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ABSTRACT. We study Fredholm properties and index formulas for
Dirac operators over complete Riemannian manifolds with straight
ends. An important class of examples of such manifolds are com-
plete Riemannian manifolds with pinched negative sectional cur-
vature and finite volume.
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1. INTRODUCTION

The celebrated Atiyah-Singer index theorem establishes a connec-
tion between analysis, geometry, and topology of closed manifolds. It
contains the Gauss-Bonnet formula, Hirzebruch’s signature theorem,
and the Hirzebruch-Riemann-Roch formula as special cases. Later,
Atiyah, Patodi, and Singer found a generalization of the index theo-
rem for certain first order differential operators on compact manifolds
with boundary [APS])]. In this article, they also discuss index theory
for their class of operators on non-compact manifolds with cylindrical
ends, and our work builds on that part of their work.

It is obvious that the structure of the underlying manifold and of
the differential operator close to infinity plays an important role in this
theory. Without restrictions on these data, not much can be expected.

Motivated by previous work of Barbasch-Moscovici [BaMd], Lott
[Coll, Log, and the first two authors [BBIl, BB, our main objective
are Dirac operators on complete manifolds with pinched negative sec-
tional curvature and finite volume. The structure of the ends of such
manifolds has been determined by Patrick Eberlein and is related to
the existence of so-called strictly invariant horospheres, see [EH].

To set the stage, let M be a complete and connected Riemannian
manifold of dimension m with Levi-Civita connection V and curvature
tensor R. Let E — M be a complex Dirac bundlef] with Hermitian
connection V¥, curvature tensor R¥, and Dirac operator D. For con-
venience, we assume throughout that R and R” are uniformly bounded,

(11)  |R(X,Y)Z| < CrlX[IY]|Z], |R®(X,Y)o| < CEIX|IY]lo],

for all vector fields X, Y, Z on M and sections o of E. The bound on
R is equivalent to assuming a uniform bound on the modulus of the
sectional curvature Kj; of M.

Recall that D is an elliptic differential operator of first order. Con-
sider D as an unbounded operator on L?(M, E') with domain C2°(M, E),
where L?(M, E) denotes the space of square-integrable sections of E
and C°(M, E) the space of smooth sections of £ with compact sup-
port, and note that D is symmetric on the latter. The closure of D has
domain H(M, E), by ([1]) and the general Bochner identity, see (B-13)
and (214). Furthermore, D : H'(M,E) — L*(M, E) is self-adjoint,
see [Wd or Theorem IL.5.7 in [LaM]j.

We may ask under which conditions D : H(M, E) — L*(M, E) is a
Fredholm operator. By self-adjointness, this is the case if and only if 0
is not in the essential spectrum of D; according to a result of Nicolae

in the sense of Gromov and Lawson, compare Section
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Anghel, this holds if and only if there is a compact subset L in M and
a constant C' = C'(L) such that

(1.2) lollz2ar,z) < Cl|Dol| 201,k

for all smooth sections o of E with compact support in M\ L, see [[Ax]].
If such an estimate holds, we say that D is of Fredholm type.

Better adapted to our investigations and more flexible is a somewhat
weaker notion, introduced by the third named author in [Cal]:

DEFINITION 1.3. We say that D is non-parabolic at infinity if there is

a compact subset L in M such that, for any relatively compact open
subset K of M, there is a constant C' = C(K, L) such that

(1.4) lollz2x,p) < CllDol| 20,2y,

for all smooth sections o of E with compact support in M \ L.

It follows from [[Call, Théoreme 1.2] that D is non-parabolic at infin-
ity if and only if there is a Hilbert space W of sections of F which are
locally H', such that H'(M, E) is a dense subspace of W, such that
the inclusions

(1.5) H'(M,E)C W C H}

loc

(M, E)
are continuous, and such that the extension
(1.6) Doy : W — L*(M, E)

of D to W is a Fredholm operator. Here we note that, by the second
inclusion in (), D defines a continuous operator on W. It then
follows that H'(M, E) = W if and only if D is of Fredholm typef]

If D is non-parabolic at infinity, with associated Hilbert space W,
then elements of ker D, will be called eztended solutions of D. In
the case of cylindrical ends, they correpond exactly to the extended
solutions in [[APSI)]. By the density of C°(M, E) in W, the orthogonal
complement of the image of De in L*(M, E) is equal to the space
of L?-solutions of D. Since Dey is a Fredholm operator, the spaces
of extended solutions and L2-solutions of D are of finite dimension,
and their difference, ind D, is called the extended index of D. As
a consequence of one of our main results concerning non-parabolicity,
Theorem [.14 below, we obtain the following assertion:

THEOREM 1.7. If the sectional curvature of M is negatively pinched
and the volume of M 1is finite, then D is non-parabolic at infinity. In
particular, the space of L*-solutions of D is finite-dimensional.

2 Compare Section ﬂ
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Under a more general assumption on the geometry of the ends of
M, similar to Condition (1) in Theorem below, John Lott showed
that the space of square-integrable harmonic differential forms is finite
dimensional, see Theorem 1 in [LoT].

For manifolds with ends as in the case of finite volume manifolds of
pinched negative sectional curvature, Lott also discusses the essential
spectrum of (d + d*)? on the space of differential forms, see Theorem
2 in [Col]]. Under the same assumption on the geometry of the ends
and for Dirac bundles as in Condition (2) of Theorem [[.T3 below, he
investigates the essential spectrum of the associated Dirac operator,
see Theorem 5 in [Lod|. Similar results have been obtained in [BBJ].
In this article, we do not concentrate on the essential spectrum, but
would like to mention that our investigations lead to extensions of these
results.

It is clear from the definition of non-parabolicity that it only depends
on the structure of D at infinityf]. To state our results in that context,
we need to introduce a further notion.

DEFINITION 1.8. We say that the ends of M are straight if M can be
decomposed into a compact part My and an unbounded part U, with
common boundary N such that there is an open set U O U, and a
C? distance functionf] f : U — R whose gradient flow establishes a C'
diffeomorphism

(1.9) F:(—=r,o0) x N—=U,
where r > 0, Uy = f7([0,00)), N = f71(0), and f(F(t,z)) =¢. In

this situation, we say that the ends of M are smooth if f is smooth.

If the ends of M are straight, then M is diffeomorphic to the in-
terior of the compact manifold M,, and the connected components of
N correspond to the different ends of M. Furthermore, the induced
Riemannian metric on R, x N is of the form

(1.10) dt* + gy,

where (g¢):>0 is a family of Riemannian metrics on N. The regularity
of this family is a technical problem which we address in Section B.2
and which motivated our previous work [BBCZ] on Dirac systems with
Lipschitz coefficients. Cylindrical ends as mentioned above correspond
to the case of Riemannian products, that is, f is smooth and ¢; = g,
for all t € (—r, 00).

3 The same applies to the essential spectrum of D.
4Compare Section @
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If the ends of M are straight, we fix the setup as in Definition [[.§,
identify (—r,00) x N ~ U via F, and call the hypersurfaces N; =
f7Y(t), endowed with the Riemannian metric g;, the cross sections of
U. For convenience, we will always assume in this situation that the
second fundamental forms W = W, of the cross sections are uniformly

bounded,
(1.11) IWX| < Cw|X],
for all vector fields X on U.

DEFINITION 1.12. Let € > 0. We say that the ends of M are e-thin if
they are straight and the connected components of the cross sections Ny
have diameter at most ¢, for all sufficiently large t. We say that the ends
of M are cuspidal if they are straight and there are positive constants
c and C such that the metrics g, as in ([L10) satisfy g, < Ce*=g,, for
all sufficiently large s < t.

For example, if M has finite volume and pinched negative sectional
curvature, say —b? < Kj; < —a? < 0, then the ends of M are cuspidal
with ¢ = 2a and C = 1. We note that, in this example, the dis-
tance function arises from Busemann functions on the universal cover-
ing space of M and that such Busemann functions are C?, see [HelH] or
Proposition IV.3.2 in [Ba]. Better regularity is, in general, not expected
and, at least for non-positively curved manifolds, better regularity does
not hold, see [BBB].

THEOREM 1.13. There is a positive constant € = £(m, Cr, Cy) such
that D s non-parabolic at infinity if the following two conditions hold:
(1) All ends of M are e-thin, for all sufficiently large t.
(2) E is a Hermitian vector bundle associated to M via a unitary
representation of O(m), SO(m) (if M is oriented), or Spin(m)
(with respect to a spin structure of M ), respectively.

Extending Theorem [[.] above, we also have:

THEOREM 1.14. If the ends of M are cuspidal, then D is non-parabolic
at infinity.

Suppose from now on that D is non-parabolic at infinity so that we
have the corresponding Fredholm operator Doy : W — L*(M, E) as
above. If, in addition, the dimension m of M iseven and £ = E*® E~
is a super-symmetryf], then W = W+@ W~ where W= consists of those

5 See Section .
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sections in W which take values in E*. Restricting Do to W, we
obtain a Fredholm operator
(1.15) Df Wt — L*(E™).

ext

In the case of closed manifolds, this is the operator the index theorem
is concerned with. The local index theorem associates an index form
wp+ to the differential operator DT, determined by local data of DT,
whose evaluation is equal to the index of D*. In the following result
we introduce the notation which we use in the statements of our results
on explicit index formulas.

PROPOSITION 1.16. If M has at most finitely many ends, D is non-
parabolic at infinity, and wp+ is integrable, then

ind D}, = /MwD+ + Zc Corr(C),

where wp+ 18 the index form associated to D, C runs over the ends of
M, and Corr(C) is a correction term determined by the end C.

Proposition [[.14 is a kind of relative index theorem and, assuming the
non-parabolicity of D, can also be proved along the lines of relative
index formulas as in Theorem 4.18 in [GrLd] (see also Proposition 4.33),
Theorem 6.2 in [Dd], or Theorem 0.5 in [Cal].

Clearly, the assumptions of Proposition [[.1 are satisfied if the ends
of M are cuspidal. We assume the latter in the following discussion.

In dimension m = 2, the correction terms are known explicitly in
terms of the type of E along the ends, see [BBJ]]. In higher dimensions
and under strong pinching assumptions on the sectional curvature of
M , they are known explicitly for the Gauss-Bonnet operator, see [BBJ].

The most important class of examples to which our results apply are
finite volume quotients of symmetric spaces of negative sectional cur-
vature, that is, of real, complex, or quaternionic hyperbolic spaces or of
the Cayley hyperbolic plane. The work of Barbasch-Moscovici [BaM(]
is a milestone in the index theory of Dirac operators of homogeneous
Dirac bundles over such spaces. Their arguments rely on harmonic
analysis on symmetric spaces, notably the Selberg trace formula. Our
approach is different in nature. Applying our results from [BBCY], we
are able to discuss the contribution of each end individually. This leads
to a more general setting and more transparent index formulas. Note,
in particular, that our results also apply in the case where D is not of
Fredholm type.

In this article, we concentrate on complex hyperbolic cusps, more

precisely, cusps as they arise for quotients of complex hyperbolic space
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of dimension m = 2n,
(1.17) CH" =SU(1,n)/ U(n),

by neat lattices [ To that end, we also write CH" ~ S = R x G,,_1,
where G,,_; is the Heisenberg group of dimension 2n — 1 and S is
the solvable extension of (G,,_; induced by the automorphism of G,,_;
which is equal to multiplication by 2 on the center of the Lie alge-
bra of G, _1, where S is endowed with an appropriate left-invariant
Riemannian metric. We assume that the cusp is given as

(1.18) C =T\ ((—r,00) x Gn_1) C T\,

where I' is a uniform lattice in G,,_1, and this holds for cusps of quo-
tients of CH"™ by neat lattices, see lines 4 and 5 on page 193 in [BaMd].
We consider Dirac bundles E over C which are associated to X ® V,
where ¥ = 35, is the spin representation and V' is an irreducible uni-
tary representation of u(n). By Theorems [(.27, [0.47], [[0.73, and Corol-
lary P24 we have that, for odd n,

1
(1.19) Corr(C) = 5 > e
0<k<n—1
Here
(120) by=(n-ldmV J[ A= +k+1-j" €N,
1<j<m/2
j#k+1

where \; > ... > )\, denotes the heighest weight of the representation
V. Furthermore,

(=1)F  ifn—1— 2k + 2\ > 0,

(1.21) e =4 (=D ifn—1—-2k+2\y1 <0,
1 ifn—1-—2k+ 2\ =0.
For even n, we have
. 1
(1.22) Corr(C) = dim VIT'|¢(1 — n) + B Z b,
0<k<n—1

where |I'| € N is an invariant of the fundamental group I' = I'¢ of the
cusp, compare (P1)).

A specific case where these formulas apply is the Dolbeault operator
on forms of type (0,q), 0 < g < n, on a finite volume quotient X of
complex hyperbolic space CH™ by a neat lattice. Here V' is of dimension

6 Here neat means that the group generated by the eigenvalues of any non-
identity element of the given lattice contains no roots of unity. Neat lattices are
torsion-free.
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1 with highest weight \; = (n+1)/2, 1 < j < n. In Example 2 of
Section [[0.J we explain that the Dolbeault operator is of Fredholm
type and that (for each end)

(1.23) b = (".1).

In particular, Y erbr = 0. Using the Hirzebruch proportionality prin-
ciple, Theorem [[.16, ([.19), and ([.29), we obtain the following result

about the L2-arithmetic genus.

THEOREM 1.24. If X is a quotient of complex hyperbolic space CH™
by a neat lattice, then the Dolbeault operator on X is of Fredholm type
and its index xr2(X, O) is given by

vol X n 0 if n s odd,
volCP" C(I—=n)d> c|Te| ifn is even.

Another basic example is the signature operator on X when n is
even, that is, when m is a multiple of 4. In this case, V is actually
a non-trivial sum of irreducible representations of u(n), namely V =
Vo ® -+ @V, where V] is the irreducible representation of u(n) with
highest weight A\; =1 — (n—1)/2for 1 <j<land \; =1—(n+1)/2
for | < j < n. From Example 3 of Section [[0.3, Theorem [[.16, and
(L:29), we obtain the following result.

X2 (X, 0) = (=1)"

THEOREM 1.25. If X is a quotient of complex hyperbolic space CH™ by
a neat lattice, where n is even, then the signature operator on X 1is of
Fredholm type and its index o(X) is given by

vol X "
o(X) = olCP" +2"¢(1 —”)ZC\FC\

(=1 ((2) = (22):
where v is equal to the number of ends of X.

Formulas for o(X) are also stated in Theorem 7.6 of [BaMd| and
Stern’s article [Bl] (compare Formula 6.4 there). Our correction terms
consist of two terms: What we call the high energy n-invariant] can be
identified with a zeta contribution in [B] and with the unipotent contri-
bution in the Arthur-Selberg trace formula in [BaMd]. Our low energy
n-1nwvariant corresponds to the eta term in [St] and the weighted unipo-
tent contribution in [BaMd]. Since our corrections terms are obtained
by different methods, we obtain, in particular, different interpretations

of the corresponding terms in [BaMd] and [F].

" Our usage of the notion high energy follows the terminology introduced in [@]
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The formulas in Theorems [[.24 and [[.23 show that the volume of
the quotient X of CH™ in question is a rational multiple of the volume
of CP™. This was already known by Harder’s Gauss-Bonnet theorem
which says that (n+1) vol(X)/ vol CP" = (—1)"x(X), where x(X) € Z
denotes the Euler characteristic of X, see [Hd]. Theorem [.24 implies
that vol(X)/vol CP™ is integral for odd n. The question of the inte-
grality of vol(X')/ vol CP™ has been brought to our attention by Martin
Olbrich: The half-integrality of vol(X)/vol CP™ implies that certain
Selberg type zeta functions are meromorphic.

As another example of our applications we mention the Dirac opera-
tor D on the spinor bundle, supposing that M admits a spin structure.
The case n = 1, that is, of surfaces of finite area with cusps of constant
negative curvature, has been dealt with in [B3], see also [BBI]. In par-
ticular, D is of Fredholm type if and only if the spin structure is not
periodic (along the cross sections) of any of the cusps, see Theorem 2
in [Bg] or Theorem 0.1 in [BBT]]. In the case of (our type of) complex
hyperbolic cusps, the spin structure along such a cusp is determined
by a twist homomorphism T from I" to the multiplicative group {£1}.
The periodic spin structure corresponds to the trivial twist 7 = 1. As
we show in Examples .25 and 1 of Section [[0.3, the contribution of
the cusp in the periodic case is

196 Core(C %(g , if n is odd,
(1.26) orr(C) = (_1)%4(’%22) + (1 —=n)|T¢|, if nis even.
If the twist is non-trivial and ( denotes a generator of the center of I,
then Corr(C) is equal to

0, if n is odd,
(1.27) (1 —n)|l¢|, if n is even and 7(¢) = 1,
C(1=n)(2¥™ —1)|T¢|, ifniseven and 7(¢) = —1.

It is clear that there is an index formula for the Dirac operator on
spinors over a quotient of a complex hyperbolic space similar to the
ones in Theorems and above. However, because of the case
distinctions in ([.24) and ([.27), we prefer to refrain from stating it.

Our formulas for complex hyperbolic cusps apply to more examples,
but we refer the reader to Theorems P.7, [0.47, and [[0.79 for the full
scope of our results.

In Chapter (] we discuss some notions and results which are basic
for our later investigations. Chapter 3 is devoted to distance functions
and their relation to Dirac systems. In particular, Section con-
tains a detailed study of C? distance functions as we need it in our
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application to Busemann functions. In this section, we clarify and cor-
rect some of the statements from [BBZ|. Some essential parts of our
later analysis depend on our previous results in [BBCZJ. That the
applications of these results are justified is the topic of Section B.3. In
Chapter 4, we discuss boundary value problems and Fredholm prop-
erties of Dirac systems which are associated to Dirac operators over
straight ends. Proposition [L.43 is one of the corner stones of our later
discussion. Chapter f] contains the first applications to index formu-
las and a proof of Proposition [.I6. Chapter [ and the first part of
Chapter [ contain the proofs of Theorems and [.T4. In the last
part of Chapter [i, we derive explicit index formulas under an assump-
tion which is satisfied for natural vector bundles over cusps as they
arise for finite volume quotients of hyperbolic spaces. The last three
chapters are devoted to a discussion of the index contributions of such
cusps. Ideas from the work of Deninger-Singhof [DeSJ| are basic in our
computation of high energy n-invariants of Dirac operators on compact
quotients of Heisenberg groups. Following the discussion of Gordon-
Wilson in [[GoW]], we compute in Appendix [A] the spectrum of twisted
Laplacians on compact quotients of Heisenberg groups. This is needed
in our computation of high energy n-invariants in Chapter fl In Chap-
ter [[0, we discuss the low energy n-invariants of Dirac bundles over
complex hyperbolic cusps. One of the main ingredients in this latter
discussion is a theorem of Kostant concerning Lie algebra cohomology
(Theorem 4.139 in [KnVd]).

We would like to thank Patrick Ghanaat, Jean Louis Milhorat, Henri
Moscovici, and Martin Olbrich for helpful discussions. We enjoyed
the hospitality of the ESI in Vienna (W.B.), the University of Nantes
(W.B. and J.B.), the MPIM in Bonn (J.B. and G.C.), the University
of Kyoto (J.B.), and the MSRI in Berkeley (G.C.). W.B. would like to
thank the MPIM and HCM in Bonn for their continuous support. J.B.
appreciates the support by SFB 647. G.C. acknowledges the support
by the grant GeomEinstein 06-BLAN-0154 gratefully.

8 In some cases, the work of Marius Mitrea could also be used: In Section 5 of
M], Mitrea investigates the regularity of the Calderén projector for Dirac operators
on Lipschitz domains with C''! symbol and metric tensor, using paradifferential
calculus.
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2. PRELIMINARIES

Let M be a Riemannian manifold of dimension m with Levi-Civita
connection V and curvature tensor R. Let F — M be a Hermitian
vector bundle over M, endowed with a Hermitian connection V¥ and
associated curvature R”. Recall that we assume that the norms of R
and R¥ are uniformly bounded, compare ([[1]).

We denote by C*(M, E) and L*(M, E) the spaces of smooth and
square-integrable sections of F, respectively. We let H'(M, E)) be the
closure of C*°(M, E) with respect to the H'-norm, that is, the norm
associated to the inner product

(21) (O’, T)HI(M,E) = (O', T)LQ(M,E') + (VEO', VET)LQ(M,E®T*M)-

We denote by C®°(M, E), L(M, E), and H}(M, E) the subspaces of
corresponding sections with compact support and by L2 (M, E) and
HL (M, FE) the spaces of measurable sections o of E such that po be-
longs to L*(M, E) and H'(M, E), respectively, for any smooth function
@ on M with compact support. In the case where the boundary of M
is non-empty, we use a double index cc to indicate compact support
in the interior of M and an index 0 to indicate vanishing along the
boundary.

For better readability, we have arranged the rest of the preliminaries
into sections. In Section P.]] we introduce Dirac bundles and operators,
in Section P.2 we collect some generalities about spinors, and in Section
P.3 we introduce complex hyperbolic spaces.

