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Abstract

This paper presents a heavy traffic limit theorem for the virtual
waiting time of a customer in multiphase queues. In this work, func-
tional limit theorem is proved for values of important probability char-
acteristics of the queueing system investigated as well as the virtual
waiting time of a customer.

Keywords: queueing systems, multiphase queues, heavy traffic,
probability limit theorem, virtual waiting time of a customer.

1 Introduction

One of the main research trends in the theory of queues corresponds to
the asymptotic analysis of formulas or equations, describing the distribu-
tion of one or another probabilistic characteristic of the queue. Kingman
(1961, 1962)) achieved the first results on the limiting behaviour of single
channel queues in heavy traffic. The single-phase case, where the intervals of
time between the arrival of customers are independent identically distributed
random variables and there is one single device, has been completely inves-
tigated in the well known papers (see, for example, Borovkov (1972, 1980)).
Functional limit theorems for a virtual waiting time of a customer in a single
queue are proven under various conditions of heavy traffic (see Kyprianou
(1971)). Functional limit theorems for the waiting time of a customer and
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queue length of customers in a multiphase queue are also proved under var-
ious heavy traffic conditions (see Minkevičius (1986, 1991)). In this work,
we will prove a functional limit theorem for another important probabilistic
characteristic of multiphase queues (virtual waiting time of a customer in
conditions of heavy traffic).

The virtual waiting time of a customer in every phase of the queue is
unlimited, and the service discipline is “first come, first served”. Denote ⇒
as a weak convergence of probability measures (see Billingsley (1968)). The
main tool for the analysis of a multiphase queue in heavy traffic is functional
limit theorems for renewal and compound renewal processes (the proof can
also be found in Billingsley (1968)).

Let us consider a k-phase queue. When a customer is served in the j-
st phase of the queue, he goes to the j + 1-st phase of the queue. When
a customer is served in the k-st phase of the queue, he leaves the queue.
Let us define tn as the time of arrival of the n-th customer at a multiphase
queue, S

(j)
n as the service time of the n-th customer in the j-th phase of the

queue, zn = tn+1 − tn, xj(t) = max{l :
∑l

i=1 S
(j)
i ≤ t} (such a total number

of customers can be served in the j-th phase of the queue if devices in the
queue are working without time out), denote e(t) = max{l :

∑l
i=1 zi ≤ t} as

the total number of customers arriving at a multiphase queue until time t,
and τj(t) as the total number of customers that depart after service at the
j-th phase of the queue until time t, x0(t) = τ0(t) = e(t), j = 1, 2, . . . , k.
xj(t), j = 1, 2, . . . , k and e(t) are counting processes (see Borovkov (1980)).

Also, let us define Wj(t) as a virtual waiting time of a customer in the
j-th phase of the queue for time t (i. e., time which must waiting until service

customer, arrive to j-th phase of the queue at time t), Sj(t) =
∑τj−1(t)

i=1 S
(j)
i as

the time that can got, if we summarize service times of customers, arriving
at the j-th phase of the queue until time t;

yj(t) = Sj(t)− t, τ0(t) = e(t), ft(y(·)) = y(t)− inf
0≤s≤t

y(s), j = 1, 2, . . . , k.

In particular, the j-th phase can be considered as a queue < G, G, G, 1 >
(see definition in Borovkov (1972)). Hence, if Sj(0) = Wj(0) = 0 (also see
Borovkov (1972)),

Wj(t) = ft(yj(·)), j = 1, 2, . . . , k. (1)

2



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Let us consider, as in Minkevičius (1986), multiphase queues in the series:

S
(j)
i,n are independent identically distributed random variables in the n-th

multiphase queue, S
(0)
i,n = zi,n, i ≥ 1, n ≥ 1, j = 1, 2, . . . , k.

Also let us define αj,n = MS
(j)
1,n, α0,n = Mz1,n, σj,n = DS

(j)
1,n > 0,

σ0,n = Dz1,n > 0, γj,n = σj,n · (αj,n)−1, σ2
j,n = σ̂j,n · (αj,n)−1+

σ̂j−1,n · (αj−1,n)−3 · (αj,n)2 > 0, βj,n =
αj,n

αj−1,n

− 1, j = 1, 2, . . . , k, n ≥ 1.

Throughout this work, we assume that the following conditions hold

α = max
0≤j≤k

sup
n≥1

αj,n < ∞, (2)

σ2
j,n → σ2

j > 0 (3)

and
γj,n → σ̂2

j > 0, j = 1, 2, . . . , k. (4)

2 The main result

Our primary focus is on the case

βj,n ·
√

n → Bj < ∞, j = 1, 2, . . . , k. (5)

So we will prove such a theorem.

