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This paper presents a heavy traffic limit theorem for the virtual waiting time of a customer in multiphase queues. In this work, functional limit theorem is proved for values of important probability characteristics of the queueing system investigated as well as the virtual waiting time of a customer.

Introduction

One of the main research trends in the theory of queues corresponds to the asymptotic analysis of formulas or equations, describing the distribution of one or another probabilistic characteristic of the queue. [START_REF] Kingman | The single server queue in heavy traffic[END_REF][START_REF] Kingman | On queues in heavy traffic[END_REF]) achieved the first results on the limiting behaviour of single channel queues in heavy traffic. The single-phase case, where the intervals of time between the arrival of customers are independent identically distributed random variables and there is one single device, has been completely investigated in the well known papers (see, for example, [START_REF] Borovkov | Probability Processes in Theory of Queues[END_REF][START_REF] Borovkov | Asymptotic Methods in Theory of Queues[END_REF]). Functional limit theorems for a virtual waiting time of a customer in a single queue are proven under various conditions of heavy traffic (see [START_REF] Kyprianou | The virtual waiting time of the GI/G/I queue in the heavy traffic[END_REF]). Functional limit theorems for the waiting time of a customer and queue length of customers in a multiphase queue are also proved under various heavy traffic conditions (see [START_REF] Minkevičius | Weak convergence in multiphase queues[END_REF][START_REF] Minkevičius | Transient phenomenas in multiphase queues[END_REF]). In this work, we will prove a functional limit theorem for another important probabilistic characteristic of multiphase queues (virtual waiting time of a customer in conditions of heavy traffic).

The virtual waiting time of a customer in every phase of the queue is unlimited, and the service discipline is "first come, first served". Denote ⇒ as a weak convergence of probability measures (see [START_REF] Billingsley | Convergence of Probability Measures[END_REF]). The main tool for the analysis of a multiphase queue in heavy traffic is functional limit theorems for renewal and compound renewal processes (the proof can also be found in [START_REF] Billingsley | Convergence of Probability Measures[END_REF]).

Let us consider a k-phase queue. When a customer is served in the jst phase of the queue, he goes to the j + 1-st phase of the queue. When a customer is served in the k-st phase of the queue, he leaves the queue. Let us define t n as the time of arrival of the n-th customer at a multiphase queue, S (j) n as the service time of the n-th customer in the j-th phase of the queue,

z n = t n+1 -t n , x j (t) = max{l : l i=1 S (j) i
≤ t} (such a total number of customers can be served in the j-th phase of the queue if devices in the queue are working without time out), denote e(t) = max{l : l i=1 z i ≤ t} as the total number of customers arriving at a multiphase queue until time t, and τ j (t) as the total number of customers that depart after service at the j-th phase of the queue until time t, x 0 (t) = τ 0 (t) = e(t), j = 1, 2, . . . , k.

x j (t), j = 1, 2, . . . , k and e(t) are counting processes (see [START_REF] Borovkov | Asymptotic Methods in Theory of Queues[END_REF]).

Also, let us define W j (t) as a virtual waiting time of a customer in the j-th phase of the queue for time t (i. e., time which must waiting until service customer, arrive to j-th phase of the queue at time t), S j (t) =

τ j-1 (t) i=1 S (j)
i as the time that can got, if we summarize service times of customers, arriving at the j-th phase of the queue until time t;

y j (t) = S j (t) -t, τ 0 (t) = e(t), f t (y(•)) = y(t) -inf 0≤s≤t y(s), j = 1, 2, . . . , k.
In particular, the j-th phase can be considered as a queue < G, G, G, 1 > (see definition in [START_REF] Borovkov | Probability Processes in Theory of Queues[END_REF]). Hence, if S j (0) = W j (0) = 0 (also see [START_REF] Borovkov | Probability Processes in Theory of Queues[END_REF]),

W j (t) = f t (y j (•)), j = 1, 2, . . . , k.
(

Let us consider, as in [START_REF] Minkevičius | Weak convergence in multiphase queues[END_REF], multiphase queues in the series: S (j) i,n are independent identically distributed random variables in the n-th multiphase queue, S (0)

i,n = z i,n , i ≥ 1, n ≥ 1, j = 1, 2, . . . , k. Also let us define α j,n = M S (j) 1,n , α 0,n = M z 1,n , σ j,n = DS (j) 1,n > 0, σ 0,n = Dz 1,n > 0, γ j,n = σ j,n • (α j,n ) -1 , σ 2 j,n = σj,n • (α j,n ) -1 + σj-1,n • (α j-1,n ) -3 • (α j,n ) 2 > 0, β j,n = α j,n α j-1,n -1, j = 1, 2, . . . , k, n ≥ 1.
Throughout this work, we assume that the following conditions hold