2.1. Dirac Bundles. We say that E is a Dirac bundle over M if E is
endowed with a compatible Clifford multiplication, that is, a field

(2.2) TM x FE— E, (x,v)— x-v,
of bilinear maps such that

(2.3) XXo=—|X|%0,

(2.4) | Xo| = [X]|o],

(2.5) ViYoo) = (VxY)o +YVia,

for all vector fields X,Y on M and sections o of E, where we use Xo
as a shorthand for X - o.

Suppose now that E is a Dirac bundle over M. Then the Dirac
operator D associated to F is given by

(2.6) Do= ) XVio,

1<i<m
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where (X1, ..., X,,) is alocal orthonormal frame of M and o is a section
of E. For any function ¢ on M and section o of F,

(2.7) D(po) =grady - 0 + ¢Do.

In particular, the principal symbol of D at & € T*M is given by Clifford
multiplication with the dual vector & € TM, and hence D is elliptic.
Note also that D is formally self-adjoint, that is, D is symmetric on
C2(M, E).

Suppose now that M has boundary, N := dM, let T be the inward
normal field along N, and set W := VT, the Weingarten map of N
with respect to T'. We assume that the operator norm of W is uni-
formly bounded by a constant C'y,. Change Clifford multiplication and
connection of E along N by

(2.8) X *xo0:=TXo,
1 1
(2.9) Vio:=Vio - 5(WX) x0=Vio — 5(TVXT)U.

It is well known that, with these new data, the restriction of £ to N
is again a Dirac bundle such that Clifford multiplication by T is V-
parallel, see for example Section 3.10.1 in [[GiIJ]. The associated Dirac
operator is given by

(2.10) To = ZX*VXO'— ZTXVXJ+ —0,
2<i<m 2<i<m
where (X7, Xo,...,X,,) is a local orthonormal frame of M along N
with X; =T and
(2.11) k=trW

is the mean curvature of N with respect to T'. The curvature of V7 is
(2.12) RY(X,Y)o = RE(X,Y)o — %(R(X, Y)T) x o — i[WX, WYl]o.
The general Bochner identity [CaMij, Theorem I1.8.2] implies that
(2.13) (VP01,VP02) 2 meorm) + (KP01,09) 12001,5)

= (Dah DU2)L2(M,E) + (DT0'1 - 501, U2)L2(N,E)7
for all o1, 09 € C°(M, E), where K¥ is a curvature term,

(2.14) Ko = > XX;R"(X; X))o

1<i<j<m
We see that the operator norm of K¥ is bounded by m(m — 1)CE /2
and conclude that the graph norm of D is equivalent to the H'-norm.
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Since N has no boundary, (B.13) applied to N turns into

(2.15) (VTUh VTU2)L2(N,E®T*N) + (KTUh U2)L2(N,E)

= (D%oy, DTUQ)L?(N,E)>

where KT denotes the curvature term built from R? as K¥ is built
from RF in (R.14)). We see that the operator norm of K7 is bounded
here by

(m—1)(m —2)
2

where Cyy is a uniform bound for the operator norm of W (compare
(1)), and conclude now that, along N, the graph norm of DT is
equivalent to the H'-norm.

Let E be a Dirac bundle over M. A super-symmetry of FE is an
orthogonal decomposition £ = E* @ E~, where E* are parallel Her-
mitian subbundles of E such that XE+ C E~ and XE~ C E™T, for all
vector fields X of M. In particular, ET and E~ are of the same dimen-
sion. If B = Et @ E~ is a super-symmetry, then the Dirac operator
D of E maps sections of E* into sections of £~ and conversely and
therefore can be written as

(2.17) D= (£+ %)

with respect to the super-symmetry. We can also think of a super-
symmetry as a parallel field of unitary involutions of F which anti-
commute with Clifford multiplication, where E* is the subbundle of
eigenspaces of the involutions for the eigenvalue +1, respectively.

If M is oriented and m = dim M is even, then the complex volume
form of M is defined to be

(2.18) we == i™2Xy - X,, € CI(M),

1 1
(2.16) (CF + 5Cr+7C%).

where (X,...,X,,) is an oriented local orthonormal frame of M. For
any Dirac bundle E over M, multiplication by wc is a parallel field
of unitary involutions of E which anti-commutes with Clifford mul-
tiplication with vector fields, and hence it defines a super-symmetry
E=Et®E".

Suppose now M is complete and that the boundary of M is empty,
and consider D as an unbounded operator in L?(M, E) with domain
C*(M,E). Since D is symmetric on C°(M, FE), it is closable in
L?*(M, E). Since the graph norm of D is equivalent to the H!'-norm,
H'(M, E) is the domain of the closure of D. By [Wd] or Theorem I1.5.7
in [CaMi], D on H'(M, E) is self-adjoint in L*(M, E).
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2.2. Decomposition of Spinors. Let m be even, m = 2n, and con-
sider the complex Clifford algebra Cl(2n) = CI(R?"), where we denote
the complex structure on Cl(2n) by /—1. Fix an orthonormal basis
(e1,...,e,) of R*™ and setf]

(219) wj =V _1e2j*1€2j € (CI(QH), 1 S] <n.
Then
(2.20) wJZ- =1 and wjwp = wiwj,

for all 1 < 7,k < n, and the complex volume form is given by

(2.21) We = Wy *+ Wn,

compare (R.1§). Let ¥ = 3, be the spinor representation. Then
Clifford multiplication by the w; defines unitary involutions of ¥. By
(R.20), there is an orthogonal decomposition of ¥ into simultaneous
eigenspaces Y., where € runs over all n-tuples in {1, —1}" and where
w; acts by multiplication with €; on ¥, 1 < j < n. Because Clifford
multiplication with ey;j_; or ey; anti-commutes with w; and commutes
with wy, for 1 < k # j < n, we have

(222) egj_lZa = 62]‘25 = 25,

where 0 = ¢ for all 1 < k # j < n and §; = —¢,. In particular, all
the subspaces . have the same dimension, which is, for that reason,
equal to dim /2" = 1. Clifford multiplication by the complex volume

form acts by €1 - - - &, on X, by (B.21]), and hence the summands of the
usual super-symmetry

(2.23) r=XteX
are given by

(2.24) YT =D, m1Xe and X7 = Dge, 1 2.

2.3. Complex Hyperbolic Spaces. We represent complex hyper-
bolic space CH™ by the symmetric pair (SU(1,n),S(U(1) x U(n)) and
endow the Lie algebra su(1,n) of SU(1,n) with the non-degenerate
symmetric bilinear from

1
(2.25) (X,)Y) = 5 Retr XY,

a multiple of the Killing form of su(1,n). We identify

(2.26)  S(U(1) x U(n)) = {(detOA_l 91) ‘ Ac U(n)} ~ U(n)

9Note that the sign convention is opposite to the one in [, page 43.
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and, correspondingly,

227)  s(u(l)®u(n)) = {(‘ to”‘ 91) ' Ae u(n)} =~ u(n).

The orthogonal complement p of u(n) in su(1,n) is

(2.28) p= {(2 %)

where we note that the latter isomorphism corresponds to the standard
complex structure and Riemannian metric of CH". With respect to the

identifictions (P-24) — (£:29), we get

(2.29) [A,B]=AB—BA, [Az]|=Az+a-tr A, [z,y] =2y —yz”
for the different Lie brackets and

(2.30) a(A)x = Adyx = Azdet A

for the adjoint representation a of U(n) on p. We note that « is an
n+ 1 to 1 immersion. If n is odd, then « lifts to & : U(n) — Spin(p).
If n is even, then « does not lift.

We note that the coefficients of the matrix xy* —yz* € u(n) in (2.29)
are x;y, — y;Z. In particular, for the standard unit vectors e; and e,
in C" and complex numbers z,y, we have

xEC"} = C",

(2.31) [zej, yer] = vyEj, — yTEyg; € u(n),
where Ej;, denotes the matrix with entries d;y.

Let T'=¢; € C" = p and set a := RT. The orthogonal complement
of a in C™ consists of all x € C" with x; € Im C, that is, x; is purely
imaginary. Let 3 := RZ with

(232) 7 =1ep — il € pD u(n)
We have [3,3] = 0 and
(2.33) T, 7] = 22.

Let ¢ be the space of all

(2.34) X, =2+ T2E1 — x9Fo + ...+ T, E1 — 2, Ep € p®u(n),
where z € C" ! = {x € C" | #; = 0}. Then [3,z] = 0 and

(2.35) T.X,] = X..

(2.36) (X0, X,) = 2Z1my.

Set n := 3&r and s := a®n. By the above, n is a nilpotent subalgebra
of su(1, n) of rank two and s is a solvable extension of n. The subgroups
A, N, and S of SU(1,n) corresponding to a, n, and s satisfy S = AN
and SU(1,n) = U(n)AN (Iwasawa decomposition of SU(1,n)).
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Let p € CH™ be the point fixed by U(n). Then the orbit map
(2.37) ¢S —CH", ®(s)=sp,

is a diffeomorphism, that is, S acts simply transitively on CH". Endow
S with the left-invariant Riemannian metric such that the differential
d® :T.5 — T,CH" is isometric. Since S acts isometrically on CH", we
then get that ® is an S-equivariant isometry. That is, we can think of
CH™ as S, endowed with the chosen left-invariant metric. With respect
to this metric, we get that a, 3, and ¢ are perpendicular and that

(2.38) T|=1, |Z]|=1, (X,,X,) =Rezy.

Define

(2.39) JX, = Jz X, = Xy

Then J is skew-symmetric with J2 = —1, hence the Clifford relations
[0:9 are satisfied. Moreover, by (-30) and (-3§),

(2.40) (X, Xy], Z2) = 2(J Xo, X)),

which is ([[0.10) with ¢ = 1. As a preferred basis of s, we choose the
2n-tuple of vectors Xy :=T,Y, = Z,

(241) Xj =€j + Elj — Ej and Y} = JX] = iej — iElj — ’iEjl,

where 2 < j < n. By (£330) and (2:39),
(2.42) (X5, Ye] = 205 Z.

In conclusion, N is isomorphic to the standard Heisenberg group of
dimension 2n — 1. By (R.33) and (2.35), the Weingarten map of N in
S with respect to the unit normal field 7" has eigenvalues —1 and —2
on ¢ and 3 as required.

3. DIRAC SYSTEMS AND DISTANCE FUNCTIONS

3.1. Dirac Systems. The setup and the results from [BBCZ are fun-
damental for the discussion of this section. Let I C R be an interval
and H be a separable complex Hilbert space. Fix an origin ¢ € I.

For each t € I, let (.,.); be a scalar product on H which is compatible
with the Hilbert space structure of H and such that (.,.);, coincides
with the original scalar product of H. Let ||.||; be the norm associated
to (.,.);. Let H; be H, but equipped with (.,.);, and denote by H the
family of Hilbert spaces H;, t € I. Assume that, for all @ < b in I,
there is a constant C' = C(a, b) such that

(3.1) (01, 02)s = (01, 02)e| < Cllon s loalls]s =],
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for all s,t € [a,b] and 01,09 € H. In other words, if G; € L(H) denotes
the positive definite and symmetric operator of H = H;, with

(3-2) (Gt01702)t0 = (01702)157
for all 01,00 € H, then the map

G:1—L(H), Gt):=G,

is in Lipy (I, L(H)). In particular, G is weakly differentiable almost
everywhere in [ with weak derivative G" in L (I, L(H)). Moreover,

G} is symmetric on Hy, (for almost all ¢ € I) and we have

1
(3.3) I:= §G*1G’ € Lo (I,L(H)),
and
d 1 :
(3.4) 0= (E + 51“) s Lipoo (I, H) — Lis.(I, H).
By the definition of 0, the function (oy, 02) = (01(t), 02(t)): satisfies
(35) (0’1,0’2)/: (801,02)+(01,602),

for all 01,09 € Lip,,.(, H), where the prime indicates differentiation
with respect to t.

As a second data, let A be a family of operators A;, t € I, on H
with common dense domain H,4 such that A; is self-adjoint in H; and
such that the inclusion H4 — H is compact with respect to the graph
norms of the A;. Assume that, for all @ < b in I, there is a constant
C = C(a,b) such that

(3.6)  [(As01,02)s = (A1, 02)e| < C([lonlls + [|Asanlls)l[oalls]s — 1,

for all s,t € [a,b] and 01,09 € Ha.
As a final data, let

(3.7) T € Lipyoo (£, L(H)) N Lige (1, £(H ),
and suppose that

(3.8) T =T '=-T, on H,Vtel,
(3.9) AT, = —T; Ay on Hy, Vit €1,
(3.10) or =To on Lipy. (I, H).

Following [BBCY], a Dirac system over I consists of data H, A, and T
as above.
Let D := (H,.A,T) be a Dirac system over I. Set

(3.11) Lioe(D) = Lipyo (I, H) N LE(1, Hy),

loc
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and denote by L.(D) and L..(D) the subspaces of Lio.(D) of maps with
compact support in  and the interior of I, respectively. On L.(D), we
define the inner product

(3.12) (01,09) = /1(01,02) = /(Ul(t),Uz(t))tdt,

1

and let L?(D) be the corresponding Hilbert space of square-integrable
maps, also denoted by L?(H).
The Dirac operator of D is the operator

(3.13) D:=T(@+A): L1e(D) = L1, H).
By (B3) and (B-3-B10),

(314) / (DO’l,CTQ) = / (0’1, DO'Q) — (0'1,T0'2)
[a,b] [a,b]

for all 0,7 € L1o.(D) and a < b in [.
A super-symmetry for a Dirac system D as above is a decomposition
H = H* @ H~ such that, with H% := Hy N H*,

(3.15) H" 1 H in H, and T,H* = HT,
3.16 Hy=H;®H, and AHTC H*
A A A

We write H for H* endowed with the inner product (.,.),. By (B19),
H, = H,;" ® H,; as a Hilbert space. By (B-19),

b

a’

"
(3.17) A, = (1‘3 i_) ,

where AF is a self-adjoint operators in H;® with domain H7 and where
(3.18) A7 = T AT, = Ty (—ANT

by (B-9). We can decompose

(3.19) L*(D) = L** (D)@ L* (D) = L*(H") @ L*(H"),

where L?(H*) consists of the subspace of sections in L?(H) with image
in H*. Similar notation will be employed for other spaces.
By (B.16) and the definition of 0, see (B.4),

(3.20) 0= (60+ 80) , where 0 =ToT™ !,
by (B.1(). Hence, by (B.19),

0 D
(3.21) D:(D+ 0).

Clearly, D~ is the formal adjoint of D™.
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3.2. Distance Functions. Let U be an open subset in a Riemannian
manifold M. We say that a function f : U — R is a distance function
if fis C! and T := grad f is a unit vector field. There is a synthetic
characterization of distance functions, compare [BGY, pp 24-25] or also
Proposition IV.3.1 in [B4]. If f is a distance function, then the solution
curves of the vector field T are unit speed geodesics, called T'-geodesics.
Busemann functions are C? distance functions, see Proposition 3.1
in [HelH] or Proposition IV.3.2 in [Bd]. We assume from now on that
f:U — Ris a C? distance function. Then T := grad f is a C! unit
vector field and the cross sections N; = f~1(t) are C* hypersurfaces.
For simplicity, we assume throughout that the cross sections N, are
compact and that the flow of T induces a C* diffeomorphism

(3.22) F:IxN=U,

where [ is some interval and N = Ny, for some ¢y € I. In what follows,
we often identify U with I x N by identifying (¢,z) € I x N with
F(t,r) € U. We keep in mind that F' is a C! diffeomorphism.

Let ¢ = ¢(s) be a C' curve in U and T(s) := T(c(s)) be T along
¢, a C' curve of unit vectors. Then the variation field J = J(t) :=
(0577)(0,t) of the geodesic variation v5 = (s, t) := exp(tT'(s)) satisfies
J(0) = ¢(0). A vector field which arises in this way will be called a
T-Jacobi field.

LEMMA 3.23. A T-Jacobi field J satisfies the Jacobi equation
J"+ R(J,T)T = 0.
Moreover, J and J' depend continuously on J(0).

Proof. Let ® = ®(t,v),t € R and v € TM, be the geodesic flow of M.
Then +/(s,t) = ®(t,T(s)) and hence v and ' are C''. Therefore

(3.24) J =0y and J = V,0,y =V, 0y =V,T
exist and are continuous. Moreover,
(3.25) (0s7)(s,t) = @00, T(s)) = (J(s,1), J'(s,1))

with respect to the standard decomposition of TT"M in horizontal and
vertical component, see for example Proposition IV.1.13 in [Bg]. Hence
J and J" depend continuously on ¢(0) and J satisfies the asserted Jacobi
equation. ]

REMARK 3.26. With respect to the (¢, z)-coordinates, the Riemannian
metric on U is of the form g = dt? + g;, where g;, t € I, is a family of
Riemannian metrics on N. In [BBZ], pages 596 and 609, it is stated
erroneously that g, and 9,9, are C* on U. This is wrong in general,
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since it would imply that T is C%. Clearly, since T is C*', gi(z) is
Cl in (t,z). Lemma implies that ¢;(x) is two times continuously
differentiable in ¢. This is sufficient for the discussion in [BBZ] and the
arguments below.

Fort € I, we let S = S; and W = W, be, respectively, the second
fundamental form and the Weingarten map of the C? submanifold N,
with respect to the normal vector field T,

(3.27) WX =VxT, S(X,Y)=(VxV,T)=—(WX,Y),

where X and Y are C*! vector fields tangent to N;. Since T is C!, S
and W are continuous tensor fields over U. By (B.24), Jacobi fields J
as in Lemma B.23 satisty J' = W J.

Let E — M be a smooth vector bundle with smooth connection VZ.

LEMMA 3.28. Let X be a vector field and o be a section of E over U,
respectively. Assume that the restrictions of X and o to N are C' and
that X and o are parallel in the T-direction. Then X and o are C*.
Moreover, VEVE o exists, is continuous, and satisfies

VEVEG + Vi o+ RE(X,T)o = 0.

Proof. Let ¥ : Rx (T'M & E) — E be the smooth map which associates
tot € Rand (v,e) € TM @ E (where v € TM and e € E have the
same foot point) the parallel translate o(t) of e along the geodesic =y
with 7/(0) = v. Then, with ¢ as in the assertion, we have o(F(t,z)) =
U(t — to,T(x),0(x)), where we recall that N = N;,. Hence X and o
are C'', where X corresponds to the special case E = T'M.

Since VEo = 0 and T is C*, the T derivatives of the coefficients of
o with respect to a smooth local frame of E are C'. Hence VEZVEo
exists, is continuous, and is given by

Vivio =V5EVie —VE 04+ R (T, X)o
= Vi o — RE(X,T)o. O

Among others, the case £ = T'M is interesting. In this case, vector

fields over N which are tangent to N can, in general, only be chosen
to be C*.

COROLLARY 3.29. The tensor field W has a continuous derivative W’
in the T-direction and satisfies the Riccati equation

W'+ W2+ R(.,T)T =0.
Proof. Choose 0 =T in Lemma B.2§ and recall that W = VT. O
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The eigenvalues ko, . .., K, of W; are the principal curvatures of the
cross section N,. We let
(3.30) Ki=FKo+ -+ Kyp=tr W =divT.
The maps
(3.31) F,: N=Ny, — Ny, Fy(z):=F(t, )

are diffeomorphisms with Jacobians j = j(t,x). Since k = divT, the
latter satisfy the differential equation

(3.32) i = Kj.
By Corollary B.29, we also have
(3.33) K = —||W|?* - Ric(T, T),

where ||[W|| = (tr W?2)1/2 is the Euclidean norm of W.

Let Cr, CE, and Cy be uniform upper bounds for the operator
norms of the curvature R of M, the curvature R” of E, and W, re-
spectively. Then r, the t-derivative k' of x, and ||W|| are uniformly
bounded, and as respective uniform upper bounds Cy, C., and C,, we
may take

(334) CH = mCW, C; = m(C’%V + CR), Cw = \/ECW,
where we use (B-33) for the second assertion. By (B:33), we have
(3.35) e (s, ) < it ) < e“Y(s,2),

orall s <tin I and x € N, where C' = C\.

3.3. From Distance Functions to Dirac Systems. Let £ — M be
a smooth Dirac bundle. Denote the Hermitian product on E by (., .).
Our aim is to identify these data over U with a Dirac system over [ as
in Section B.1].

For any ¢t € I and any given Riemannian or Hermitian vector bundle
over U with any given metric connection, we let P; be parallel transla-
tion along the T-geodesics from N to N;. For a section o of the vector
bundle over N, we define a section Po over U by

(3.36) (Po)(t,x) := P(o(x)), =€ N.

Thus Po is the extension of o to U which is parallel along the T-
geodesics, and this point of view is convenient in arguments and for-
mulations below. Furthermore, time dependent sections over N corre-
spond to the space of all sections over U,

(3.37) (Po)(t,x) := Pi(o(t,x)), tel,x e N.
We also let Po := Poly,.
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Now let H := L%*(N, E), the Hilbert space of square integrable sec-
tions of E over N = Ny,. For 0,7 € H, the L? product of the sections
P,o, P, with respect to N, is given by

(3.38) (0,7) ::/N(a(x),r(x))j(t,x)dx,

where dx denotes the volume element of N. Hence, for each t € I,
the correspondence o <> Po identifies the Hilbert space L?(N;, F)
topologically with H. The following estimate settles the requirement
on the family H formulated in (B.1]).

