 0. There exists n; >0, £ > 0
and a constant Ky such that, for any 0 < a < ao, if (k,q) is a solution to
the Whitham system such that suppepo ) |(k, @) (-, T)|ye, < 11, then, for any
0 < e <ey, there exists (V.5 V) such that

sup V(e T) = (k) (e D)l e < Ku | e+ sup (k) (. T) = (ka7 [ |

TE[O,TQ] TE[O,TQ]
sup [VE(er, T) | e < K1,
Te[0,T] "
sup H‘/as(g'v T) ”X;fl/s < Kl sup ” (ka q)(7 T) - (kh q*) ”%{l”;u
Te[0,To] Te[0,To] :
sup [ Resg (V5 VE) (e Tl use < Kag™,
Tel0,T] m
sup | Ress (Ve V) (e, T) | yore < K™
Tel0,To] m

To prove Proposition [J, one search for (V¢, VF) in the form

Ve = Vg o+ eVE 4 e MV

£

VE = V5 + VP + - MV

£

and obtain a hierarchy of equations for (V,V?)o<j<n-

At step j, V7 is obtained as a function of (V;¢, V;*)o<i<; and V by solving
an equation (not of evolution type) through the implicit function theorem
thanks to the inversibility of A,Pg. For j # 0 this function is linear in V.
Using this expression for V one obtains an evolution-type equation for V7 in
terms of (V;%, V*)o<i<j. For j = 0, the equation for V{ shares its linearization
around (k.,q,) with the equation for (k,q). For j # 0, the equation is linear
hyperbolic.

Note that the intricated form of the proposition is a consequence of the
fact that the norm || - [y« badly scales. Note also that, although, up to
the expression of V7, the proof of the proposition follows the lines of the
formal derivation of the Whitham system, the two expansions may differ
even though they share the same starting point (k,q) at the linear level.

5.5 From residuals to reminders

We now look for a family ((v¢,v%))g<c<c, of solutions to system (B4) in the
form
(W vl (@, t) = (VE, Vo) (ew,et) + e¥(rg,re)(z, )

(RS

with (r¢,r8) uniformly bounded on [0,7}/e] (where T is some fixed time
0<Ti < T(])
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Substituting this ansatz into (B4) yields an equation we write as

g1 e

o — At = N2(ré,rs)

g1 e

{ ore — Ard = NZ(rg r) (85)

Note that a linear term br{ has been put in the right-hand side of the second

equation of system (BJ) so as to deal with a diagonal form in the left-hand

part. As usual this family of systems are solved by a fix point argument.
For this purpose, we report the following estimates

INZOE D)l < By + Ky ([rellag + rlag) + e K(Re, R)
INZre D) s, < Ko+ Ky, (Iréllag, + I72lag) + eME(Re Ry),
valid for all 0 < a < “® whenever [r¢[|xe < R and |[rf|xe < Ry, where K,
goes to zero when (7,1;) goes to zero. Recall that [; is a cut-off parameter
and 7 is a size parameter for (k,q). Actually K7 also (badly) depends on [y
but this latter point is not prejudicial.

It is crucial to note that through these estimates one undergoes a loss
of derivatives. This is a consequence of the fact that our initial nonlinear
change of variables has turned the semilinear Saint-Venant equations into
quasilinear ones. This former point also explains why it would not be harder
to deal with a more physical viscosity. Unfortunately, at this stage, one can
not exploit any smoothing coming from the linear operator A, Pg. But this
is a common fact that in the process of justifying an ansatz one usually loses
something. Here instead of losing regularity we will choose to lose analyticity.
We will establish estimates with a width of analyticity descreasing at a linear
pace, so that we will work on a finite time, even shorter than Tj.

For this we introduce a smoothing operator as follows. Let us fix Ky > 0.
We use the fact that the spectrum of A, is of upper bounded real part to
choose K|, sufficiently large so that, for any [ € [—n,x], the real part of
the spectrum of ./L(l) — K{|l] is upper bounded by —Kjl|l|]. We further
define operators kj and S.(¢) through their Bloch symbols k%(l) = K|l
and S.(t)(1) = (¥ K)I

Then we set (1<, %) (£) = (S.()re(t), S-(t)ri(t)) for times ¢ satisfying

gr'e 15 1>
Qo
0 <t
Kje
Estimates are thus established now in | - |xo norms. The system for the
evolution of (rg,'rg) is similar to the previous one, with the same kind of

estimates for nonlinear terms, but with linear operator (A¢ A,) replaced
with (A°— k), A, — k(). The reason for this change of unknowns is that now

39



one can prove for (A°— k), A, — k) a maximal regularity result in X -valued
Holder spaces, readily similar to Lemma 6.3 in [[f]. This was the missing part
to close in a classical way a fix-point iteration scheme.

The last thing we should say is that ¢g . is then recovered by integrating
over time 77 /e equation (B().

6 Conclusion

In this paper, we derived formally first-order and second-order averaged equa-
tions for shallow water flows that describes the dynamics of modulated roll-
waves and provided two set of justification results.