Theorem 2.1. If (2) - (5) hold, then

(
W1(nt)√

n
; . . . ;

Wk(nt)√
n

)
⇒ (ft(ŷ1(·)); . . . ; ft(ŷk(·))).

where ŷj(t) = σ̂j · zj(t) + τ̂j−1(t) + Bj · t , j = 1, 2, . . . , k and τ̂j−1(t) satisfy
the functional recurrent stochastic equation

τ̂j−1(t) = σ̂j−1 · zj−1(t)− sup
0≤s≤t

(σ̂j−1 · zj−1(s)− τ̂j−2(s)), τ̂0(·) = 0, and

zj(t) are independent standard Wiener processes, j = 2, . . . , k, 0 ≤ t ≤ 1.
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Proof. Note that

yj(nt)√
n

=

τj−1(nt)∑
i=1

S
(j)
i − nt

√
n

=

τj−1(nt)∑
i=1

(S
(j)
i − αj,n)

√
n

+
αj,n · τj−1(nt)− nt√

n

=

{
τj−1(nt)∑

i=1

(S
(j)
i − αj,n)}
√

n
−
{

xj−1(nt)∑
i=1

(S
(j)
i − αj,n)}
√

n
+

{
xj−1(nt)∑

i=1

(S
(j)
i − αj,n)}
√

n

+

αj,n ·
{

τj−1(nt)− nt

αj−1,n

}

√
n

+ βj,n ·
√

n · t, j = 1, 2, . . . , k, 0 ≤ t ≤ 1.

(6)

Hence, for the difference between the first and second terms on the right
in (6) to converge in probability to zero, it suffices that (see Iglehart (1973))

sup
0≤t≤1

xj(nt)− τj(nt)

n
⇒ 0, j = 1, 2, . . . , k. (7)

Also note that for j = 1, 2, . . . , k (see Borovkov (1972))

sup
0≤t≤1

xj(nt)− τj(nt)

n
≤

k∑
i=1

sup
0≤t≤1

xi(nt)− xi−1(nt)

n

≤
k∑

i=1

{ sup
0≤t≤1

|xi(nt)

n
− t

αi,n

|+ sup
0≤t≤1

|xi−1(nt)

n
− t

αi−1,n

|+ | 1

αi,n

− 1

αi−1,n

|}

≤ 2 · {
k∑

i=1

sup
0≤t≤1

|xi(nt)

n
− t

αi,n

|+ α̂ · βi,n} ⇒ 0,

(8)

where α̂ = max
0≤i≤k

max
n≥1

1

αi,n

< ∞ .

From (7) and (8) it follows that the difference between the first and second
terms on the right of (6) converges in probability to zero.

The third term on the right of (6) is a complex counting process and

xj−1(nt)∑
i=1

(S
(j)
i − αj,n)

√
n

⇒ σj · zj(t), j = 1, 2, . . . , k (9)
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where zj(t) are independent standard Wiener processes, j = 1, 2, . . . , k (see
Borovkov (1980)).

Let us investigate the last term in (6). Note that

sup
0≤t≤1

|αj,n − αj−1,n|
n

· τj(nt) ≤ sup
0≤t≤1

|αj−1,n| · |βj,n| · τj(nt)

n

≤ |αj−1,n| · |βj,n| · sup
0≤t≤1

ej(nt)

n
≤ |αj−1,n| · |βj,n| · sup

0≤t≤1
|ej(nt)

n
− t

α0,n

|

+
|αj−1,n|
|α0,n| · |βj,n| ≤ α · |βj,n| · sup

0≤t≤1
|ej(nt)

n
− t

α0,n

|+ α · α̂ · |βj,n| ⇒ 0,

j = 1, 2, . . . , k.

(10)

So from the formula (see Minkevičius (1991))

τj(t) = xj(t)− sup
0≤s≤t

(xj(s)− τj−1(s))

it follows that

αj,n ·
{

τj(nt)− nt

αj,n

}

√
n

=

αj,n ·
{

xj(nt)− nt

αj,n

}

√
n

− sup
0≤s≤t

{
αj,n ·

(xj(ns)− ns

αj,n√
n

)
− αj,n ·

(τj−1(ns)− ns

αj−1,n√
n

)}
,

j = 1, 2, . . . , k, 0 ≤ t ≤ 1.

(11)

However,

αj,n ·
(xj(nt)− ns

αj,n√
n

)
⇒ σ̂j · zj(t), (12)

where zj(t) are independent standard Wiener processes, j = 1, 2, . . . , k, 0 ≤
t ≤ 1.

Define

τ̂j,n(t) = αj,n ·
(xj(ns)− ns

αj,n√
n

)
, j = 1, 2, . . . , k, 0 ≤ t ≤ 1.
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Hence, from (11) and (12) we get

τ̂j,n(t) ⇒ τ̂j(t),

where τ̂j(t) are fulfilled functional recurrent stochastic equation

τ̂j(t) = σ̂j · zj(t)− sup
0≤s≤t

(σ̂j · zj(s)− τ̂j−1(s)), (13)

j = 1, 2, . . . , k, τ0 ≡ 0, 0 ≤ t ≤ 1.
Thus, (6) – (12) imply that we have proved the theorem. The proof is

complete.

Concluding remarks
1. A single phase case of Theorem 2.1 is investigated in Kyprianou (1971).
2. Theorem 2.1 of this paper has been proved for a class of multiphase

queueing systems in heavy traffic with the service discipline “first come, first
served”, endless waiting time of customers in each phase of the queue, and
where the times between the arriving customers to queue are independent
identically distributed random variables. However, Theorem 2.1 can be ap-
plied to a wider class of multiphase queueing systems in heavy traffic: when
arrival and service of customers in a queue is by group, when times between
the arriving customers to the multiphase queueing systems are independent
and weakly dependent random variables, etc.

The author thanks Prof. Br. Grigelionis and referees for much helpful
advice on this and and other topics.
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