LEMMA 3.39. Forall s <t in I and 01,09 € H,
(01, 02)¢ = (01, 09)] < (77 =)o, [l

where C' = C...
Proof. By (B-33) and (B33

(01, 02); — (00, 02)s] < / (02(2), 02(2)) (£, 7) — 55, )|

/|o—1 Yloa(2)| (eS¢ — 1)j(s, 2)da
) 1ol 0

LEMMA 3.40. For all s <t in I and C* sections o of E over U which
are parallel in the T-direction,

¢CCI([lo)l2 + IVFall?) < llollf + I Vallf < e (|lal2 + [V FZal2),
where Cy = C\, + mCE + 2Cyy.

Proof. Using (o, 0)" = 0, we obtain

(lollf + 1VEalf) = /N ((VZ0,VE0) + ({0,0) + (VF0, V¥ a))k).

By Lemma
(VEo, Vo) =2 Y ((RP(T, X))o, VE.0) — (Vi 0, VE o),
2<i<m
where (T, X1, ..., X,) is a local orthonormal frame of M. Hence

|(lollf + IVEal?)] < mCrllollf + CEIVEall
+2Cw | VEo |7 + Culllollf + IV |?)
< (Co+mCg +2Cw)(l|olf + IVEelf). O
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Along the cross sections Ny, we change Clifford multiplication and
connection of E according to (B.§) and (R.9). Denote by V* the new
connection and by D; the associated Dirac operator as in (.10). We
note that Clifford multiplication with T is V-parallel. For convenience,
we will not keep the x notation, but will write 7' X ¢ instead of X % o.
With this in mind, the Dirac operators D and D, are related by

(3.41) D=T(Vi+) TX:VE)=T((VF+ g) —Dy),

where (T, X5, ..., X,,) is a local orthonormal frame of M.

LEMMA 3.42. For any C' section o of E over U which is parallel in
the T'-direction,

1 1
IVZo|y, — Vio|? = ZHW||2|O|2 and |T'Do — D,o|? = Z/-@2|cr|2.
Proof. The second assertion is immediate from (B.41]). As for the first,

let (T, X, ..., X,,) be an orthonormal frame of M. Then
4|VP0ly, = Vio|> =4 (VKo - V.0, Vio—Vio)
= (TW X0, TW X;0)
=Y WXl = [W|*o]. O

Since the cross sections N, are C? submanifolds of U, the restrictions
of E to them are C? bundles. However, because of the term involving
W = VT, the connection V! is, in the generality we strive for, only
continuous. If V! were a C' connection, we would get (212 for its
curvature, now denoted R'. The right hand side of (B-I2) makes sense
in the case where W is only continuous, so that we may consider it
as defining R!. Approximating N, by smooth submanifolds and C*!
sections by smooth sections, (2.1§) implies that

(3.43) (VtUh VtUz)t + (KtUh 02)t = (Dyo1, Diog)y

for all C! sections o and 7 of the restriction of E to N;, where the
curvature term in the Lichnerowicz formula as in (2.17) is now denoted
by K*. We recall from (R.1q) that K" is uniformly bounded.

We extend our correspondence o <+ Po as in (B.30) and (B.37): Since
T is parallel in the T-direction, Clifford multiplication by T along N
satisfies

(3.44) TPo=Ploc and VrypPo= Pd,

for any time dependent section ¢ of E over N. Finally, we define A; to
be the differential operator on sections of E over N which corresponds
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to the operator —Dy,
(345) Pt<AtO') = —DtPtO'.

In this notation, D corresponds to the operator

d kK
(3.46) T(O+ A), where d:= T + 5

Thus we have associated the Dirac system
(3.47) D:=(H,AT)

to the distance function f on and the Dirac bundle F over U, where we
recall from (B-33) that s (which occurs in the definition of 0) is defined
by these data. We will now proceed with discussing the requirement
for Dirac systems as formulated in Section B.I We already observed
that Lemma -39 settles (B-]]). Furthermore, Clifford multiplication by
T satisfies the requirements (B.4)—(B-10), by (B.44) and since Clifford
multiplication by T is V¢-parallel.

It follows from (B.43)) that, on sections of the restriction of E to Ny,
the graph norm of D, is equivalent to the H! norm. In particular, D,
is self-adjoint with domain H'(N;, E) in L*(N;, E). Moreover, since
the inclusion H'(Ny, E) < L*(Ny, E) is compact, the spectrum of D,
consists of eigenvalues with finite multiplicities. We also observe that,
for any section o of E over N, Po|y, € H'(N;, E) if and only if o €
H'(N, E), by Lemma B.4(. Thus the operators A; are all self-adjoint
with the same domain, Hy := H'(N,E), in H = L*(N,E), and the
embedding H4 — H is compact with respect to the graph norm of any
of the operators A;. This settles the first part of the requirements for
the A; in Section B.1].

LEMMA 3.48. For any C* section o of E over U which is parallel in
the T'-direction,
!/
Dio= Y TXARP(T, X))o — Vijy.o} + %o—,

2<i<m
where (T, Xs, ..., X,,) is a local orthonormal frame of M.
Proof. By Lemma B.2§,

K
—0

2<i<m
/
- Z TXAR"(T, X;)o — Viyx.0}+ %0’. O

2<i<m
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COROLLARY 3.49. For any C* section o of E over U, which is parallel
i the T-direction,

IDioll: < Cilloll: + Cull Vol < Collolle + Cull De e,
where Cy = mCE + C!. and Cy = mCE + C!. + C2 + ch}(/z.
Proof. By Lemmas B.4§ and B.47, we have, at any point p of N,

1
|Dio| < (mCq + 5C))lo] + D IklIVE ol
1
< (mCg +5Clol + [W[[VEe]
1
< (mCE + 5C0lo] + Cull Vo]

1 1
< (mOF + 501+ 5C)lo] + Cu[ Vo,

where (T, X, ..., X,,) is an orthonormal frame at p such that the X;
are eigenvectors of W with corresponding eigenvalues x;. By (B.43),

IV'oll7 < |Dwolf + Ckloli. u
LEMMA 3.50. For all s <t in I and C' sections 01,09 € H of E,
(A1, 02); = (Agon, 02)s] < C(@C2 = 1)(|[on |, + | Asonlls) o2l
where C' = C(Cgr, CE, Cy,m).

Proof. Extend o, and o5 by parallel translation along the T-geodesics.
Then D; corresponds to —A;, and we get

|(Dyo1,09); — (Dso1,09)s| < }/:/N ((Dr0'1,<72>j)/‘
< [ [ w00+ ool

¢
(351 < [ [ ptonli+ Culpanl) ol
By Corollary B.49 and Lemma B.40, the first term on the right hand
side of (B.51]) can be estimated by

¢ ¢
| [ 1Dl <200+ [ (lonll + 19522 o],

t
<2(Cy +Cy,) / ePUI(|loy |12+ VP o ||2)1 2|2 s

s

Cy+Cy
_ 49T Qw92 1) (11012 1 [VEo1 |22 0]l
C s |
0
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Concerning the second term on the right hand side of (B.51), namely
the integral of ||D,o1||||o2]|j, we note that ||D.o| < vm —1[|V7a]|.
Hence we can estimate this term in a similar way, using Lemma [3.42.
We arrive at an estimate

‘(Dto-hT)t - (Dsalu U2)s|
< O =) ([l + Vo) oL,
where C' = C'(Cg, CE, Cy,,m). Finally, the Bochner formula (B43)

and the ensuing lines show that
lo[l2 + IVFa1]l < C(CR,m)(loulls + | Dson )
= C(Cr.m)(lowlls + | Asolls). u
Lemma confirms the remaining requirements for the operators
A, in Section B Thus the sytem D = (H, A, T) over I from (B.47) is

a Dirac system in the sense of Section B.J] and, therefore, in the sense
of Section 2.1 in [BBCZ].

4. BOUNDARY VALUES AND FREDHOLM PROPERTIES

Let D = (H,A,T) be a Dirac system over
(4.1) I =R, :=10,00).

with origin ¢y = 0, where we note that an analogous discussion holds
true for other intervals with non-empty boundary. By (BJ), the re-
striction Dy . of the Dirac operator D to

(4.2) Lo.(D) :={o € LD):0(0) =0}

is symmetric. The adjoint operator of Dy . with respect to L*(D) 2
Lo (D) is called the mazimal extension of D on L.(D). We denote it
by Dpnax and let dom D, be the domain of D,,.,, endowed with the
graph norm of Dy,,.. The adjoint operator Dy, of Dyax is equal to the
closure of D on L.(D). It is called the minimal extension of D, and its
domain is denoted by dom D,,;,. We also let H 1(D) be the completion
of L.(D) with respect to the norm

(4.3) ||<7||12HI(D) = ||0||%2(D) + ||8U||%2(D) + ||A0||%2(D)'
Obviously,
(4.4) L.(D) C HY(D) C dom D € L*(D).

To formulate the main results on dom D,y from [BBCZ], we need to
discuss boundary values of sections at ¢ = 0. As for proofs of the
corresponding assertions, we refer to the discussion in Chapters 1 and
2 of [BBCY] and, in particular, to Proposition 2.30 loc.cit.
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4.1. Boundary Values. Recall the convention H = H,. Recall also
that Ag is self-adjoint in H with domain H,. It will be convenient,
in this section, to denote elements of H by letters x,y and to call
them vectors. Fix an orthonormal basis (z;) of H which consists of
eigenvectors of Ag, Agx; = \ix;.

For s > 0, let H® = H*(Ay) C H = H, be the domain of |A|°.
Then H' = H, H' = Hy, and H® = H*(Ap) := Ne>oH*® is a dense
subspace of H. For s € R, define an inner product (.,.)s on H>,

(4.5) (@, y)s = (L + A3)w, (I + ADy).

For s > 0, the norm ||.||s associated to (.,.)s is equivalent to the graph
norm of |Ap|®, and H*® is equivalent to the completion of H* with
respect to ||.||s. For s < 0, define H® = H*(Aj) to be the completion
of H* with respect to ||.||s and set H=>° = H™*°(Ay) := User H®. In
terms of the above basis (x;) of eigenvectors, H*® consists of all linear
combinations x = Y &z, with

(4.6) D 1+ X&) < oo
The pairing
(4.7) By: H*x H* = C, By(z,y) := (I + A"z, (I + A7)~ y),

is perfect, that is, identifies H~* with the dual space of H”.
For a subset J C R, let Q; = @ (Ap) be the corresponding spectral
projection of Aq in the spaces H®. The image of H® under @ is

(48)  Hy=Hj(A)={r=) &umeH :&5=0if )\ ¢ J}.

For x € H®, we also let z; := Q () . For any bounded subset J of R,
we have H7 C H*. Since T' = Tj anti-commutes with Ay,

(4.9) TQ;=Q_,T and THj;=H’,
As shorthand, we use, for a € R,

(410) Q>a = Q(a,oo)a QZa = Q[a,oo)a
(411) Q<a = Q(—oo,a)a an = Q(—oo,a]a

and similarly for the spaces HS = Q) (H?®). We also need to introduce
the hybrid Sobolev space

(4.12) H=H(A) = HY @ HZ.
Since H; C H*™, for any bounded J C R,
(4.13) H=H'oH,”=H o H."”

a )
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for any a € R. By ([.7) and (£.9),
(4.14) w(z,y) = B1j2(t<—a, TY>a) + B_1/2(¥>—a, TY<a)
is well defined for z,y € H and independent of the choice of a. We
note that w is continuous, non-degenerate, and skew-Hermitian on H.
PROPOSITION 4.15. The mazimal domain dom D, satisfies:

(1) L.(D) is dense in dom Dy ay.

(2) Ewvaluation att =0 on L.(D) induces a continuous surjection

Runax - dom Dy = H,  Riax(0) =: 0(0).

(3) 0 € dom Dy is in HL (D) iff 0(0) € H'Y2.
(4) 0 € dom D,y is in dom Dy, iff 0(0) = 0.
(5) For all 01,09 € dom Dyax

(Dmax017a2)L2(D) - (01, Dmaxa2>L2('D) = w(01(0)702(0))-

Closed extensions of D between D, and D, correspond precisely
to closed linear subspaces B of H, called boundary conditions. For any
such boundary condition B, the domain of the corresponding extension
Dp max 1s given by

(4.16) dom Dp max = {0 € dom Dy : 0(0) € B}.
We are also interested in the operator Dp with domain
(4.17) dom Dp = dom Dp pmax N H.(D).

A boundary condition B C H is called reqular if Dp = Dpmax. By
Proposition .15, o € dom Dy, is in dom Dy if and only if o(0) belongs
to BN H'Y2. In particular, B is a regular boundary condition if B is a
closed subspace of H that is contained in HY? C H.

Let B C H be a boundary condition. Since w is non-degenerate, the
adjoint operator of Dp max is given by Dpa pax, Where

(4.18) B*={r € H:w(x,y)=0 for all y € B},

by Proposition [E.15. We say that a boundary condition B is elliptic if B
and B are regular. Typical examples of elliptic boundary conditions

are the Atiyah-Patodi-Singer boundary condition Baps = Hi{f and

the more general B = Hi/f and B = H ;{12 The adjoint boundary
conditions for the latter are given by B = Hi/_z ,and B = H /2

<—-a’
respectively. The maximal operators corresponding to the boundary
conditions B = Hi{f and B = Hi/az will be denoted by D4 max and
D< 4 max, Tespectively, and similarly in other cases. By ellipticity, we
actually have D, max = D<q and D<g max = D<q.
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As for boundary conditions in the super-symmetric case,
(4.19) H=Ht"®o H,

we may choose orthonormal bases 27 of H* consisting of eigenvectors
of AF. By (B-1§), we may actually choose z; = Toz; T, '. We get

(4.20) H=H"®H"™ and H=H"® H",

where

(421)  H = HY(AD), H™ =H'(4;), HY=H(AD),
and

H™ = H(Ay) = ToH (A7) T5 !
~ 0H(A]) = H.)P @ HY; .

>0

(4.22)

Furthermore, H™ and H~ are Lagrangian with respect to the non-
degenerate skew-Hermitian form w.

In the super-symmetric case, we consider super-symmetric boundary
conditions B C H, that is,

(4.23) B=B"® B,

where B* = BN H*. Then the adjoint boundary condition is super-
symmetric as well. Moreover, a super-symmetric boundary condition
B is regular or elliptic if and only if B* and B~ are regular or elliptic
in Ht and H~, respectively. For example, B = Hi{f and B = Hi/f
are elliptic super-symmetric boundary conditions. The maximal oper-
ators corresponding to these will be denoted by Dfa,max and Dﬁamax,
respectively, and similarly in other cases. -

4.2. More Function Spaces. For convenience, we assume from now
on that D is the Dirac system associated to a Dirac bundle F over a
straight end U of M with distance function f and C* diffeomorphism
F:R, x N — U as in Definition [.§.

Let H'(Uy, E) be the space of sections o in L*(Uy, E) with square
integrable weak derivative, V¥o € L*(Uy, T*M ® E); that is, we have

(4.24) (VP0,T)r2we.m) = (0, (VE)T) 2 (0,5)

for all 7 € C2(Uy, T*M ® E), where (VF)* is the formal adjoint of the
operator VE. Recall that H'(Uy, E) is a Hilbert space with respect to
the norm defined by the inner product

(425) (CT, T)HI(UO,E') = (CT, T)LQ(UO,E') + (VEO', VET)LQ(UO,T*M®E')'

There is the corresponding space H!(U, E), and C>*(U, E) is dense in
HY(U, E). Any section in H'(Uy, E) is the restriction of some section



INDEX THEOREMS ON MANIFOLDS WITH STRAIGHT ENDS. 31

from HY(U, E); see Theorem 7.25 in [GiT4], noting that the problem
is local and that H._ is invariant under C"! diffeomorphisms. It follows
easily that the space C2°(Uy, E) of restrictions of sections in C°(U, E)
to Uy is dense in H'(Uy, E). The trace map

(4.26) R : H (U, E) — HY?*(N,E)

is a well defined bounded operator; see Theorem 3.10 in [Ag] or Propo-
sition 4.4.5 in [[T4], noting again that the problem is local and that
H . is invariant under C' diffeomorphisms. The closure of C (Uy, F)
in H'(Uy, E), and therefore also of C(Uy, E) in H'(Uy, E), is

(4.27) H)(Uy, E) := {0 € H' (Uy, E) : Ro = 0}.

As for partial integration,

(4-28) (VEU, T)L2(U0,T*M®E) = (CT, (VE)*T)L2(UO,E) - (0> T(T))L2(N,E)>
for all 0 € H'(Uy, E) and 7 € H'(Uy, T*M ® E). Tt follows that
(429) (DO', T)LQ(UmE) = (CT, DT)LQ(UO,E) + (CT, TT)LQ(N7E)5

for all o,7 € HY Uy, E). In particular, any o € H'(Uy, E) belongs
to the domain dom D,,,, of the adjoint operator D,., of D, the lat-
ter considered as an unbounded operator on L*(Up, E) with domain
C22(Uy, E) or, equivalently, Hj(Up, E).

We switch now to the associated Dirac system D over R, = [0, c0).
With respect to the natural identifications,

(4.30) C>®(Uy, E) C L(D) C H' (D) = H'(Uy, E),

where we use (B.43) and (R.1§) for the latter equality. The convenience
we had in mind further up refers to the density of C°(Uy, E) in H'(D).
Another convenience: We often write ||.||; for the L?-norm of maps
defined on an interval / (if meaningful).

PROPOSITION 4.31. For allw € R and o € H' (D),
|Do —wTo|z, =00z, + (A —w)olg,
— Re(A'o,0)r, — (0(0), (Ag — w)a(0))o.

REMARK 4.32. As for the meaning of the last term on the right, we
note that the trace (0) of o is in H'/?(Ay), hence Ay applied to it is
in H1/2(Ap), and hence (c(0), (Ag — w)o(0))o is well defined.

Proof of Proposition [[Z31. By the density of C°(Uy, F) in H*(Uy, E),
we may assume that o is smooth with compact support. Then
(D = wT)ollz, = |00k, + (A —w)al,
+ 2Re(00, Ao)r, + (c(0), wa(0))o.
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Now

(0o, Ao)r / / (0, Ac)j dtdaz — (0,0A0)r,
(0(0) 40O - (0,040},
Since (Ac)' = A'c + Aco’, we conclude that
(0,0A0)r, = (0,A'0)r, + (Ao, 00)g, + ilm(ko, Ao)g, . O

4.3. Fredholm Properties of D. We say that D is of Fredholm type
if there is a constant C' > 0 such that

(4.33) lolle, < CllDollx,, Vo € Loo(D),

and that D is non-parabolic if, for each t > 0, there is a constant C' > 0
such that

(4.34) lollpg < Cl|Doflr,., Vo & Ly (D).

Obviously, if D is of Fredholm type, then it is non-parabolic. In Lemma
2.38 of [BBCZ], we showed that D is non-parabolic if and only if, for
each t > 0, there is a constant C' > 0 such that

1/2

(4.35) lollog < C(lo ()% + 1Dollz,) ™ = lollw,

for all o € L.(D). If D is non-parabolic, we let W C L (D) be the
completion of L.(D) with respect to the norm ||.|[w. We note that
||.]lw is weaker than the graph norm of D, hence dom Dy, € W, by
Proposition [l.15.1, and equality holds if and only if D is of Fredholm
type. Moreover, if ¢ : R, — C is Lipschitz continuous with compact
support and o € W, then o € dom D,,,,. In particular, the trace R
is well defined and continuous on W and takes values in H = H(A).

Assume now that D is non-parabolic. Then, by the definition of W,
D extends to a bounded operator Dey : W — L?(D). For a boundary
condition B C H, we define Dp ¢ to be the operator in W with target
L*(D) and domain

(4.36) dom Dp eyt = {0 € W :0(0) € B}.

Obviously, Dp et is closed and extends Dp max, and D ext = DB max if
and only if D is of Fredholm type.

In Theorem 2.43 of [BBCZ] we showed that, for D non-parabolic and
B regular, Dp ¢ has finite dimensional kernel and closed image with

(4.37) (im D ext) " = ker Dpa max-
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Thus, if D is non-parabolic and B is elliptic, then Dp ¢ is a Fredholm
operator and the L?-index

(4.38) indz2 Dp max = dimker Dg 1y — dimker Dpga max
of Dp max is well defined and finite.

PROPOSITION 4.39. Assume that, for some a > 0,
(A0, Ayo)y > Re(Alo, o), + allo]|?,

for allt > 0 and 0 € Hy. Then D is non-parabolic and D.gex: 15 an
tsomorphism. Moreover, if a > 0, then D is of Fredholm type.