On the one hand, we carried out a spectral stability analysis of roll-waves
using Bloch transform in the regime of small wavenumber perturbations. We
first related the index of stability of viscous roll-waves with the hyperbolicity
of the first-order Whitham’s equations just as it was done by Serre for general
viscous conservation laws [[§] or Johnson, Zumbrun and Bronski for gener-
alized Korteweg-de Vries equations [d]. However, in both latter papers, only
the Evans function framework was used. Here we proved the Bloch trans-
form framework is a more natural tool, by extending such stability analysises
into two directions : we relate not only eigenvalues but also eigenvectors and
we relate the stability of steady solutions to the second-order Whitham’s
equations with the parabolicity of spectral curves at the origin.

On the other hand, in the spirit of what has been done for reaction-
diffusion equations by Doelman, Sandstede, Scheel and Schneider [{], we
justified rigorously the inviscid Whitham’s equations in the natural hyper-
bolic scaling. More precisely, we proved that, given a solution to the inviscid
Whitham’s system, there exist solutions to the viscous shallow water equa-
tions on asymptotically large time that are close to modulated roll-waves
whose first-order expansion is described by our solution to the Whitham’s
system at the linear level. This justification is performed under weak stabil-
ity assumptions : at the origin, tangency to the imaginary axis of spectral
curves. From numerical investigations, it seems that it will enable us to ap-
ply this nonlinear justification up to the limiting homoclinic travelling waves
(whose spectrum yields unstablility but is tangent to to the imaginary axis
[B]). This weak stability assumption has a counterpart in the required ana-
lyticity of solutions.

But probably the main flaw of this justification is that our solution to the
Whitham’s system describes the first order of the roll-wave profile only at the
linear level. This is a consequence of both the Y% change of variables and the
hyperbolic scaling. Such an issue would not occur with a diffusive scaling.
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Yet the counterpart would be that the size of the allowed perturbations of
(k,q) would not be anymore O(1) but O(e) (recall € > 0 is the characteristic
wavenumber of the modulation).

Moreover the nonlinear justifications need some regularity so that, with
the hyperbolic scaling, there is little hope to construct modulated roll-waves
converging at +oo to roll-waves with different wavenumbers and local dis-
charge rate since they would correspond to shocks in parameters (k,q). How-
ever with a parabolic scaling on may expect to justify viscous shocks of the
second-order modulation system as modulated roll-wave profile for solutions
to the Saint-Venant system.

At last a second-order justification would probably also enlarge the time
validity of the approximation from [0, Tp/e] with T some time imposed by
the equations to [0, 7 /e?] for any fixed time T

For all these reasons, a natural direction would be now to justify a second-
order modulation in a parabolic scaling as it was also done in [{] for reaction-
diffusion equations.

A Whitham’s dispersion in a geometric way

In this appendix, we explain how to fill the small gap between analysis
in subsection f.] and the one in [[§ (for different equations). We just
need to replace our straigthforward computations with more geometric ones.
Yet we keep the framework of subsection [.1] : frame (z — c.t,t), (¢, q)-
parametrization...

We turn 2 x 2-determinant giving Whitham’s dispersion into a 3 x 3-
determinant. This is done interpreting the set of periodic travelling-wave
solutions as a submanifold.

The tangent space of the set of periodic travelling-wave solutions (inden-
tified when being equals up to translation) at H, is

(B,7) € kerZ}

where the existence of such a hj is provided by the analysis of (f) and Z is
a linear operator from R3 x R to R? defined by

Z1(B,7) = Bil0H.] + Ba[h] + Ba[dgH.] + vHL(0) ,
Z5(8,7) = Bil0-H.]+ Bo[hS] + Bs[ogHL] + vH!(0) .
Note that on ker Z

dL.(8,7) = v, de(B,y) = B,
dq*(677) = /837 dH*(677) = /BlacH* + /Bth + 6366}[*7

{BlacH* + Behy + B30;H.
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and

AM.(B,7) = Vk[H.(0) = Mi]+ < dH.(B,7) >L. -
Fix (A, v) € C? and define T'(\,v) a linear operator from R? x R to R? by

Tl(/Bafy) = _)\k:?(’Y + sz/gl ;
Tg(ﬁ,’}/) =\ [61 < 6CH* >, +52 < hg >r, +63 < %H* >L*] + I/k’* [M*ﬁl — 53] .

Operator T'(\, v) coincide with (Adk, + vk.de., \ddM, + vk, (k.dc, —dg,)) on
ker Z, since as in subsection [L.1 we have imposed M, = H,(0).
Now, up to some non-zero I', I,

D\, v) = Tdet(T(\, V) jxerz) = T"det((T'(\,v), Z))

and det((T'(\,v), Z)) equals

vk? 0 0 —\k?

A< O.H,>p, +vk.M, AN<hy>p, A<0;H,>p, —kowv 0
[0.H.] [75] [0gH.] H(0)
[0.H.] (73] [0H1] H/(0)

and may be reduced to

N < 0.H, >1, +\Wk,M, \N<hy >, <0H, >, —v
k? Mo-H.] + vH,(0) [h9] [04H.]
Ao.H{] +vHI(0) [hy'] (0]

which easily compares with the main part of the Evans function E(A, e”).
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