Proof. Recall the Hardy inequality,

2
(1.40) [ ez [

for any C! function ¢ on R, with ¢(0) = 0. By Proposition [:37],
HDO'H%+ > |00z, + allollk,
for all o € H}(Uy, E). Applying (B-33) and (E:40) we get

J0ollz, = / / (20 |Pdtda
zllo|P i = [l

It follows that D is non—parabolic. Clearly, if a > 0, then D is of
Fredholm type.

Using the density of £.(D) in W, Proposition [L.3]] together with the
assumed inequality implies that

105 ]%, — ((0), Ao (0))o < || Do |,

for any o € W. Hence Do = 0 and o(0) € H. implies that do = 0
and 0(0) = 0. That is, o solves
K
/

(4.41) o' =—30,

with ¢(0) = 0, hence o = 0, and therefore ker D¢ oy is trivial.
Conversely, the cokernel of Dg e is isomorphic to ker D<o max, by

what we said further up. Now the same argument as above shows that

any o € ker D max with o(0) € f]go satisfies do = 0. It follows that

o solves ([.41) and hence, by (B-39), that
o(t,x) = j1*(t,2)0(0,2),

for allt € R, and # € N. Since the L?>-norm of ¢ is finite, we conclude
that o = 0. Hence coker D_q oy is trivial as well. O
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By Corollary B.49,
At

(4.42) ¢y = sup < C(Cg, CE,Cw,n) < oo.
ter, oera\{0} ot + [[Asa]]s f

COROLLARY 4.43. Suppose that spec Ay N (=X, \) =0, for allt € R,

where
2\ > ¢+ y/4co + .

Then D is non-parabolic and D<gext 15 an isomorphism. Moreover, if
the inequality is strict, then D is of Fredholm type.

Proof. Choose a > 0 with

2\ > ¢ + 1/ 4co + 2 + 4a.

Then we have, for all t > 0 and 0 € Hy,
|2 — Re(Aja, 0), = |Awll? - colll Aol + o) ol
> (A = oA — co)|o}? = allo,
by the definition of ¢y, and hence Proposition applies. O

The following estimate relates boundary conditions to Fredholm prop-
erties of D, as we will see further on.

LEMMA 4.44. For all o0 € H(Uy, E) and w € R,

1
1901z, + 51(A—w)ol,

< (D = wT)ollg, +cllollz, + (o0, (Ao — w)oo)o,
where 2¢; = co(co + 2 + 2|w)).
Proof. By Proposition .31 and the definition of ¢,
0o l&, + [I(A —w)olli, — (D —wT)allz, — (00, (Ao — w)ao)o
= Re(A'o,0)r,
< o[ Ao, +[lollr,)llo e,
<

co(I(A = w)olle, + (1 + [whllolle,) o]k,
1 Co
< slA=walz, + ol + 1+ [whlollk. - a

PROPOSITION 4.45. Assume that there are A > X\ > 0 such that
(4.46) (A —N)?>4co(co+2+A+A) and spec A, N (N A) =0,
for allt € Ry. Suppose w € (A, \) satisfies

(4.47) IA—w]? A —w|® > 2¢; = coco + 2 + 2w).
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Then we have:
(1) If o € e “'L*(D) solves Do = 0 in the sense of distributions
with o(0) € H_p, then o = 0.
(2) If 0 € e“'L*(D) solves Do = 0 in the sense of distributions
with o(0) € H._y, then o = 0.
(3) D is non-parabolic and D._j et is injective.

The first assumption in Proposition [[.45 implies that the set of w in
(A, A) satisfying the required inequalities is non-empty. We also recall
from (B.9) that the spectrum of A;, t € R, is symmetric about 0 so that
the second assumption implies that spec A; has empty intersection with
—(A,A) as well. We get that HZy = HZ, and that HZ , = HZ_,, for
all s € R.

Proof of Proposition [.43. Let 0 € H}(Uy, E), v € R, and set 7 = e"o.
Then
le” Dol + (10, (Ao — v)70)o — |07 |5,
= (D —vT)7lg, + (70, (Ao — v)70)0 — [[O7 %,
1 Co

> sI(A=v)7lz, = F(co +2+2pD7lIz,
by Lemma [.44. Suppose now that w € (A, A) satisfies the required
inequalities, and choose € > 0 such that
(4.48) IA —w|? A —w|? > colco + 2 + 2w) + 2¢.
Then, with v = +w, we continue the above computation and get
(449)  |[(D —vT)7llz, + (70, (Ao — v)70)o = 07|, +ell 7R, -
By the density of H!(Up, E) in dom Dy, any 7 € dom Dy, satisfies
(4.50) I(D = vT)7lz, + (70, (Ao — v)70)0 > €l 7[[%,

where v = +w and € are as above. Now with ¢ as in the first two
assertions and v = w and v = —w, respectively, 7 = "o is in dom Diax
and satisfies D, = vI't. The boundary condition for o implies that
the boundary term in ([L.50) is non-positive, hence 7 = 0, and hence
o = 0. This shows the two first assertions. As for the last assertion,
we note that

HDU”]?h + (00, (Ao — w)oo)o
(4.51) > [le™"* Doz, + (00, (Ao — w)ao)o
> elle™ 0|z, ,

for any o € H}(Uy, F). O
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For later purposes we note that the computations in the above proof
also show that

(4.52) le** Doz, + (00, (Ao — w)ao)o > elle*allz, ,

for any o0 € H!(Uy, E), where w € (\,A) and ¢ is as in (£45).

Suppose now that the assumptions of Proposition [f.4] are satisfied
and that w € (A, A) satisfies the corresponding inequalities. Then
({5T) and (E59) lead us to consider the weighted Lebesgue spaces
L% (D) := eFtL?*(D), with norm associated to the inner product

(4.53) (0,T)tw = (eimcr, eith)RH

and the weighted Sobolev spaces H,, (D), the completions of HL , .(D)
with respect to the norms

(4.54) lollay@) = llollw + [[Do]|w.

COROLLARY 4.55. If the assumptions of Proposition [{.4J hold and w €
(X, A) satisfies the corresponding inequalities, then the operators

Dycn : Hy 4(D) = L2(D) and
D—w,<—)\ : Hiw,<f)\(D) — sz(D)
are adjoints of each other and isomorphisms.

We note that D, on L% (D) is conjugate to the operator D — w on
L?*(D), and similarly for D_,. Hence the operators D, are Dirac-
Schrodinger operators in the sense of [BBCZ| (compare also Remark
2.27 of loc.cit.).

Proof of Corollary [[.5]. The operators are adjoints of each other since
H_._y = H._,, by the assumptions of Proposition fz43. By (E51)) and
(E52), the images of the operators are closed. The first two assertions
of Proposition [f.45 say that their kernels are trivial. By integration by
parts as in (5) of Proposition .19, we see that ¢ € L2 (D) is in the
orthogonal complement of D(H,, _,(D)) if 7 := e*"*o solves DT = 0
weakly with 7(0) € H<_p = H._). Now 7 € €“*L?*(D), hence 7 = 0,
by the second assertion of Proposition [[.45. This shows that the first
operator is an isomorphism. The claim for the second follows in a
similar fashion, using the first assertion of Proposition [[.43. U

COROLLARY 4.56. If the assumptions of Proposition [[.4] hold, then
ind D g exy = dim H{_y gy — dim ker D<) max-
In the super-symmetric case,

ind Dzo,ext = dim H[J:/\’O) — dim ker D_

<A,max"
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Proof. By Theorem 3.14 of [BBCZ], we have
ind D<gexy = ind Do_j ex¢ + dim H{_ ).

By Proposition .45, D._)ext is injective. On the other hand, the
orthogonal complement of im D._) ¢ is given by the space of o in
L*(D) with Do = 0 and ¢(0) € H<y. This shows the first claim, and
the proof of the second is similar. O

5. DECOMPOSITION AND INDEX

We assume from now on that we have a decomposition M = MyUUy,
where My and U, are domains in M such that M, is compact and
connected and such that N := My N Uy # 0 is a level surface of a
C? distance function f which is defined in some open neighborhood
of N in M. We assume that T := grad f points into the direction of
Uy, set Ag := —Dy as in (B.45) and get the associated Sobolev spaces
H® = H%(Ap) as in Section [L.1].

LEMMA 5.1. There is a constant C' > 1 such that
o)l 1ty < C(llolnllmre + 1 Dol 2y, m))
for all o € HY(My, E); that is, D is of Fredholm type over M.

Proof. Let Ry : H'(My, E) — H'? be restriction to N, Roo := 0|y,
and & : HY? — H'(M,, F) be an extension operator. Since & and
Ry are continuous and H} (M, E) is the kernel of Ry,

H (Mo, E) — HY? x H}(My, E), 0~ (Roo,0 — ERo0),

is a continuous bijection, hence an isomorphism (of topological vector
spaces). Since M is compact and connected with non-empty boundary
N, there is a constant C' such that

ol 2o,2) < ClDo | L2000, )

for any o € Hj(My, E), by the unique continuation property for solu-
tions of the Dirac equation. O

It will be convenient to write Dy, for the restriction of D to Mo,
and similarly in corresponding cases.

Consider the manifold M which is the disjoint union of M, and Uy,
endowed with the Dirac bundle E — M induced by E. We want to
apply the results from Chapter 5 of [BBCY] to the Dirac operator D of
F and, therefore, need to check whether the requirements of Axiom VI
there are satisfied. The only requirement in that axiom which might
be non-obvious is dealt with in the following lemma.
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LEMMA 5.2. Let x : R — R be a smooth function with compact support
which is equal to 1 close to 0. Then (1 — x o f)o € dom Dy, min for all
o € dom Dy, max, and similarly for M.

Proof. We note first that (1 —x o f)o is a section in dom Dy, max Which
vanishes in a neighborhood of the boundary N of Uy. Hence the ex-
tension ¢ of (1 — x o f)o by 0 to My is in dom Dy,.x. Now we have
dom Dpax = dom Dy, by Theorem 11.5.7 of [LaMj]. Hence there is
a sequence of smooth sections o, € C°(M, E) such that o — & in
dom Dyyin. It follows that (1 — Yo f)ox — (1 — x o f)o in dom Dy, min,
where x¥ : R — R is a smooth function with compact support such that
1— (1 —x) =(1—). 0
Because T' is the exterior normal to My, the space of boundary values
of the maximal extension Dy, max 0of D over My is the hybrid Sobolev
space
(5.3) H=H_"®H = H(-A).

LEMMA 5.4. For any XA > 0, we have
1
ind DM(LZ—)\ = 5 dim H[,)\)\}.

Proof. Since D)y, >_» is the adjoint operator of Dy, -, we have
ind Dy, >—x = —ind Dy s
On the other hand,
ind Dygy >—x — ind Dy, > p = dim Hj_y y),
by Theorem 5.16 in [BBCY]. g

The same argument applies to Dy, <imax if D is of Fredholm type.

Specifying the data in the definition of non-parabolicity of the third
named author, compare [Call], we say that D is non-parabolic with
respect to some subset L. C M if, for any relatively compact open
subset K C M, there exists a constant C' = C(K, L) such that

(5.5) lollz2x,py < CllDol| 20,2y,

for any smooth section ¢ of E with compact support such that o|;, = 0.
Obviously, if D is of Fredholm type, then D is non-parabolic with re-
spect to any sufficiently large compact subset, and if D is non-parabolic
with respect to some subset, then also with respect to any larger subset.
Furthermore, if M is connected, then D is non-parabolic with respect
to any subset whose complement is relatively compact, by Lemma [.1].
If D is non-parabolic with respect to some compact subset, we say that
D is non-parabolic at infinity.
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PROPOSITION 5.6. Suppose that the ends of M are straight in the sense
of Definition [I.§ and let D be the Dirac system over R, associated to
D over Uy as in Section [7.3. Then D is non-parabolic with respect to
My if and only if D is non-parabolic in the sense of Section [[.3. In
particular, if D satisfies the assumptions of Proposition [[.4], then D
18 non-parabolic with respect to M. O

Assume from now on that D is non-parabolic with respect to M. Let
W (M, E) and W (Uy, E) be the completion of H!(M, E) and H!(Uy, E)
with respect to the norms associated to the inner products
5.7) (0, T wrp) = (0, T) i a0, + (Do, DT) 2 06,2),

. (07 T)W(UO,E) = (07 T)H + (DCT, DT)L2(U(),E)7

respectively. We have

(5 8) W(M7 E) = {(07 T) S HI(M07E) D W(U07 E) : U|N = T‘N}
' C Hipo(M, B),

loc

since the transmission condition o|y = 7|y is a regular boundary con-
dition for the manifold M as above, see Example 1.85 in [BBC3J]. By
definition, D induces continuous operators

Dexi : W(M, E) — L*(M, E),
Dypyext : W(Uy, E) = L*(Us, E).
We arrive at the following version of Théoreme 0.3 of [Cad].

(5.9)

THEOREM 5.10. Suppose that D is non-parabolic with respect to My.
Then Doy : W(M, E) — L*(M, E) is a Fredholm operator with

(im Deyy )™ = ker Dypay = {0 € L*(M, E) : Do = 0 weakly}.

Proof. Theorem 5.12 in [BBCZ] implies that the image of Dy is closed
and that ker Dy is of finite dimension. The last claim follows from the
density of H (M, E) in W (M, E) and since D is formally self-adjoint.
Finally, since ker D ., C ker D¢y and the latter is of finite dimension,
D¢y is a Fredholm operator. O

In the super-symmetric case £ = ET @ E~, we get operators
(5.11) DE, W (M, E*) — L*(M, ET).

ext
Since D,y is a Fredholm operator, the operators DejtXt are Fredholm
operators as well and

(5.12) ind D, = dimker D}, — dimker D,

max’

by Theorem p.1( (and since D is formally self-adjoint).
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The transmission condition o|y = 7|y as above is elliptic. Therefore
it can be decoupled into separate boundary conditions for My and Uy,
respectively, compare Theorems 3.24 and 5.12 in [BBCZ]. This leads
to the following index formulas.

THEOREM 5.13. Suppose that D is non-parabolic with respect to M.
Then we have, for any A > 0,

1
ind Dext = 5 dim H[_)\7>\} -+ ind DUO,<—>\,ext-

In the super-symmetric case,

ind DT ind D]\ZO’ZO + dim H[t)\ 0) +ind D"

ext — Up,<—A,ext"

Proof. The assertions are immediate consequences of Theorems 3.24,

4.17, and 5.12 in [BBCP| and Lemma [.4] above. d

Suppose now that the ends of M are straight in the sense of Definition
[.§ We may then consider weighted Lebesgue and Sobolev spaces,
following the discussion just before and in Corollary .55, For w € R,
let L2 (M, E) be the space of measurable sections of E which are square
integrable over M with respect to the weight which is equal to 1 over
My and equal to e**! over Uy. Endow L2 (M, E') with the corresponding
inner product

(5.14) (0. 7) 12 (v, = (0, T) L2 (0o, + (€710, € T) L2030, )
Furthermore, let H! (M, E) be the completion of H!(M, E) with re-
spect to the norm associated to the inner product

(515) (O', T)HEU(MyE) = (O', T)L%U(M,E) + (DO’, DT)L%J(M,E)-

Assume from now on that the assumptions of Proposition §.45 are
satisfied and that w € R satisfies the corresponding inequalities. Then,
by (51), (E52), and Lemma B, the HL, (M, E)-norm is equivalent
to the norm

(516)  llollzw = llolllz + [1Doll2a ) + € Dol L2y ).

Thus, by restriction to My and Uy, respectively, H} (M, E) is isomor-
phic to the space of pairs (o,7) in H'(My, E) ® H.(Uy, E) satisfying
the transmission condition |y = 7|y.

THEOREM 5.17. Suppose that the Dirac system D over R, associated
to E over Uy satisfies the assumptions of Proposition [[.4] and that
w > 0 satisfies the corresponding inequalities. Then

D_,:H' (ME)— L* (M E)
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18 a Fredholm operator with index
1
ind D_w = 5 dim H[_A)\].

In the super-symmetric case,

ind Di_w = ind D]T/[Ogo + dim H[—t)\,o)'

Proof. By ([.51)), D_,, as above is a Fredholm operator. We also note
that Dy, _, is conjugate to the operator Dy, + wgrad f, where f is
the given distance function over Uy. Hence the results of Section 3 in
[BBCZ apply (compare also Remark 2.27 of loc.cit.) and show that
the Calderén projections associated to L2 -solutions of the equation
Do = 0 over My and Uy are elliptic. Hence, by Theorems 3.24 and 5.12
in [BBCY|, D as above has index

ind D_,, = ind Dy, > +ind Dy, —yy <—a-

By Corollary .53, ind Dy, —y,<—x = 0, hence the formula for ind D_,,
follows from Lemma [p.4. In the super-symmetric case,

. + _ + . +
ind DT, =ind Dy, -~y +ind D, )

= ind DJ\+/10,2—>\ =ind D]J{/IO’ZO + dim H[t/\o O

)-
In the case where the boundary N = Ny of Mj is smooth, Theorem
3.1 in Atiyah-Patodi-Singer [APS]] applies and gives

; + —
ind DM(LZO —/ Wp+ +/ Tp+
Mo No

(5.18) |
+3 (n(AF) + dimker A7),

where wp+ is the index form and 7p+ the transgression form. We
remark that wp+ is a universal polynomial in the curvatures of M and
E and that 7p+ is a universal polynomial in the curvature of M and
E and the second fundamental form of N; compare [[Gill] and Section
3.10 in [[Gild]. Now we may approximate My by smooth domains such
that the second fundamental forms of their boundaries approximate
the second fundamental form of N. Then the integrals of wp+ and
Tp+ over the approximating domains and their boundaries converge to
the integral of the corresponding forms over M, and Ny, respectively.
On the other hand, the coefficients of Al are only C! in general, and
therefore the n-invariant of Aj may not be well defined. However, since
the other terms on the right hand side of (p.I§) are well defined, we
may define n(Ag) to be the number such that (5-I§) holds. In [Hj,
Michel Hilsum defined n-invariants for Lipschitz manifolds in a similar
way, and he showed that they enjoy many of the properties of “smooth”
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n-invariants. We do not pursue this issue any further since we apply
the APS-formula only in the smooth case.

Assuming now that the ends of M are smooth, we may combine the
index formula for D" in Theorems [.13 and p.17 with (B.1§). To that
end, we continue to assume that the assumptions of Proposition [.43
are satisfied. Then the spectrum of A; has two parts, the part consisting
of eigenvalues of modulus at most A and the part consisting of those of
modulus at least A. Following a corresponding convention in [[LoJ], we
call the first the low energy and the second the high energy part and
get the corresponding spectral projections and spaces,

(5.19) Pri=Quax(A), HY = P/(H,), Af:= A,
(5.20) Qi :=1-P, HP = Qu(Hy), A} := Ayl pppe,

where we note that H; = H}° @ HP® is an orthogonal decomposition
which is invariant under A;. In the super-symmetric case we get similar
decompositions and set

(5.21) N(AD) = n(AST) and g (AF) == (A7),
the low and high energy n-invariant of A;, rspectively. We have
(5.22) n(AF) = (A7) + (4.

COROLLARY 5.23. Assume that the ends of M are smooth and straight
and that the Dirac system over R, associated to E over Uy satisfies
the assumptions of Proposition [{.40. Then we have, in the super-
symmetric case,

. Ly, o
ind D¥ = / Wp+ —|—/ Tp+ + 5 (d1mH[t/\7)\] + (Ag)) :
Mo No
ind D}, =ind D + ind D(}LO e rextr U
Since ind DT, does not change when replacing the parameter ¢ along

the ends by t — ty, for any ¢, > 0, it follows that ind D(J}m < hext IS an
asymptotic invariant of D (for A as in Proposition [L.4]). Compare also
Corollary f.58.

The formulas in Corollary p.23 can be used to define high energy
n-invariants in the case where the ends of M are not smooth. We ex-
pect that these enjoy nice properties because the family of high energy
operators A has no spectral flow.

We conclude this chapter by explaining the

Proof of Proposition [[.10. Since M has only finitely many ends, there
is a decomposition M = My U Uy, where My and Uy are domains in M
such that M, is compact, such that the common boundary N := MyNUj
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of My and Uy is smooth, such that each connected component of N
bounds exactly one connected component of Uy, and such that the
latter are in one to one correspondence with the ends of M.

For each connected component C of N, let Af, be the restriction of
A{ to sections of E with support on C. Then A{ is the direct sum of
the A} over the connected components C' of N. Hence

n(Ag) = ch(Ag) and dimker Aj = ZC dim ker A},

For the connected component C of Uy with 0C = C' we now set

Corr(C) == ind Dg _ oy — /wD+ + / Tp+
c c

+ = (n(AL) + dimker Af) .

N | —

Then, by Theorem p.13 and (B.13),
ind D}, = / wp+ + Zc Corr(C).
M

By Theorem 3.24 of [BBCTY], the terms Corr(C) only depend on the
ends of M and not on the chosen decomposition of M as above. O

6. MANIFOLDS WITH e-THIN ENDS

Let N be a closed and connected Riemannian manifold of dimension
n. We say that N is e-flat if

(6.1) VK diam N < ¢,

where K is some upper bound of the modulus of the sectional curva-
ture of N. By Gromov’s theorem on almost flat manifolds, there is
a constant £(n) such that N is an infra-nilmanifold if N is e(n)-flat
[G1l. In what follows we need some details from the proof of Gromov’s
theorem from [BuKd] and from Section 4 of Ruh’s improvement of Gro-
mov’s theorem in [Ru]. The estimates which we assert below hold if
g(n) is chosen sufficiently small. The arguments in the proofs of these
assertions are elementary albeit intricate.

For any curve ¢ : [a,b] — N, denote by L(c) the length of ¢ and
by h(c) parallel translation along c¢. For orthogonal transformations A
and B between equi-dimensional Euclidean spaces V' and W, we follow
[Ru] and let d(A, B) be the maximal angle /(Av, Bv), where v runs
over non-zero vectors in V. This is a non-smooth Finsler metric on the
space of all orthogonal transformations from V' to W, invariant under
precomposition and postcomposition by orthogonal transformations of
V and W, respectively, with injectivity radius and diameter 7.
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We begin with results from Chapters 2 and 3 in [BuKd]. Normal-
ize the Riemannian metric of N so that diam N = 1, and assume,
correspondingly, that K < e(n). As in [Rd], let

(6.2) w = 2149500 and  p > 10%w.

Let z and y be points in N. Then, if ¢y and ¢; are geodesics segments
from z to y of length < p such that h(c) and h(c;) are 10~ -close, then
h(co) and h(c;) are actually 107°-close. The relation h(cg) ~ h(cy) iff
h(co) and h(c;) are 10~!-close is an equivalence relation among the
holonomies of geodesic segments from = to y of length < p. For each
such equivalence class of holonomies, there is a geodesic segment from
x to y of length < 2-10~%p such that its holonomy belongs to the given
equivalence class.

Let ¢ and ¢; be geodesic loops at x such that L(cy)+L(c;) < p. Then
there is a unique geodesic loop co*c; at = of length < p homotopic to the
concatenation of ¢y and ¢;, and h(cy * ¢;) is 10™°-close to h(cy) o h(co).
This turns the set H of equivalence classes of holonomies along geodesic
loops at z of length < p into a group, and the order of H is at most w.

Next we explain Ruh’s construction of a flat metric connection on N
from [Ru]. Fix an orthonormal frame F, : R® — T, N to identify T, N
with R™. For each equivalence class h € H of holonomies along geodesic
loops at z of length < p, let by(h) € O(T,N) ~ O(n) be its barycenter.
This defines an almost homomorphism by : H — O(n) in the sense
of [GKR] and b, is 10~*-close to a homomorphism b : H — O(n), by
Theorem 3.8 of [GKR]. It follows that b is injective, and we use b to
identify H with its image in O(n).

Let ¢y be a geodesic segment from x to y of length < p. For each
geodesic segment ¢ of length < p from x to y, there is precisely one
h € H such that h(c) o h is 107*-close to h(cp). Enrich the equivalence
class of h(cy) as above by all such h(c) o h.

Choose a smooth monotone function x : R — R with x(r) = 1 for
r < p/3, x(r) =0 for r > 2p/3, and |x'| < 10/p. For any enriched
equivalence class [h(c)oh] of holonomies as above, let b([h(c)oh]) be its
barycenter with respect to the weights x(L(c))/v, where v is the order
of H times the sum of the x(L(c)), over all geodesic segments ¢ from
x to y of length < p. By the equivariance of barycenters with respect
to orthogonal transformations, the set of the barycenters b([h(c) o hl)
is invariant under right multiplication by elements from H, and hence
the frames b o Fy, where b runs over the above barycenters, define a
reduction of the principal bundle of orthonormal frames of N to a
principal subbundle with structure group H. In other words, we get a
flat metric connection V on N with holonomy in H.
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To estimate the norm of the difference between V and the Levi-Civita
connection V of N, we go back one step and consider the situation
before taking barycenters. Let v € T,N and o = o(s) be a curve
through y with s-derivative 6(0) = v. Let ¢g : [0, 1] — N be a geodesic
segment from x to y with L(cg) < p. There is a unique geodesic
variation ¢ = ¢,(t) of ¢y with ¢;(0) = = and ¢s(1) = o(s), and then
L(cs) < p for all (sufficiently small) s. Let u € T, N and X = X(s,1t)
be the vector field along ¢ such that X(s,0) = u and such that X is
parallel along the segments c;. Note that parallel translation along o
with respect to V corresponds to taking barycenters of such X(s, 1)
along o, arising from geodesic segments from x to y of length < p.

We have V;V,X = R(¢, J)X, where the s-derivative J := ¢ of ¢ is
a Jacobi field along each of the ¢, which vanishes at ¢ = 0 and is equal
to o(s) at t = 1. It follows that

(6.3) [(VeVX)(0,0)] < CoKptlv]| X],

where () is a universal constant. Since taking barycenters depends
smoothly on points and weights, we conclude that

_ 1
(6.4) VX = Vo X| < Cu(Ep+ )l [X].

Now, for any given § > 0, we may choose p so large and, accordingly,
e = &(n,d) so small, that the right hand side of (f.4) is < d|v||X].
Hence, reversing the normalization of the diameter, we get that

(6.5) |V — V| < ddiam N,

where we recall that scaling does not change the Levi-Civita connection.
This finishes the exposition of results from [BuKad] and [Ru].

Proof of Theorem[1.13. In the above constructions, it is understood, in
the literature, that the Riemannian manifold /N is smooth. We want to
apply it in our situation of straight ends, where the Riemannian metric
of the cross sections N; C U ~ [0,00) x N is, in general, only C'. To
overcome this technical difficulty, we note that f can be approximated,
locally uniformly in the C? topology, by a sequence of smooth functions
fr : U — R. Then, for any given cross section Ny, the level sets Ly =
I '(t) approximate N, in the sense that there is a C'* diffeomorphism
between them such that Riemannian metric, Levi-Civita connection,
and Weingarten map on NV; are approximated by the corresponding
objects on L;. In particular, diameter and modulus of the sectional
curvature of the connected components of the levels L, are bounded
from above by

di+a and K = COp+2C3 +a,
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for any given o > 0 and all sufficiently large k, where d; is an upper
bound for the diameter of the connected components of N; and where
we use the Gauss equation for the second estimate. Thus the above
constructions apply to N, if

VKd, <e<e(m—1,1),

where K = Cp+2Cf,+1 and e(m—1,1) = (n, ) is as in the discussion
of (B.9) above, and they guarantee a flat connection V* on N; such that

‘vt - vt‘ S dt7

where V! denotes the Levi-Civita connection of N; (in difference to our
convention as in Lemma [.49).

Suppose now that £ — M is a Dirac bundle of the type required in
Theorem [[.T3. Then the restrictions of E to any given cross section N;
is of the corresponding type. Let V! be the flat metric connection on
N, as above. By the assumption on the type of the bundle, V* induces
a flat Hermitian connection V¥ on the restriction E; = E|y, with
holonomy of order at most w over each connected component of N;.

For convenience, assume now that N is connected. Decompose E}
into holonomy irreducible components, and let F' — N, be any such
component. Then F' has a twisted parallel orthonormal frame

(6.6) ¢ = (01,...,04),

that is, the sections o; of I’ are well defined and parallel on the induced
bundle with induced flat connection over the universal covering of V;.
We think of them as sections of E over N; which transform according
to the holonomy of F'. Approximating the Riemannian metric on IV; by
a smooth e-flat Riemannian metric as above, we see that we can apply
the usual estimates for the Rayleigh quotient of sections of F', that is,
the estimate of Li and Yau [[iYe] in the case where F is the trivial
complex line bundle and the corresponding estimate in [BBC]] in the
other cases. The outcome is an estimate as follows: If ¢ is a section of
E over N; and o is orthogonal to the globally V-parallel sections of F
over NNy, then

_ C(Cp. Com
(67) 195, > v s,

Here we use, in the twisted case, that the holonomy of F' is non-trivial
in the sense that, for each unit vector v in F', there is a loop ¢ in N;
(of length at most p) such that the angle between v and hv is at least
7/2, since otherwise the holonomy orbit of v would be contained in an
open spherical ball of radius 7 and would have a fixed point. Hence,



INDEX THEOREMS ON MANIFOLDS WITH STRAIGHT ENDS. 47

for each unit vector v in F', there is a loop ¢ in N; of length at most
2d, such that the angle between v and h(v) is at least m/2w.
Now the estimate |V — V| < d; implies that

|?t - V|]\7t| S dt + CWa
where V denotes the Levi-Civita connections of M. Hence
Wt’E - VE|Nt| < C(dy + Cw),

where (' is a constant which depends only on the type of E. Tt follows
that the difference between the Rayleigh quotients for VZ|y, and VH¥
is uniformly bounded. We conclude that the assumptions of Proposi-

tion .45 are satisfied. O

7. CusrPIDAL ENDSs

Assume from now that the ends of M are cuspidal. In the setup of
Definition [.§, denote by D the Dirac system associated to E over U
as in Section B.3. Clearly, for any € > 0, the cross sections N, are e-flat
for all sufficiently large ¢ so that Theorem [l.13 applies. On the other
hand, in this chapter, we aim at more specific results. In addition, we
do not need to rely on the proof of Gromov’s theorem on almost flat
manifolds.

7.1. The Flat Connection. Over U, define a tensor field S of bilinear
maps on T'M & T'M with values in T'"M by

(7.1) (S(u, v), w) = — / SR TYVX, YV (2 dt,

where u, v, w € T(s )M, J is the T-Jacobi field along (s ») with J(s) =
u, and X,Y are the parallel vector fields along (s, with X(s) = v,
Y (s) = w. The integral converges uniformly, by ([.LT) and since the
ends are cuspidal. Hence S is continuous and uniformly bounded. We
let C's be an upper bound for the operator norm of S.

In the analogous way, define a field S¥ of bilinear maps on TM @& E
with values in F,

(7.2) (SF(u,v),w) = — /OO(RE(J, T)oy,09)(t, ) dt,

where now v, w € E(, ) and 01,09 are the parallel sections along (s .x)
with o(s) = v, 7(s) = w. Again, the integral converges uniformly, by
() and since the ends are cuspidal. Hence S is also continuous and
uniformly bounded. We let C¥ be an upper bound for the operator
norm of S¥.
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The arguments in Section 3 of [BBZ| carry over word by word and
show that the continuous metric connections

(7.3) Vi=V-S and V¥:=V¥#_-g5*

on T'M and FE over U are flat in the sense of the existence of parallel
C! frames over simply connected domains in U. The difference to the
situation in Section { is that we do not assume that F is geometric
and that we have to pay for it by making stronger assumptions on the
smallness of the Riemannian metrics g; and by loosing control on the
holonomy of V and VZ.

It is easy to see that

(7.4) SE(X,Yo)=S8(X,Y)o+YS¥(X, o),

hence the new connections are compatible with Clifford multiplication
as well, that is,

(7.5) ViYoo) = (VxY)o+YVio
By definition,
(7.6) Vr=Vy, VE=VE and VT =0.

For each t € R, the restriction of V and S to N, will be denoted by
V; and S;, and similarly for V and S¥. We also consider VZ as a first
order differential operator on H'(N;, E) with values in L*(T*N, ® E).
The formal adjoint of VF is denoted (VF)*.

REMARK 7.7. The above construction of a flat connection is taken from
[BBY] (where it is considered for a narrower class of bundles £). In
Appendix C of [BeKd], Igor Belegradek and Vitali Kapovitch remark
that this connection coincides with the flat connection introduced by
Brian Bowditch in [Bow]| (in the case of the tangent bundle), who uses a
kind of parallel translations through infinity (which, in turn, coincides
with the horospherical translations in Section 2 of [BrKd]).

7.2. The Splitting. To keep the notation simple, it will be convenient
to assume in this section that N is connected. It will be obvious that,
mutatis mutandis, the results also apply in the case where N is not
connected.

For each t € R, we let HS be the space of VF-parallel sections of
E over Ny, that is, Hf is the kernel of VF. Here the superscript c
stands for constant. We note that the spaces H; are invariant under
Clifford multiplication by 7', by ([.5) and ([.§). It is also clear that
parallel translation in the T-direction identifies the different spaces
HE, t € Ry. In particular, we may and will fix a family of VZ-parallel
sections (071, ...,0%) of E over U which are pointwise orthonormal and
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whose restriction to N; forms an orthogonal basis of Hy, for all t € R
simultaneously.

We let H! be the orthogonal complement of Hf in L*(N;, E). Thus
we obtain two families H¢ = (Hf) and H® = (H}) of Hilbert spaces,
both of them invariant under Clifford multiplication by 7. Note, how-
ever, that H" is not parallel in the T direction if HC is non-trivial and
the volume density j = j(t,x) as in Section does not only depend
on t, but also on x, compare ([.9).

As before, we use parallel translation to identify the spaces H; with
H§, endowed with the inner products (.,.); = (ji.,.)o. Since T is parallel
in the T direction, Clifford multiplication by 7" does not depend on ¢
after this identification.

Let P, and Q; := I — P; be the orthogonal projections in H; onto H¢
and H}, respectively. By definition,

_ 1
(78) o= vol N, Zgigk(ai’ )10

For any function ¢ = (¢, ) on U we denote by ¢ = 1)(t) the function
which associates to t € R, the mean of ¥ over the cross section V.

By (B:32) and ([7.§), we have

(7.9) (VrP)o = P(ko) — kPo.

Associated to the projections P and @, we consider the operators
(7.10) D°:= PDP, D":=QDQ, D™:=PDQ, D" :=QDP.

We use corresponding notations and conventions in other cases.

PRrROPOSITION 7.11. The family

D¢ = (H", A%, T)
is a Dirac system in the sense of Section [3_1 with
d &
0 =—+— d D¢=T(0 + A°).
o an (0°+ A°)
Proof. The sections oy, ..., 0 as above are C'!, so that the image HY of

P, consists of C' sections of E over Ny. Hence Hy is contained in Hay,
for all t € R,. Furthermore, A = P,A;P, is a bounded and symmetric
operator on Hy. Clearly, for oy, 0, € H,

‘(ptAtpto-lu U2)t - (psAspsalu 0-2>s‘ = ‘(Ato-lu U2)t - (Asalu 0-2>s‘- U

Associated to the decomposition into constant sections and sections
perpendicular to them, we get an orthogonal splitting

(7.12) L*(D) = L*(H) = L**(H) ® L*"(H).
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where
L*(H) = L*(H¢) and
L**H) := {0 € L*(H) : Po = 0}.

We use corresponding notations for other spaces of sections.

(7.13)

LEMMA 7.14. The projections P and Q are continuous on H*(D). In
particular, as topological vector spaces,

HY(D) = H*(D) ® H""(D),
Hy,(D) = Hye(D) ® Hype(D).

loc loc
Proof. Since o4, ...,05 and vol N, are C!, we conclude that
P(H'(D)) C H'(D) and Q(H'(D)) C H'(D),

by (7.§). Hence P and Q = I — P are continuous with respect to the
H'-norm, by the closed graph theorem. O

LEMMA 7.15. The Rayleigh quotients
(1) po = wf{|[VPo|}/llo|l} : 0 € HY 0 Ha,o # 0},
(2) po =t V7o |} /llollf : 0 € HY N Ha o # 0}

tend to infinity as t tends to infinity. Here V{ and V{ denote the
restrictions of V¥ and V¥ to N;.

Proof. We discuss the Rayleigh quotients associated to V¥ first. Split
HMN Hy = U, @V, where Uy consists of sections in H(Ny, E) which
are linear combinations Y ¢;0; of the basis (o1,...,0%) as above and
where V; consists of sections in H!(N;, E) which are pointwise per-
pendicular to oq,...,0,. Note that U; and V; are invariant under ?f
and perpendicular to each other, and thus it suffices to consider them
separately.

Let 0 = >_ ;0 € Uy, 0 # 0. To be perpendicular to Hf in L*(Ny, E)
means that the coefficient functions ¢; integrate to 0. Moreover, the
Rayleigh quotient of ¢ is given by the sum of the Rayleigh quotients
corresponding to the Laplace operator on functions on N;. Hence

IVEa]? _ | erad e,
o~ S lel?

for some constant ¢ > 0, by Theorem 7 in [LiY4].

Now we consider V;. Perpendicular to (o1, ..., 0x), the holonomy of
V does not have non-trivial invariant vectors. Since loops in N = N,
of length at most 2 diam N generate the fundamental group of N, there
is a constant o > such that, for each vector u in some fiber of E over

2
”t Z Cect’
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N, there is a loop ¢ in N of length at most 2diam N such that the
holonomy h, of V along c satisfies |h.u —u| > a|u|. For each t > 0, the
V-holonomy about the curve c shifted to IV, is the same. We conclude
that, for each t € R, and vector u in some fiber of F over Ny, there is
a loop ¢ in V; of length at most 2p(t) diam N such that the holonomy
h. of V along c satisfies the same inequality,

|heu — u| > alul.

Hence Theorem 5 in [BBCI]| applies and shows that the Rayleigh quo-

tient of V¥ on V; tends to infinity as ¢ tends to infinity. This shows the

first claim. As for the Rayleigh quotients associated to VZ, we recall

that the difference |VF — VF| < CF. O

THEOREM 7.16. There are constants Ao, Ay > 0 with lim;_,.o Ay = o0
such that spec Ay N (Ao, A¢) = 0 or, more precisely, such that

1) 1Dl < Nolloll for all o € HE,
(2) HDtO-”t Z At”aHt fOT’ all o c Hgl

In particular, for all sufficiently large t,

(1) Dy satisfies the hypothesis of Proposition [{.]],
(2) D is non-parabolic with respect to M,.

Proof. By () and (210),
1D ll2 = IIV'all?| < Crcllo?. 0

7.3. Explicit Index Formulas. Assume from now on that the ends
of M are smooth, that is, the associated distance function f on U is
smooth. Since the ends of M are cuspidal and the curvatures of M and
E and the second fundamental forms of the cross sections are uniformly
bounded,

(7.17) lim Wp+ :/ Wp+ and lim TpD+ :0,
My M

t—o0 t—o00 N;

compare (5.1§). By Theorem [7.1(, we may fix the starting time ¢t = 0
such that the condition

(7.18) (Ay — Xo)? > 4eg(cg+ 24+ Xo + Ay)

of Proposition {47 is satisfied for all ¢ € R, where A and A there
correspond to \g and A; here.
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PROPOSITION 7.19. If w > 0 satisfies (w— \g)* > co(co+2+42w), then
. L, . C he
ind D = /MwD+ + §(d1m H[J:AO,)\O](ASF) + tliI?o n"(AD),

. + —+ : -
ind Dy, = ind D7, — dimker DUO,SAOJHaX'

Proof. This is immediate from Corollary and ([.I7), where we

observe that dim H [J: Moo (A¢) is independent of ¢ € Ry. O

To get an explicit formula for the extended index of D, we assume
from now on in addition that

(7.20) k=~K and Ao; = Z aloy,
J

for some (constant) Hermitian matrix A = (@) € Gl(k,C). These
conditions hold for homogeneous cusps as discussed further on.
The second condition of ([.20) requires that the space Hf of constant

sections in H; is invariant under A;. By Theorem [.16, we get that
(7.21) H® = Hf = H_y,2)(A) and H® = H" = Hg\ -3, 20 (A1),

compare (b.19) and (5.2(0). The additional assumption x = & implies
that the high energy family H" = (H!) is invariant under parallel
translation so that it defines a Dirac subsystem D" of D, as in the
case of the low energy system D' := D¢; compare ([[.9) and Proposi-
tion [.11. We obtain corresponding low and high energy Dirac opera-
tors D' and D", decomposing the original Dirac operator D.

LEMMA 7.22. Under the above assumptions,
he _ he o he
DUt,<)\,ext - DUﬁ,ﬁA,ext - DUt,<At,ext'

and D}(}i,<)\,ext and D?}:zi\,ext are isomorphisms, for allt > 0 and —A; <
A < Ay In particular, for all such t and A,

. + . le,Jr
ind DUt,<)\,ext = ind DUt,<>\,ext'
Proof. The fist assertion is clear since the spectrum of Ak does not

intersect the interval (—A;, A;). Furthermore, DJf . is injective,
by Corollary [L43. Now DBe

t
he . . .
other, hence Dy . 18 surjective. U

<0,ex
cxext and DFE . are adjoints of each

Since k depends (at most) on ¢ and j solves the initial value problem
j" = kj with jo = 1, we conclude that j = j(¢,x) depends only on t as
well. Then the linear map

(723) @ LR RY) - LK), ®(p) =72 oo,
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is a unitary isomorphism such that

- (d _
(7.24) 1D =T (% + A) ,

where T' = ®~'T®. This is a finite dimensional constant coefficient
Dirac system. In the super-symmetric case, we get a system of the
form

ipleq (0 —1 d AT 0
(7.25) o ch_(l o)(£+ 0 i)
where A— = —AT.
le,+

- 1
PROPOSITION 7.26. Under the above assumptions, D&y .. and D_p o
are 1somorphisms.

Proof. The Dirac system [[:24 does not have extended or L?-solutions
o with o(0) in HY, or HY,, respectively. O

In what follows, we use that A is the matrix of A® associated to the
basis (0;) of H\°, for all t € R,. In particular, the quantities n'°(A;")
and dim ker A" do not depend on ¢t € R, .

THEOREM 7.27. If all ends of M are smooth and ([[22Q) holds, then
1
ind D, = / wp+ + = (lim 0" (AF) + n'(A) + dim ker Ate”L) :
M 2 \t—oo
Proof. Immediate from (b.1§), ([.I7), Theorem p.13, Lemma [[.22, and
Proposition [[.24. O

The quantities A := dim ker D%, — dim ker D, determine the dif-

ference between the extended and L2-indices of DT,
(7.28) ind DZ, = ind> D* + b,
where ind;» D* := dim ker D* — dim ker DT.

THEOREM 7.29. If all ends of M are smooth and ([[220) holds, then

1
ind. D" = / Wp+ + = (lim " (AS) +n(Af) — hE + hgo> :
M 2 \t—oo

Proof. Since D is formally self-adjoint, the L?-index of D vanishes and

therefore
ind Doy, = ind D, +ind D_, = ht + h__.
On the other hand, we have

wp- = —wp+ and A = —Af,
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for all t € R,. Therefore, applying Theorem [7.27 to D" and D,
ind Dy, = ind DY, +ind D_,

ext

1
=3 (dim ker AT + dim ker A}]e’_) = dim ker AF"

since the integral and n terms for D' and D~ cancel each other. We
conclude that

(7.30) ht + by, = dimker AP
and hence that
1
(7:31) ind DY, —indge D* = hi, = = (hL, — hy, + dimker A7), O

REMARKS 7.32. 1) In examples, the non-local term hf — h_ is a con-
tribution of zero energy resonances and can be computed from the
scattering matrix at zero energy, see [Mul],[MuZ].

2) D is of Fredholm type if and only if the kernel of A* vanishes or,
equivalently, if and only if hf = h__ = 0.

8. HoMOGENEOUS CUSPS

Let N be a simply connected nilpotent Lie group with Lie algebra
n. Fix a left-invariant Riemannian metric g on N, and let W be a
negative definite and symmetric derivation of n. Then (exp(—tW))cr
is a one-parameter group of automorphisms of n which induces a one-
parameter group (®;);er of automorphisms of N. The associated semi-
direct product S := R x N, where

(8.1) (s,2)(t,y) = (s + 1, 2Ps(y)),
is a simply connected solvable Lie group containing N = {0} x N as
a subgroup of codimension one. The vector field T' := 9/t on S is

left-invariant, and the Lie algebra s of S extends n by
(8.2) T, X]|=-WX,
where X € n. For later use, we note that left translation, right trans-
lation, and conjugation with (¢,e) € S are given by
L(tve)<87 SL’) = (8 +1, (I)t<'r))7
(8.3) Re)(s,x) = (s +t,2),
<t7 €)<57 l’)(—t, 6) = (37 (I)t<x>>7
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respectively. In particular, the shift by ¢ along the T-lines is obtained
by right translation with (¢, e). Moreover, for X € n C s,

R(t,e)*X(s,x) = L(s,:v)*L(t,e)*L(ft,e)*R(t,e)*X

8.4 _
( ) = L(ert,x)* (Ad(t,le)X) = L(S+t7m)*<eXp(tW)X),

where we recall that (®;) is the one-parameter group of automorphism
of N associated to =W (and where we identify s 3 X = X, € T,.5).

Endow S with the left-invariant Riemannian metric which agrees
with g along N and such that R and n are pairwise perpendicular
with |T| = 1. Note that 7" is a unit normal field along the cross
sections IV; := {t} x N and that the T-lines are unit speed geodesics.
In particular,

(8.5) f:S—=R, f(tzx):=t,

is a smooth distance function on S such that grad f = T and such that
the associated diffeomorphism F' is the identity on S = R x N. By the
Koszul formula and the symmetry of W,

(8.6) VrX =0,
for any X € s. For any X € n C s,
(8.7) VxT =WX,

by (B.2) and (B.6); that is, except for the compactness of the cross
sections, we are in the situation of Section B.3. By (B.6) and (B.7),

(8.8) R(T, X) = Vix,r1 = Vwx.
In particular,
(8.9) R(X,T)T = -W?X,

and hence the sectional curvature of tangential 2-planes of S containing
T is strictly negative.

Let I' € N be a discrete subgroup such that the quotient I'\ N is
compact. Since I' C N, the distance function f as in (B.H) is well de-
fined on I'\ S. We keep the notation f and 7" = grad f on the quotient.
The cross sections of f are given by {t} x I'\N, and right translation
by (¢,e) induces the shift F; from I'\N to {t} x T'\N, see (B.3). By
(B-4), F; has derivative F;, = exp(tW). The Jacobian of F} is given by
j(t) = exp(kt), where k = tr W as in Section B.2. It only depends on
t and not on = € I'\IN. Moreover, since W is negative definite, F; is
contracting for ¢t > 0: If we order the eigenvalues of W,

(8.10) Ko < ... < Ky <0,
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then any part [ty, 00) x N of R x N models cuspidal ends as in Definition
with ¢ = —2k,,, and C' = 1. We call such ends homogeneous cusps.

If X; € nis a unit eigenvector of W for the eigenvalue k;, then
exp(k;t)X; is a Jacobi field along each T-line and

(8.11) (VyY,Z) = — / CUR(T, e XY, 2),

for all Y, Z € s. It follows that the flat connection V associated to the
cusp as in Section [/.]] defines left-invariant vector fields on S or, rather,
their image in I'\\S to be V-parallel.

Let Ky be a connected Lie subgroup of the orthogonal group SO(s)
which contains the holonomy group of S at e. Denote the Lie algebra
of Ky by £. Consider the principal bundle Py := S x Kj over S, with
structure group Ky, where we view p = (s, k) € Py as representing the
frame Lyok : T,S — T,S of S, where L, denotes left-translation by s
(and its derivative). This interpretation corresponds to an embedding
of Py into the principal bundle of orthonormal frames of S. The group
S acts on Py by left translation, s(s', k) := (ss', k), and the orbits of
this action are the left-invariant frames Fy := {(s,k) | s € S} over S.

LEMMA 8.12. The Levi-Civita connection ¥V and flat connection V of
S reduce to Py. That is, if ¢ : I — S is a smooth curve and F' is a
parallel frame along ¢ with respect to ¥V or ¥V such that F(ty) € Py for
some tyg € I, then F(t) € Py for allt € I.

Proof. Let F' be an orthonormal frame along ¢, and write F(t) =
Ly f(t), where f : I — O(s). Then the covariant derivative of F'
along ¢ with respect to V is given by

(8.13) F'(t) = Ly (f'(t) + Ao f (1)),
where
-1
8.1 gy o {R(T, W-1X) for X €n,
0 for X =T,

by (B.6) and (B.8). By (B.13), F is V-parallel if f'+ A.f = 0.

Now R(Y, Z) is in the Lie algebra of the holonomy group of S at e,
for all Y, Z € s, hence also Ay, for all £ € I. Since K, contains the
holonomy group of S at e, we get that Ay € € forall ¢ € I. It follows
that a solution of f'+ A.f = 0 is contained in Ky if f(¢o) is in Ky, for
some ty € I. This proves the assertion for V.

By what we said above, a frame is V-parallel if and only if it is left-
invariant under S. Hence the V-parallel frames along ¢ are of the form
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F(t) = Legyk, t € I, where k € O(s). Hence, if F(ty) € Py for some
to € I, then k € Kj, and then F' = F}, is contained in P,. O

Let K — Ky be a covering homomorphism, where K is a connected
Lie group, and let P := S x K be the corresponding covering space
of Py, a principal bundle over S with structure group K. Via the
projection K — K, identify the Lie algebra of K with the Lie algebra
£ of K. As in the case of Py, S acts by left translations on P, and we
have the corresponding orbits Fy, k € K. Moreover, since P — Py is a
covering projection, Levi-Civita and flat connection lift from P, to P.

Denote by @&, : & — u(X;) the composition of the differential of
a: K — Ky C SO(s) with the differential of the spinor representation
¥, of so(s) ~ spin(s). Let V be a finite dimensional Hermitian vector
space and 7, : € — u(V') be a unitary representation. Suppose that
there is a unitary representation g : K — ¥, ® V with

and let £ =P x3 (X, ® V) be the associated Hermitian vector bundle
over S. Levi-Civita and flat connection on P induce Hermitian connec-
tions V¥ and V¥ on E, respectively. We extend Clifford multiplication

to Xs @ V by
(8.16) X - (u®v):=(X u)®uv,

where X € 5, u € 3, and v € V. By (B.I9) and since K is connected,
Clifford multiplication commutes with 3, that is

(8.17) pk)(Xw) = X (B(F)w),

forall k € K, X €5, and w € 3; ® V. Hence (B:If) induces a Clifford
multiplication on F which turns E into a Dirac bundle over S. The
canonical action of S on F preserves the Dirac data of F; we say that
E is a homogeneous Dirac bundle over S.

Using the left-invariant orbit F, in P, we view sections of E as
smooth maps o : S — ¥, ® V. In this interpretation, covariant deriva-
tives and Dirac operator are given by

(8.18) Vo = X(0)+ B.(Ax)o, Vieo = X(0),

and

8.19 Do = X (X; W(Ax.)o),

( ) g Zj J ( J<0>+ﬁ< X])U>

where X is a vector field on S, (Xj,...,X,,) is an orthonormal frame

of S, and Ay is as in (8:14). In particular, o is VZ-parallel if and only
if o is constant.
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Let 7 be a unitary representation of I' on V| the twist, and assume
that 7 and m, commute, that is,

(8.20) T(Y)m(Y) = m(Y)7(7),
forallyel'and YV € &

LEMMA 8.21. Extend T by the trivial representation on ¥ to X5 @ V.
Then T commutes with 5 and Clifford multiplication,

T(M(BER)w) = (k) (r(v)w),
T(7)(Xw) = X(r(7)w),
forallvel', ke K, X €s, andw € X, ® V.

Proof. Since K is connected, the first assertion follows from the cor-
responding infinitesimal properties in (B.13) and (B.20). As for the
second assertion, we note that 7 acts trivially on the first and Clifford
multiplication trivially on the second factor of ¥, @ V. O

By Lemma B.21], 7 induces a Hermitian bundle E, over I'\\S such
that sections of E. correspond to maps o : S — s ® V which satisfy

(8.22) o(ys) =7(7)a(s),
for all s € S. The connections V¥ and V¥ on E descend to Hermitian
connections on E,, also denoted by V¥ and V¥, respectively. More-

over, F, inherits Clifford multiplication from E and thus turns into a
Dirac bundle over I'\ S.

EXAMPLES 8.23. 1) (Spinor bundles) Since S is contractible, spin struc-
tures over ['\\S' are determined by homomorphisms 7: I' — {+1, —1}.
In our setup, the corresponding spinor bundles over I'\\S can be given
by the data: Ky = SO(s) and K = Spin(s), « : Spin(s) — SO(s) the
canonical covering map, V = C, m, = 0, § the spinor representation,
extended trivially to the factor C of ¥;®C, and finally the twist defined
by 7, where 7 acts by multiplication with 7(v) = +1 on C.

2) (Clifford bundle) If m is even, then Cl(s) = ¥; ® ¥,. Thus, to
obtain the Clifford bundle over I'\S, we may take K, = K = SO(s),
a =id, V =X, B, the differential of the spinor representation, and 7
the trivial representation of I' on ;.

If the dimension m of S is even, then the +1-eigenspaces X ® V of
multiplication by the complex volume form (compare Section P.9) are
invariant under (3, by (B.I7). By Lemma B.21], they are also invariant
under 7. Thus the complex volume form yields the super-symmetry
E =FE*® E~ with

(8.24) Ef=Pxs(3fxV).
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In the case of the Clifford bundle, there is another natural super-
symmetry, namely the even-odd decomposition. Our methods also al-
low for a discussion of the latter, but here and below we concentrate
on the decomposition given by the complex volume form.

We now pass to the Dirac system associated to the distance function
f and the Dirac bundle E, over I'\'S. We identify sections of E. over
{t} x T\N with maps 0 : N — ¥, ® V satisfying (B:29). Under this
identification, parallel translation along the T-lines is the identity, and
the Hilbert space L*({t} x T'\N, E,) corresponds to the Hilbert space
of measurable maps N — ¥, ® V satisfying (§:29) which are square
integrable over a fundamental domain of T'. In the notation of (8.44),

ke K
(8.25) Ao = — Z e ITX ;- X(0) — Z TX;Bu(Ax,)o = 50,
2<j<m 2<j<m
where (Xo,...,X,,) is an orthonormal basis of n consisting of eigen-

vectors of W, WX, = k; X;.

We may also have a different view on I, over {t} x I'\N: L) is an
isometry of S which maps N to {t} x N and which leaves the normal
field T' to the cross sections {t} x N invariant. Suppressing the coordi-
nate ¢ in {t} x N, Ly, corresponds to ®;, by (B3). That is, £ over
{t} x '\\N corresponds to Eg, q-1 over o, (T')\N, where N is endowed
with the fixed left-invariant metric g. Under this correspondence, the
exponential factors in the expression for A; in (8:29) disappear. More
precisely, —A; corresponds to the Dirac operator

(8260) D= > TX; Xj(0)+ > TX, B(Ax,)o + oo,

2
2<j<m 2<j<m

where o satisfies the twist data with respect to ®,7®;*. In particu-
lar, the local data for the different operators D, coincide under the
correspondence.

8.1. Asymptotic n-Invariants. Let L>*(t) be the Hilbert space of
measurable maps N — X ®V satisfying (B.23) with respect to ®;7®;*
which are square integrable over a fundamental domain of ®;(I"). Then
Df = —AF is an unbounded self-adjoint operator on L*>*(t).

For the computation of the asymptotic high energy n-invariant of
D;, it will be useful to consider the flat Dirac operator D, defined by

(8.27) Djfo = Zzggm TX; - X;(0).

We note that D;" is a formally self-adjoint operator and that D;f — D}t
is left-invariant of order zero. In particular, the principal symbols of
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D} and D;" are the same. We have
(8.28) (Df o =0c+ >

If n is nilpotent of rank at most two, then the Lie brackets [X;, Xj]
in the second term on the right are in the center of n, and then the
operator defined by the second term commutes with A.

The idea to consider D; is taken from [DeSi]. The proof of our
main result in this direction, Theorem below, is a variation of
arguments in §5 of [DeSi]. This line of reasoning was also used by
Cheeger and Gromov in order to show that their p-invariant is the limit
of the (signature) n-invariant under a collapse of the corresponding
manifold with bounded covering geometry [ChGi].

k:XJXk . [XJ,Xk](U)

2<)

THEOREM 8.29. For D and D} as above, we have

lim 7**(D;") = lim n(Df),
Proof. For all sufficiently large ¢, the kernel of the operator D" consists
precisely of the left-invariant sections in L**(t), by Theorem [[-1§. Let
P, : L*>*(t) — L**(t) be the orthogonal projection onto this space.
Then P, commutes with D;" and D, where we write D;’r .= DS —D}.

t,cy
For fixed t, consider the family of operators

By definition,
n(Dfy) = 1"(Df) + dimim P,
n(Dyy) = n(Df) + dimim P;.
The non-zero eigenvalues of D; tend to infinity as ¢ tends to oo,
whereas D;fc is uniformly bounded independently of ¢. It follows that
D;Lu is invertible, for all sufficiently large t. Now by Proposition 2.12
in [APS3 and the invertibility of D;’u,
d
—n(DF
dun( t,u)

is a local invariant[[, given by an explicit integral formula constructed
out of the complete symbols of D, and (I — P,)D; (I — F;). On the
other hand, P, is (infinitely) smoothing, and hence the complete symbol
of D, and (I — P,)D;{ (I — P,) are the same as those of

Liy = Df +uD}, and Dj,.

101y [APS3J] this assertion is only stated for the n-invariant modulo Z. However,
as is clear from the remarks preceding Proposition 2.12 in [[APSJ], this is only
because of the possibility of eigenvalues crossing 0, which is excluded by invertibility.
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Now the symbols of L, and D/, do not depend on ¢, by (8:2d) and
(B27). It follows that the local invariant for dn(D;’,)/du is bounded in
modulus by a continuous function b = b(u) which does not depend on
t. Therefore we have

n"(Df) = n(D)| = [n(D) — n(Dy)l
< const - vol(®,(T')\N) — 0. O
The fact that the high energy n-invariant has no spectral flow is

perhaps an indication that its limit deserves to be investigated along

Ya

the lines of the discussion of the p-invariant in [ChGi.

8.2. Vanishing of n-Invariants. Let Z belong to the center of n.
LEMMA 8.30. Clifford multiplication with Z commutes with (D)2,

Proof. We can assume that Z has norm one. Choosing X, = Z, then,

in the second sum on the right in (B.2§) above, the terms with i = 2
vanish since Z commutes with all the X;, ¢ > 2. O

THEOREM 8.31. If the center of N has dimension at least two, then
the spectrum of D;, including multiplicities, 1s symmetric about zero.
In other words, the eta function of D vanishes identically.

Proof. Choose orthonormal vector fields Z and Z’ in the center of n
and let W, be the eigenspaces of the involution iZ in ¥} ® V for the
eigenvalues +1. Since (D;)? commutes with iZ, see Lemma B.30, it
leaves the spaces of sections with values in W, and W_ invariant. In
particular, if A\ > 0 is an eigenvalue of (D;)? and S()\) denotes the
corresponding eigenspace of sections, then

S(A) =S (N @S-(N),

where S;(\) and S_(\) consist of eigensections in S(A\) with values in
W, and W_, respectively.

We note that S()\) is invariant under D;f and that D;" has eigen-
values v\ on S(\). Furthermore, the multiplicities of v A and —v/A
as eigenvalue of D} coincide if and only if the trace of D} on S(\)
vanishes.

We let Xo = Z. Then X;W, =W_ and X;W_ =W, for 3 <i <m,
and hence the corresponding terms of D;” do not contribute to the trace
of D;" on S()\). Now the remaining term X, - X(0) = Z- Z(0) of D} o
leaves S()\) invariant, and its trace on S()) is equal to the trace of D}t
on S(A), by what we just said.
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Clifford multiplication with Z’ leaves S()) invariant, by Lemma B.30.
On the other hand,

Z-2(Z'0)=7Z- (7" Z(0) = =2 - (Z Z(0)),

that is, the involution 7’ anticommutes with the operator which sends
o to Z-Z(o). Tt follows that the trace of D;f on S(\) vanishes. O

COROLLARY 8.32. If the center of N has dimension at least two, then
the asymptotic high energy n-invariant lim,_,o n"(A;}) = 0.

Proof. Recall that A" = —D;" and apply Theorems B:29 and 31 O

9. »-INVARIANTS FOR HEISENBERG MANIFOLDS

The only simply connected nilpotent Lie groups of rank two not
covered by Theorem B.3]] are the standard Heisenberg groups N = G,
where here m —1 = dim N = 2n + 1; see Appendix [A] for notation and
definitions. In this chapter, we study the n-invariant of the operator D;"
as in (B.27). The solvable extension S of N = G,, as in Chapter § and
the connection V¥ do not enter in this discussion. We recall though
that ¥F ~ 3, where n denotes the Lie algebra of G,, and where Clifford
multiplication with X in 3, corresponds to Clifford multiplication with
TX in X}, for all X € n. This should be kept in mind, see e.g. (0.4).

Let T" be a lattice in G,, of type d and set

(9.1) I :=d; - dy,

following the notation in [GoW]]. It is clear from (A7) that there is
a smallest s > 0 such that ¢ := exp(s®’Z) is contained in T' and that
¢ is a generator of the center of I'. The automorphism ®(x,y,z) =

(sz, sy,s%2) of G, maps expZ to (, and, therefore, we may assume
that

(9.2) (=expZ

generates the center of I'. For any left-invariant Riemannian metric
on G,, N = T'\G, is a Riemannian submersion over a flat torus with
closed geodesics as fibers, given as orbits of the one-parameter group
generated by Z. By our normalization (P.2), the length of the fibers is
given by |Z|.

Let 7 be an irreducible unitary representation of I'; on a finite di-
mensional Hermitian vector space V' as in Appendix [ and extend 7
by the trivial representation on 3, to £, ® V' as in Chapter §. Recall
from Appendix [ that ¢ acts by multiplication with exp(2mic) for some
c=c(r) €0,1) N Q and that

(9.3) dimV = d(c,d) :=mq - -my,
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where d = d(I') and m; is the denominator of ¢d;. In the notation
of this chapter, and in terms of an orthonormal frame (£};) of G, we
study the unbounded operator

(9.4) Do =Y E;- Ejo0),

in the Hilbert space L?(7) of measurable maps G,, — 3, ® V satisfying
(B-23) which are square integrable over a fundamental domain of I' =Ty
in the Heisenberg group G,,.

Before stating the next result, we recall the definition of the Hurwitz
zeta function, for ¢ > 0 and Re s > 1 given by the infinite sum

(9.5) Co(s) = ((s,¢) = ZM(;{; o).

We have (; = (, the Riemann zeta function. We also set (4 = (.
For each ¢ > 0, (. can be extended to a meromorphic function on the
complex plane, defined for all s # 1, and with a simple pole at s = 1,
where the residue is equal to 1.

It is maybe interesting to note that, for 0 < ¢ < 1,

(96) Cc(s) - gl—c(s) and CC(QS) + Cl—c(zs)
are the eta and zeta function of the operator id/dt and —d?*/dt?, re-
spectively, on the Hermitian line bundle over R/277Z with twist e,

THEOREM 9.7. Endow G,, with a left-invariant Riemannian metric, let
I' be a lattice in G,, such that ( = exp Z generates the center of I', and
set v = 1/|Z|. Consider a Clifford module ¥, ® V' as above and let
¢ =¢(7). Then we have, for all s € C with sufficiently large real part,

(1) n(D,s)=TldimV(2rr)~*(Ce(s = n) = Gi—e(s —n))
if n is even

(2)  n(D,s)=—[T[dimV(27mr)"*(C(s — n) + Gi-c(s — 1))
if n is odd.

We conclude that, under the assumptions of the above theorem, the
eta function of D is holomorphic if n is even and is meromorphic with
a simple pole at s = n+ 1 if n is odd. We also see that the n-invariant
n(D) =n(D,0) of D only depends on n, the type of ', and c.

Proof of Theorem[9.]. The main argument in the proof is modeled
along the lines of the proof of Proposition 4.1 of [DeS]]. We rely on the
discussion in Appendix [A]l For w = ¢ modulo integers, we let

(9.8) L*(r,w) = {o € L*(1) : o(x,y, 2+ t) = ¥™o(2,y,2)}
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and get an orthogonal decomposition
(9.9) L*(7) = Byp=cL*(T,w),

where L?(7) is the Hilbert space of measurable maps G, — %, @ V
satisfying (B-2) which are square integrable over a fundamental do-
main of I' = I'y in G,, as above. Since the spaces L?(7,w) are invariant
under D, the eta function of D is the sum of the eta functions of the
restrictions of D to the different L?(7,w). Thus we can consider the
latter separately.

There are two cases, w = 0 and w # 0. As for w = 0, we note that
Z(o) = 0 for any ¢ € L*(7,0). Hence the unitary involution wy of
L?(7,0) given by Clifford multiplication with irZ anti-commutes with
D. Hence the spectrum of D is symmetric about 0, and, therefore, the
eta function of D on L%(7,0) vanishes identically.

Suppose now that w # 0. We want to apply the results from Appen-
dix [A] and note, to that end, that the spaces L?(7) and L?*(7,w) here
are isomorphic to the corresponding spaces there, tensored with >2,.

It follows from the discussion in Appendix [A] that, except for the
determination of multiplicities, the particular lattice does not enter
into the discussion. By what we explain in Subsection [A.3, we can
assume that

(910) T1X1,7’1Y1,...,Tan,TnYn,TZ

is an orthonormal basis of the given left-invariant metric on G,,. Then

(P3) turns into
(9.11) Do= > ri(X;(0) +Y;(0)) +rZ(0),

1<j<n
and (B.2§) turns into
(9.12) D?*c = Ao + Z T?Xij - Z(o),
1<j<n

where o € L*(,w) is smooth.

We let w;, 1 < j < n, be the unitary involutions on ¥, ® V' and
L?(1,w) given by Clifford multiplication with ir]?Xij, respectively.
Then

(9.13) Yn = Peef1,—1}7 2,
where

(9.14) Ye={oeX,:wjo=c¢joforall 1 <j<n}
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Now the unitary involutions w; commute with A. Thus on
(9.15) L*(1,w,€) := {o € L(r,w) : ¢ has values in ¥, ® V},
D? has eigenvalues
Mw, p,e) = Mw, p) + 2rw(rie; + -+ +1e,)
(9.16) = dr*w?r? + 27 |w| Z (2p; + 1 +¢; signw)r?

1<j<n
with multiplicity 2"mgd; - - - m,d,|w|", where p runs over all n-tuples
of non-negative integers, by (A.3§) and (A.39). For all p, we have

(9.17) Mw, p,e) > dr*w?r? > 0.

Let W be an eigenspace of D? in L?(,w) for the eigenvalue A, and
recall from Subsection [A.9 that W is independent of the parameter r
of the metric. Since D? commutes with the involutions wj, W has an
orthonormal basis consisting of eigensections of D? such that each of
them belongs to some L?(7,w,¢), where p and e satisfy

(9.18) S = 2m|w| Z (2p; + 1+ ¢;signw)r? = X — 4dr*w?r?,
1<j<n

by (P.16). Now Clifford multiplication by the unit vector rZ commutes
with D? and leaves the subspaces L?(7,w, ) invariant, whereas Clifford
multiplication by the unit vectors r;X; and r;Y; maps L*(1,w,¢) to
L?(1,w,6) for § # . Hence using an orthonormal basis of eigensections
of W as above, we see that the trace of D on W is equal to an integral
multiple k27wr of 2rwr. On the other hand, the trace of D on W is
also equal to [v/\ for some integer . Now 0 is not an eigenvalue of D?
on W independently of » > 0. Hence k and [ do not depend on r, and
we get an equality of functions of r € (0, c0),

(9.19) E*4n*wr® = PP (4n°w?r? + S)2.

If I = 0, then the eigenvalues +v/X of D occur with equal multiplicity
in W and, therefore, their contributions to the eta function of D on
L?(1,w) cancel. If [ # 0, then S = 0, since S does not depend on r.
But then, since w # 0, p; > 0, and €; = £1 for all j, we conclude that
Mw, p,e) = 4m*w?r? and that

(9.20) pr=:-=p,=0 and e, =---=¢, = —signw

for 1 < j < n. This will be denoted by p =0 and ¢ = — sign w.

To determine the contribution of the corresponding eigenspaces, we
note that, by our identification ¥, = X, Clifford multiplication by
1rZwy - - - wy is equal to the identity on ¥,. Since Clifford multiplication
with irZ commutes with Clifford multiplication with the w;, it leaves
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the subspaces Y. invariant and acts by multiplication with €, - --¢, on
them. Now Z (o) = 2miwo for any o in L?(7,w). Hence the eigenspace
for D? in L?(7,w) with eigenvalue \(w,0, —signw) = 47%w?r? is an
eigenspace of D with eigenvalue

2rwr  if n is even,
(9.21)

—27|w|r if n is odd,
and dimension my ...myd; ...d,|w|" = |I'|dim V. Thus, for all s € C
with sufficiently large real part,

(9.22) n(D,s) = |T|dim V (27r)~* Z sign(w)|w|"~*

w=c, w#0
if n is even and

923 9(D,s) = —[ldimVm) " Y fuln

w=c, w#0

if n is odd. U

We apply the results of this chapter to Dirac operators on homoge-
neous vector bundles over complex hyperbolic cusps of complex dimen-
sion n. Such cusps are homogeneous in the sense of Chapter §, where
the nilpotent Lie group is given by the Heisenberg group N = G,,_; of
dimension 2n — 1 and I' C GG,,_; is a lattice. In our formulas above we
therefore need to substitute n by n — 1.

COROLLARY 9.24. In the sense of Chapter |§, suppose that a complex
hyperbolic cusp is determined by a lattice I' C G,,_1 and that the homo-
geneous Dirac bundle over the cusp is given by unitary representations
7. of u(n) and 7 of I on a Hermitian vector space V.. Assume that V
is irreducible as a joint u(n) and I' module. Then the twist parameter
c of T is well defined and

lim 7" (47) = (~1)"[C]dim V(G = n) + (~1)"Gue(l — n)).

Proof. We recall that A; = —D;, see (B.45). By Theorem .29, we have
limy oo 7¢(D;7) = limy_,o n(D; ). Now the operator D, corresponds
to the operator D considered above, where the left-invariant metric on
G, comes from the cross section {t} x N in S. Since V is irreducible
as a joint u(n) and I' module, it is a direct sum of isotypical irreducible
representations of I' as used in Theorem P.7 so that the number c is
the same for each summand. Hence Theorem P.7 applies and shows

that n(D;") does not depend on ¢ and that it is given by the formula
in Corollary p.24 g
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EXAMPLE 9.25. Spinor bundles as in Example B.23 are given by the
trivial representation of u(n) and classified by twists 7 : I'y — {+1, —1}.
Since 7(¢) = £1, we have ¢ = 0 or ¢ = 1/2. Hence the asymptotic high
energy n-invariant of A, vanishes identically if n is odd. If n is even
and ¢ = 0, then

(9.26) lim 7"(47) = 2[T)¢(1 — n),

which agrees with Proposition 4.1 in [DeS]] in the case T' = Lo,
considered there (with a different choice of orientation). If n is even
and ¢ = 1/2, then

(9.27) lim (A7) = 227" = DITIC(L = n),
where we use that (i/2(s) = (2° — 1)((s). Recall also that
(9.28) ¢((1—=n)=—B,/n,

where B,, denotes the n-th Bernoulli number.

10. Low ENERGY 7)-INVARIANTS

10.1. General Remarks and Computations. We return to the sit-
uation and notation considered in Chapter § and let £ = P x5 (X, @ V)
be a homogeneous Dirac bundle over S. As in Chapter P, we view sec-
tions of ET as smooth maps o : S — X, ® V.

The vector field T is left-invariant and a global unit normal field
along the hypersurfaces N; := {t} x N of S. In accordance with this, we
choose frames (X1,...,X,,) of S to be left-invariant and orthonormal
with X7 =T. Then X,, ..., X,, are tangent to the hypersurfaces V;.

Let I' C N be a lattice, 7 : I' = V be a unitary representation, and
E. be the induced Dirac bundle over I'\S = R x (I'\ V). Then we have,
for any t € R, the orthogonal decomposition

(10.1) L*(Ny, EX) = H ' (A,) @ H™T(A,),

where H'®%(A;) is the space of constant maps N; — X7 ® V| compare
Chapter [] and, in particular, (7.21)).

PROPOSITION 10.2. If V' s irreducible as a joint € and I' module and

T 18 mon-trivial, then the low energy spaces ng’Jr(At) are trivial and,
therefore, n'°(Af) =0, for all t € R. O

Thus the low energy n-invariant can only be non-trivial when 7 is
trivial. We refer to this as the untwisted case and assume for the rest
of this section that we are in this case, whether V is irreducible as a ¢
module or not. Then the space H'®*(A;) is isomorphic to X @ V| by
identifying constant maps with their respective values.
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For o € H'**(A;) and with Ax as in (B14)), we have
K
(10.3) Dfo= ) TX;-B.(Ax,)o+ 50,

2<j<m 2
by (B:29), where we recall our convention X; = 7. Our objective in
this chapter is the n-invariant of D;” on H'(A;"). We view elements of
H'T(A;) as constant maps on S. Then H'®*(A;) becomes independent
of I'and t. By ([0.3), D;” does not depend on ¢ either. As a shorthand,
we will write

(10.4) HY for H*%(4;) and DY for D/
Recall that 8, = &, ® id +id @, by (B-I7), and that

(10.5) G (Ax) = % D (Vx Xy, Xi) X X
1<j<k<m

where X; X, stands for Clifford multiplication by X;X;. With our
convention X; = T, ([0.3) turns into
(106)  au(Ay) = STVAT + 3 e (VX X)X X
It follows that (.§) and (R.9) define the Dirac structure on E associated
to the Riemannian metric of V.

Choose an orthonormal frame (Xo, ..., X,,) of n such that [X;, Xj]
is contained in the linear hull of the X; with [ < min{j, k}. On HY,
we then obtain

8D —8) TX; ®m.(Ay,)

Jj>2

= 4 Z TXj(VXij,Xl>Xle
j>2<k<l

= -2 Z TX j, Xk,XlD + <Xl€7 [XjaXlD)Xle
j>2<k<l

= =2 ) T[Xp, XXX, =2 ) TX;[X;, X)X,
2<k<l 2<j,l

- 222<j<kT[Xj’Xk]Xij

where we use the Koszul formula and where we note that X, is central.
We now come to our main example, the case where NV is of Heisenberg
type. That is, we are given an orthogonal decomposition

(10.8) n=j3+r,
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where 3 is contained in the center of n, and a linear map J from 3 into
the space of skew-symmetric endomorphisms of ¢ such that the Clifford
relations hold,

(10.9) oIz, + Iz, 2, +2(Z1, Zy) = 0,

for all Z1, Zs € 3. Moreover, the Lie brackets of vectors in ¢ are con-
tained in 3 and satisfy, by definition,

(10.10) ([ X1, Xa|, Z) = 2¢(J2 X1, Xa),

for all X;, X5 € r and Z € 3. Here ¢ > 0 is some chosen constant and
the derivation W is defined to have ¢ and 3 as eigenspaces with —c and
—2c¢ as respective eigenvalues. This normalization has the following
amazing formula as a consequence.

LEMMA 10.11. For all Z € 3 and X € r, we have
R(Z,X)=R(JzX,T).

REMARK 10.12. If N is the standard Heisenberg group of dimension
2n + 1, then S is isometric to the complex hyperbolic space CH™ ! of
dimension 2n + 2 with sectional curvature in [—4c?, —c?] and complex
structure J with JT' = Z and such that J coincides with Jz on N. In
this case, the equation in Lemma is a special case of the more
general R(JU,V) = —R(U, JV') which says that the curvature tensor
of CH""! is a differential form of type (1,1).

Proof of Lemma [[0.11. By straightforward computations, using (B.7),
E3), ([0), and ([0.10). 0

Let Z € 3 with |Z] = 1. Then J is an orthogonal complex structure
on r. In particular, the dimension of ¢ is even, and we denote it by 2n.
Moreover, there is an orthonormal basis (Xi, ..., Xs,) of ¢ such that
JzX9;-1 = Xyj, for 1 < j < n. Given any such basis, set

C
(10.13) Dz =3 ZKM TZXoj 1 Xoj +TZ @m.(Ay).
Observe that, for any orthonormal basis (Y7,...,Ys,) of r,
1
D, = S ijqyj, Vi, Z2)TZY, Yy + TZ @ m.(Az)
C
(10.14) = Zj (J2Y; Yi)TZY Yy + TZ @ m(Az)

C
=3 Zj<k<JZYj, ViIVTZY;Yy +TZ @ m.(Az)

In what follows, let {A, B} := AB + BA.
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LEMMA 10.15. For any X € ¢, we have

{Dz,TX @ m.(Ax) +TJz X @ m.(Ay,x)} =0.
Proof. We have cAx = R(X,T), by (B.§), and hence
(10.16)  e{TZXJ,X,TX ® 1.(Ax)} = 22X @ 7. (R(X, T)).
By substituting JzX for X in ([0.1g), we obtain
(10.17) {TZXJ,X, TJ;X @ 1Ay x)} = —2ZX @ m(R(J; X, T)).
We also have [Z, X] = 0, hence [Az, Ax] = R(Z,X). Furthermore,
R(Z,X)= R(JzX,T), by Lemma [[0.T1], hence
(10.18) {TZ @7 (Az), TX @ m.(Ax)} = ZX @ m.(R(Jz X, T)).
By substituting JzX for X in ([[0.1§), we obtain
(10.19) {TZ@m.(Az), TIz X @M (As,x)} = —ZJz Xm(R(X,T)).

Moreover, we have

(10.20) {TZY JzY, TX @ m.(Ax)}
= {TZYJ2Y, TJzX X W*(AJZ)()} = 0,

for all Y € ¢ perpendicular to X and JzX. Now we may assume that X
is of norm 1. Then there is an orthonormal basis (X3, . .., Xs,) of r such
that JzXijl = XQJ', for 1 < j < n, and such that X = Xl- By (),
the terms of Dy involving T'ZX5;_1 X5, j > 2, do not contribute to
the anti-commutator {Dz, TX ® m.(Ax) +TJzX @ m.(As,x)}. The
four remaining terms cancel pairwise, by ([0.16)([0.19). O

For an orthonormal basis (X7,..., Xs,) of ¢, set
(10.21) D, :=TX, @m(Ax,) + -+ TX2, @ m(Axs, )
and note that D, does not depend on the choice of (X, ..., Xs,).
REMARK 10.22. If 3 = 0, then n is Abelian and we are in the case of
real hyperbolic spaces or cusps, respectively, and we get DY = D, on
HY. The contribution of cusps in the case dim N = 1 follows easily
from the more general discussion in [BBJ]. If dim N > 2, then the

arguments in the proof of Theorem apply and show that the low
energy n-invariant vanishes.

LEMMA 10.23. For any unit vectors Z € 3,
{DZ7 DF} = 0.

Proof. Apply Lemma [[0.15, using an orthonormal basis (X7, ..., Xs,)
Ofx with szgjfl = X2j, for 1 S] <n. ]
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Assume from now on that 3 # 0, compare Remark [[0.23. For an
orthonormal basis (71, ..., Zy) of 3, set
(10.24) Dy =Dz, + -+ Dy,
and note that D does not depend on the choice of (Z1,..., 7).
COROLLARY 10.25. On HY, we have
DY =D,+D, and {D,,D;}=0. O
PROPOSITION 10.26. On HY, we have
(1) ker(DY) = ker D, Nker Dy,
(2) (D) = 1(D;) = n(D;er ,)-
Proof. By Corollary [[0.29, (fl) is clear and
(D) = 1(Dslier p,) + 1(Deler 0, )
1(Dslker p,) = 1(D5),
1N(Dlxer p,) = 1(Dy)-

Now D, anticommutes with the involution 7'Z; of ¥* ® V, hence
n(D,) = 0, hence (B). O

10.2. Contribution of Complex Hyperbolic Cusps. We represent
complex hyperbolic space CH™ as in Section P.3. For any X € su(1,n),
we write X = X?+ X* with X* € p and X* € € = u(n). We recall that,
after identification of p with the tangent space of CH™ at the point
fixed by U(n) as usual, we have
for all X, Y, Z € p.

Let X € n. By (R.33) and (R.33), we have [T, X] = —W X and hence
(10.28) [T, X" = -(WX)".

Using (B.g), the identification S ~ CH" as in (R.37), and ([[0.27), we
obtain therefore that

(10.29) AwxY = R(T, X")Y® = —[[T, X*],Y*] = [(WX)", Y]
Since W is invertible, we conclude that, for any X € n,
(10.30) Ax = X"

With « as in (R.30), we let d. : u(n) — u(X) be the composition of
the differential «, of a with the differential of the spinor representation
of so(p) ~ spin(p) on ¥ := ¥,. Following Chapter §, we choose K =
U(n) and let 7, be a unitary representation of u(n) on a Hermitian
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vector space V. We assume that there exists a unitary representation
g of K=U(n)on X®V satisfying (B.15) and get the associated Dirac
bundle E over CH". Clifford multiplication by the complex volume
form we determines a super-symmetry £ = ET @ E~, and this super-
symmetry is induced by the corresponding decomposition ¥ = X T@X .

To distinguish it from multiplication with ¢ in C"* ~ p, we denote the
complex structure in Cl(p) by v/—1. With the corresponding changes
in notation, we follow Section B.3 and set

(10.31) wj = V-1XIYP 1< <n,

where Xy = T\Y) = Z, X5, Ys, ..., X,,, Y, are as in (£4])). By the
discussion in Section R.9, we have

(1032) 2+ = ®6€{71,1}”_12j7
where
(10.33) S5 i={oce Xt :wjo=¢ofor2<j<n}

Since X; commutes with wy for £ # j and anti-commutes with w;, all
the subspaces 3. are isomorphic. In particular, for all e € {—1,1}"71,

(10.34) dim ¥ = dim ¥ /card{—1,1}""! = 1.

For any € € {—1,1}""!, let v(e) € {0,...,n — 1} be the number of j
with ¢; = —1, for 2 < j <n. Then

(10.35) St =@3f, where I = @,y

By definition, w¢ acts as identity on X7, hence w; = wy - - w, on XT.
Therefore

(1036) Z+ = Bk evenzl—: and Z:dd = Dg Oddz;:

even

are the eigenspaces of w; for the eigenvalues 1 and —1, respectively. In
passing we note that the left side of ([[0.3%) gives the decomposition of
Yt into irreducible representations of the stabilizer of T in U(n), by
work of Camporesi and Pedon, see [CamP], Lemma 3.1].

We recall that the complexification of u(n) is gl(n,C), where the
complex structure of gl(n,C) is given by multiplication of matrix coef-
ficients with i. The space h C gl(n, C) of diagonal matrices is a Cartan
subalgebra of gl(n,C), and the roots

(1037) Pj (dlag(hl, ceey hn)) = hj
constitute a basis of h*. The associated Weyl group W of automor-
phisms of b leaves the set {p1,...,p,} invariant and acts on it as the

(complete) group of permutations. As usual, we choose
(1038) {h = diag(hl, e hn) : hj € R, hi > hg>---> hn}
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as positive Weyl chamber. The corresponding set of positive roots of
gl(n, C) is given by

(10.39) AT ={pj—pr:1<j<k<n}

Irreducible complex representations of u(n) are classified by their high-
est weight A = Ajpj, where A is dominant, that is, Ay > Ag > -+ - >
An, and algebraically integral, that is, \; — A; € Z for all ¢,5. The
dimension of the corresponding representation space V) is

k?—j—)\k+>\j

(10.40) dim V3 = [ | - :

Jj<k

by the Weyl character formula. The irreducible representation with
highest weight A is induced by a representation of U(n) if all the A; are
integral. The representation « as above is the irreducible representation
of U(n) with highest weight (2,1,...,1) (and complex dimension n).

For the discussion of &,, we identify p = R?® and ¥ = X,,. We
let (e1,...,e2,) be the standard basis of R** ~ C" with ey; = ieg;_1,
1 < j < n, and denote the complex structure of ¥y, by v/—1 as above.
For h = (ity,...,it,) in hNu(n), we get

1

@*(h) = Z Z €j (itjej —+ (Ztl + -+ itn)ej)
1<j<2n
1
(10.41) = —5V-1 Dttt 2 et t)w;

1<j<n

by the Parthasarathy formula [Pd, Lemma 2.1], where e; and w; stand
for Clifford multiplication by e; and w;, respectively. Hence the sub-
spaces >, of ¥, as in Section P.J are weight spaces. For 0 < [ < n,
we let V; be the sum over all 3. such that [ is the number of j with
€j = —1, that is, ey +--- +¢&, = n — 2[. Then V] is the irreducible
representation of u(n) with heighest weight

-1 1
i >)\l+1:"':)\n:l_n; )

(10.42) M =---=N\=1—
and is of dimension (7), in agreement with Weyl’s character formula.

As an example, we discuss differential forms. Since « is the irre-
ducible representation with maximal weight (2,1,...,1), the bundles
of differential forms of type (p,0) and (0, ¢) are associated to the irre-
ducible representations § of U(n) with maximal weights

(10.43) M==XAp=-DP>Aypr1 ==\ =—(p+1)
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and

(1044) A ==X =q+1>Ay1 ==X\, =4,

respectively. We see that the sum of the bundles of differential forms
of type (0,q9), 0 < g < n, is given by ¥ ® V,,, where V,, is as above.
That is, 7, is the one-dimensional irreducible representation of u(n)
with highest weight \; = (n +1)/2,1 < j <n.

REMARK 10.45. From ([0.43), we see that &, comes from a representa-
tion of U(n) if n is odd, and then the spinor bundle of CH™ descends to
quotients of CH™ by discrete subgroups of SU(1,n). On the other hand,
if éﬁ(l,n) denotes the non-trivial twofold cover of SU(1,n), then &
comes from a representation of the corresponding twofold cover U(n) of
U(n), for all n. Hence, if the discrete subgroup of SU(n) under consid-
eration admits a lift into SU(1, n), then the spinor bundle also decends
to the corresponding quotient of CH". A similar remark applies to f,.

We note that D; is an odd operator with respect to the grading
(10.46) STRVe=(Cha @ V) ® (S, © Vo),

even

whereas D; = Dy is an even operator.

THEOREM 10.47. With H* := ker D,N (X} ®V;) and by, := dim H*(7),
for0 <k <n-—1, we have

(1) ker D, = ©H*,

2) b= (n—Dldim Ve T I\ = Neps +k+1— 47,
1<j<n
J#k+1

(3) Dylgr = (—1)F(2k — 2X\py1 —n +1)/2.

Proof. Our proof relies on Kostant’s theorem, see [Kd] or Theorem
4.139 in [KnVd]. We start by describing an explicit model of ¥, compare
Chapter 5 of [Wi]. For 1 < j < n, let

1 1
(1048)  Fy:= (X} =v=1Y)) and B = 5 (X7 + V=1Y)),

As elements of Cl(p), they satisfy

for 1 <7 <mn, and
(10.50) FiF, = - F;, FiF, = —F.F;, F;F, = —FF;,

for 1 < j # k < n. We identify ¥ with the left ideal in the Clifford
algebra generated by F' = Fj---F,. Then the monomials F7F' over
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all 0 < k < n and multi-indices I = {iy,- -, i} with i3 < -+ < 4
constitute a basis of X.. The relations ([[0.49) and ([[0.50) determine an
isomorphism ¥ ~ A(C"), where C" is spanned by Fi,..., F,,. We have

_ FF ifjél
(10.51) w ppp = O ATEL
_FF itjel

so that, under the identification ¥ ~ A(C"),

s {Ak((C"_l) if k is even,
K

10.52 ~
( ) Fy AAF(C1) ~ AF(CnY)  if K is odd,

where C"! is spanned by Fy, ..., F),.
Recall that, by complexification, 7, induces a representation of gl(n, C).
Following the exposition in [LaM], §IV.8], we set

1

(10.53) Dy =3 > T(XP— VIV @ m (XS] +iY))
2<j<n
=2 ) TFom(By),
2<j<n
_ 1 .
(10.54) Dy = > T(XE+ V1Y) @ m (XS —iY))
2<j<n

2<j<n

where we note that factors v/—1 on the left and ¢ on the right of ®
multiply to —1 in the tensor product. Using ([[0.30), we have

(10.55)  D;=D;+D;, D,=D;, and D,D,=D,D, =0.
Moreover,

(10.56) D(Sf @ Vo) C 5L, @ Ve and D(Sf @ Vy) C B, @ Vi
Hence ker D, is equal to the space of D,-harmonic cocycles of the
cochain complex

(10.57) - 550, 0V, 55 oV, 55, 0V, =5 -

This shows the first assertion of the theorem and that ker D, is isomor-
phic to the cohomology of the complex. Moreover, under the above
identification X7 = A(C"™1), we have

(10.58) Diw®v) =2 Y  (FjAw) @ m(Eyj)v.

2<j<n
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Following the notation in [KnVd], we consider the subalgebras u and [
of gl(n, C), where u is spanned by the Ey;, 2 < j <n, and

(10.59) [::{(g g) :xe(CandBEQI(n—l,(C)}.

Then q = [ @ u is a parabolic subalgebra of gl(n,C). By ([0.5§), the
kernel of the restriction of D, is isomorphic to H*(u, ), the Lie algebra
cohomology of u with respect to 7. Now Kostant’s theorem determines
the latter as an l-module, where [ € [ acts on A¥(u) ® V, by

(10.60) —ad(l)" ® id+id ®@m. (1),

see (4.138b) in [KnVd|. To apply Kostant’s theorem, we introduce
(10.61) Afu)={p—pj:2<j<n},

(10.62) AT ={pi—pj:2<i<j<n}

For w € W, we also introduce

(10.63) AT(w) :={A e AT :w A <0}, ((w):=]|AT(w),

and

(10.64) W= {weWw: At(w) C At(u)}.

Then W' = {wy, ..., w,_1}, where wy = id and
U2 T T |

(10.65) w; _(k+1 U )

for 1 <k <n—1. We note that ¢(wy) =k, for 0 < k <n — 1.
Kostant’s theorem implies that, as an [-module, H*(u, 7) is the irre-
ducible representation of [ with highest weight

(10.66) wy(A+8) — 6 =
(Aes1 — K)p1 + Z (Aj—1+1)p; + Z AjPi»
2<j<k+1 j>k+1

where ¢ is the half sum of the positive roots of gl(n,C),

n

1

(10.67) 5= §Z(n+1—2j)pj.

Jj=1

Moreover, the action of the &-component Z* ~ —iF) ; of Z on H*(u, )
is given by multiplication with

(10.68) ik — i\ = ik +id@n(ZY).
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In particular, id ®7(Zt) = —i\,,1. It follows that, on H*(u, ),
k1
2
which is the third assertion of the theorem. We have

(o, wp(A+6) — 0 + &)
(Oé,d[) ’

(10.69) D, =Dy = (—1)F 2 (2k — 2Xp1 — n + 1),

(10.70) b = dim H*(u,m) = ]
aEAT(I)

by Weyl’s dimension formula, where 4 is the half sum of the positive
roots of [,

n

1 ‘
(10.71) 8 = §Z(n+2—2j)pj.
j=2
The second assertion of the theorem is an easy consequence. O

We recall that A}fe’Jr corresponds to the operator —DY considered

above, see (B.49) and ([[0.4).

THEOREM 10.72. D is a Fredholm operator if and only if
21 #2k+1—n, forall0<k<n-—1.
Furthermore,
dim ker A" = Z b,
N (AF) = n(AST) =D (=1)fbesign(n — 1 — 2k + 2\41),

where the first sum is over all 0 <k <n—1 with 2\ =2k+1—n
and the second sum is over the remaining k. O

10.3. Examples. Before going into examples, we note that

(10.73) > (=1Fdim HY =Y (=1 dim (A* () @ V) =0,

a formula which is not a priori evident from the explicit formula for
the dimensions of the H*.

1) DIRAC OPERATOR on spinors: In this case, 7 is the irreducible
representation with highest weight A = 0 (where the spin structure
along the cusps is trivial). If n is even, D is a Fredholm operator,

that is, ker Allf”L = 0. Moreover, each cusp contributes a low energy
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n-invariant,

meAN) = Y (=DF(") sign(n — 1 — 2k)
=2 > DM

(10.74) 0<2k<n—2

=2 ) (=D +GD)

0<2k<n—2
= 2(-1)"7 (:3).

If n is odd, the low energy eta invariant of A" vanishes. Furthermore,
D is not a Fredholm operator and each cusp contributes to the kernel,

(10.75) dimker A" = (321).

2) DOLBEAULT OPERATOR on forms of bi-degree (0, ¢): In this case,
7 is the irreducible representation with highest weight \; = (n+1)/2,
1 <7 <n. We compute

(10.76) by = dim H*(m) = ("'
and

In particular, D is a Fredholm operator and 7'°(A4;") = 0.

3) SIGNATURE OPERATOR: In this case, 7 is the spin representation
> = 3, which is the sum of the irreducible representations V; with
highest weight as in ([[0.43), where 0 < [ < n. As for the dimension
b, of H*(u,V}), there are two cases:

™ (") ek if k<l
(1) (k—i—l Hi Pifk > 1
Furthermore, we have
B ES L) if k<,
(10.79) Delmiy = {(—1)k(/<; +1-10) ifk>1
Hence
(10.80)  7'*(AF) = > (=D () () 5E + DD () () M

k<l k>1

If we change [ in n — [ and k in n — 1 — k in the second sum, we obtain

(10.81) n°(A) =0 ifnisodd.
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For even n, we get

(10.82) neA) =2> (=D (H5E

k<l
For 1 <[ <n, we have

and )
YD E= T (M) = (=D
Hence ) )
neAN) =2 ()T M A0 E- ()}
=2 Y ()0 2 e (D) (D)

79

The first sum is zero since n is even. The second sum is the coefficient

ofz" in (1 —2)"(1+2)" 2= (1—-2)*(1—2*"? and hence
(10.83) e(AF) = 2(—1)71/2((’;;) _ (7;;;_21)).
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APPENDIX A. LATTICES IN HEISENBERG GROUPS

In this appendix we discuss lattices in the standard Heisenberg groups
G, of g = (x,y, z) with z,y € R, z € R, and multiplication

(A1) (2, y,2)(@, ¢, 2) = (v + 2",y + ¢, 2 + 2" + 2y)).
The left-invariant vector fields

0 0 0 0
(4.2) T 0z T Oy, T 5. " 0z

form a basis of the Lie algebra of GG,,. They commute pairwise, except
for the n Lie brackets [X;, Y] = Z.

Lattices in G,, are classified in [[GoW], Section 2]: Let D, be the set
of n-tupels d = (dy,...,d,) of natural numbers such that d; divides

div1, 1 <i < n. Then, for any d € D,,
(A.3) Ly:={(z,y,2) | z,y € Z", 2z € Z,d; divides z;}

is a lattice in GG,,. The isomorphism type of I'; is determined by d and,
up automorphism of GG,,, any lattice in GG, is equal to some ['y, d € D,,.
Fix d € D,,. The 2n + 1 elements

(A.4) ¢; = (dje;,0,0), ;= (0,e;,0), ¢:=(0,0,1)

generate I'y. They commute pairwise, except for the n relations

(A.5) ¢ﬂ/fj¢;11/1;1 = (% =(0,0,d;).

Let 7 be an irreducible unitary representation of I'y on a finite di-
mensional Hermitian vector space V. Since 7 is irreducible and ( is
central, there is a number ¢ € [0,1) with
(A.6) 7(¢) = ™.

Let A; := 7(¢;) and B; = 7(¢;), for 1 < j < n. Then, if X is an
eigenvalue of Bj, for some j and some eigenvector v € V/, then

(A?) B](AJ’U) = €727Ti6dj (AJBJAJ_l)(A]U) = 6727ri0dj)\14j1},

and hence e~2™% ) is an eigenvalue of B; as well. It follows that c is
rational, by the finite dimensionality of V.

Let m; be the denominator of cd;. Consider the sublattice I',,,4 C I'g,
where md := (mydy, ..., m,d,). Then

|Fd/rmd| =Mmq---Myp

and 7 restricts to an Abelian representation on I',,,4. By irreducibility,
7 is induced from a one-dimensional representation of I',,4. That is,
there are real numbers a4, 31, ..., a,, B, such that (ij and v; act on C
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by multiplication with e?™@ and e2™% respectively, and 7 is induced
from this representation of I',,4. In particular,

(A.8) dimV =m;---m,,.

For any n-tuple

(A9) b= (b,...,by) = (B + licdy,. .., By + lycd,) € R"/Z",

where (l1,...,1,) € Z", we let Vj, be the subspace of V' on which 9,
acts by €™ . We note that these subspaces Vj are one-dimensional
and pairwise orthogonal and that they span V.

A.1. Twisted Right Regular Representation. The set

(A.10) F:={(x,y,2) e G|z e P,(y,2) € Q},

where

P:={zeR"|0<z; <d;},

Q:={(y,2) eR" xR |0<y;,z <1},

is a fundamental domain of the action of I'y on G, by left translations.

Observe that, by ([A.2), the standard Lebesgue measure with respect

to the (x,y, z)-coordinates is left-invariant, hence bi-invariant, on G,,.
Fix an irreducible unitary representation 7 of I'y on a finite dimen-

sional Hermitian vector space V' as above. and consider the Hilbert
space L%(7) of maps o : G,, — V such that

(A.12) o(vg) =71(v)o(g)

for all v € I'; and g € G,, which are square integrable over F. The
right regqular representation p of G, acts unitarily on L?(7) by

(A.13) (p(g)o)(z,y, 2) = o((z,y,2)g),

and our next aim is to determine the multiplicities of the irreducible
unitary representations of G, in L?(7). Here we recall that irreducible
unitary representations of the Heisenberg group G, correspond to coad-
joint orbits of G,,, by the classical theorem of Stone and von Neumann
(or by the more general Kirillov theory, respectively). This correspon-
dence will show up in the following discussion.

Let 0 € L*(7). Then

(A.14) o (x,y, 2) = T(Q)o(z,y, 2) = o(x,y, 2+ 1).

Let o3, be the component of ¢ in V}. Then

(A.11)

(A.15) e igy(x,y, 2) = Bjoy(x,y, 2) = op(z,y + €5, 2).
The transformation rule with respect to A; is more complicated,

<A16> Ajo-b<x7 Y, Z) = O-bfcdjej (37 + djeju Y,z + d]y])
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By (AI4) and (A.13), we can develop o in a Fourier series,
(A.17) op(z,y,2) = Z eQﬂi(”ijwz)crU,w(x)

v=b
w=c

where = indicates congruence modulo Z". Fix a w congruent to ¢ and
consider the space L?(1,w) of o € L*(7) with
(A.18) o(x,y,z+1t) =™ a(x,y, 2),

that is, in the above Fourier development of the components o, of
o, only the terms with the given w occur. We obtain an orthogonal
decomposition

(A.19) L*(7) = @p=.L*(1,w).

Now the spaces L*(7,w) are p-invariant and, therefore, it remains to
investigate p on them. For o € L?(7,w), we have

u=b+cd;e;

= O'b<.§L’ —+ dj€j7 Y,z + djyj)
(Azo) 2miwd;jy;

= e gy (x4 dje;, Y, 2)

— 627ri((v+wdjej)y+wz)o_v’w (l‘ + djej)-

v=b

We conclude that, for any v = b and x € R",
(A.21) Tvtwdje;w(T) = Aj’lav,w(a: + d,e;).

There are two cases, w = 0 and w # 0, respectively.

If w=0, then w =c¢=0and dimV = 1. By (A.2]]), the Fourier
coefficients o, are d;-periodic in x; up to the twists by the complex
numbers A; of norm one.

Suppose now that w # 0. Then, by (A2])), the Fourier coefficients
Ouw With

(A.22) uw=>b+kier + -+ kpe,, 0<k;<|w|d;,

determine all the Fourier coefficients of . We also get

(A.23) ||U||%2(T,w) = Z ||Uu7w||%2(]R”,Vb)’

where the sum is over all u as in ([A.22). Here we recall that, on the left
hand side, the L2-norms are given by the corresponding integrals over
the fundamental domain F of I'; as in ([A.I0), whereas the integrals on
the right hand side are over Euclidean z-space. We obtain

(A.24) L*(1,w) 2 ®L*(R™, V),
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where we have mid; - - - m,d,|w|® summands L?(R",V}) on the right
hand side, namely one for each u as in (A.22).

To identify p on ®L*(R", V;) = L?(1,w), let g = (¢/, 1/, 2') € G,, and
recall (A1) and (A.T3). We compute

(A.25) e2miluy) s tay)) g (0 g o)

_ 627ri(uy+wz)627ri(uy’+w(z’+xy’))o_u7w (l‘ + l‘,),

hence g acts on o,,, € L*(R™, V}) by
A.26 Opw)(x) = 2T/ TwEtey)) g (gl
( p(g)o, ,

Via a unitary identification V;, = C and the substitution z + u/c for
x, we see that p on L*(R", V}) is unitarily equivalent to the irreducible
unitary representation p,, of G,, on L*(R™, C) with

(A.27) (pw(9) ) () = ™0 [z 4 2f).

This is the standard representation of G, associated to the coadjoint
orbit of linear functionals on the Lie algebra of GG,, which send Z to w.
Hence L?(7,w) is a corresponding isotypical component of p,, in L*(7).
By (A:22) and (A:23), the multiplicity of p,, in L*(7) and L*(7,w) is
(A.28) my|wl|dy - - -my|w|d, = |T'| dim V|w|".

A.2. Spectrum of Twisted Laplacians. Let w # 0. To determine
the spectrum of the Laplacian A, of a given left-invariant Riemannian
metric on L?(R", C) with respect to the representation p,, as in (A:27),
we follow the discussion in the proof of Theorem 3.3 of [GoWi]: With
respect to the given metric, there is an orthonormal basis

(A.29) Xy, XYY 7

of the Lie algebra of G, with Z' =rZ, r =1/|Z| > 0, such that
(A.30) X1, X[) = [XL, Y]] = [V, ¥{] = 0

for all j # k and such that there are numbers r; > 0 with

(A.31) (XY =riZ

The pull back of the metric under the automorphism ® of G,, with
(A.32) D, (r;X;) = X;, @u(rjY;) =Y, ®(2)=Z

is the left-invariant Riemannian metric on G,, for which the fields
(A.33) riX1, oot X, Y1, oo Y, 2

are orthonormal. Since ®,(Z) = Z, p,, o ® is still an irreducible uni-
tary representation of G, associated to the coadjoint orbit of linear
functions on the Lie algebra of (,, which send Z to w, hence p,, o ® is
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unitarily equivalent to p,,. In other words, we can assume without loss
of generality that the given left-invariant Riemannian metric on G,, has
an orthonormal basis as in (A.33). As for the Laplacian on L?(R", C)
with respect to p,,, we obtain

62
(A.34) A, = — Z r?@ + 4202 (7’2 -+ Z :cf'r’jz»),
1<j<n J 1<j<n
by (A.27). Now the Hermite functions
) 1+ +pn )
(A.35) hy(x) = exp(x /2)m exp(—z°),
where p = (p1,...,p,) runs over all n-tuples of non-negative integers,

form an orthogonal basis of L?*(R", C) and satisfy

d’h
(A.36) 22hy, — == = (2p; + 1)h,.

ox?

J

It follows that the functions f,(x) = h,(y/27|w|z) are an orthogonal
basis of L*(R™, C) and that they satisfy

(A.37) Ay fp = Mw, p) fp,
where
(A.38) Mw, p) = dr*w?r? + 27 |w| Z (2p; + 1)r3.
1<j<n
Thus, by (R:23), the multiplicity of A(w,p) in L?*(7,w) is equal to
(A.39) dy---dymy - -my|w|” = |T'| dim V]w|",

when counted according to the n-tuples p.
In our application of the above in the proof of Theorem P.7, we will
vary the parameter r = 1/|Z| of the metric, keeping

X1, T X, "Y1, . T Yn

orthonormal and perpendicular to Z. Then the above functions f, re-
main eigenfunctions of A,, in L?*(R", C) and the corresponding eigen-
values vary according to ([A-3§). Hence the eigensections in L*(7,w)
corresponding to the above eigenfunctions f, remain the same during
this variation of the metric and the corresponding eigenvalues vary

according to ([A.3§) as well.
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