α = max 0≤j≤k sup n≥1 α j,n < ∞, ( 2 
)
σ 2 j,n → σ 2 j > 0 (3) and γ j,n → σ2 j > 0, j = 1, 2, . . . , k. (4) 

The main result

Our primary focus is on the case

β j,n • √ n → B j < ∞, j = 1, 2, . . . , k. ( 5 
)
So we will prove such a theorem.

Theorem 2.1. If ( 2) -( 5) hold, then

W 1 (nt) √ n ; . . . ; W k (nt) √ n ⇒ (f t (ŷ 1 (•)); . . . ; f t (ŷ k (•))).
where ŷj (t) = σj • z j (t) + τj-1 (t) + B j • t , j = 1, 2, . . . , k and τj-1 (t) satisfy the functional recurrent stochastic equation

τj-1 (t) = σj-1 • z j-1 (t) -sup 0≤s≤t (σ j-1 • z j-1 (s) -τj-2 (s)
), τ0 (•) = 0, and z j (t) are independent standard Wiener processes, j = 2, . . . , k, 0 ≤ t ≤ 1.

Proof. Note that

y j (nt) √ n = τ j-1 (nt) i=1 S (j) i -nt √ n = τ j-1 (nt) i=1 (S (j) i -α j,n ) √ n + α j,n • τ j-1 (nt) -nt √ n = { τ j-1 (nt) i=1 (S (j) i -α j,n )} √ n - { x j-1 (nt) i=1 (S (j) i -α j,n )} √ n + { x j-1 (nt) i=1 (S (j) i -α j,n )} √ n + α j,n • τ j-1 (nt) - nt α j-1,n √ n + β j,n • √ n • t, j = 1, 2, . . . , k, 0 ≤ t ≤ 1. (6) 
Hence, for the difference between the first and second terms on the right in [START_REF] Kingman | On queues in heavy traffic[END_REF] to converge in probability to zero, it suffices that (see [START_REF] Iglehart | Weak convergence in queueing theory[END_REF])

sup 0≤t≤1 x j (nt) -τ j (nt) n ⇒ 0, j = 1, 2, . . . , k. (7) 
Also note that for j = 1, 2, . . . , k (see [START_REF] Borovkov | Probability Processes in Theory of Queues[END_REF])

sup 0≤t≤1 x j (nt) -τ j (nt) n ≤ k i=1 sup 0≤t≤1 x i (nt) -x i-1 (nt) n ≤ k i=1 { sup 0≤t≤1 | x i (nt) n - t α i,n | + sup 0≤t≤1 | x i-1 (nt) n - t α i-1,n | + | 1 α i,n - 1 α i-1,n |} ≤ 2 • { k i=1 sup 0≤t≤1 | x i (nt) n - t α i,n | + α • β i,n } ⇒ 0, (8) 
where α = max

0≤i≤k max n≥1 1 α i,n < ∞ .
From ( 7) and ( 8) it follows that the difference between the first and second terms on the right of (6) converges in probability to zero.

The third term on the right of ( 6) is a complex counting process and

x j-1 (nt) i=1 (S (j) i -α j,n ) √ n ⇒ σ j • z j (t), j = 1, 2, . . . , k (9) 
where z j (t) are independent standard Wiener processes, j = 1, 2, . . . , k (see [START_REF] Borovkov | Asymptotic Methods in Theory of Queues[END_REF]).

Let us investigate the last term in [START_REF] Kingman | On queues in heavy traffic[END_REF]. Note that 

sup 0≤t≤1 |α j,n -α j-1,n | n • τ j (nt) ≤ sup 0≤t≤1 |α j-1,n | • |β j,n | • τ j (nt) n ≤ |α j-1,n | • |β j,n | • sup 0≤t≤1 e j (nt) n ≤ |α j-1,n | • |β j,n | • sup 0≤t≤1 | e j (nt) n - t α 0,n | + |α j-1,n | |α 0,n | • |β j,n | ≤ α • |β j,n | • sup 0≤t≤1 | e j (nt) n - t α 0,n | + α • α • |β j,n | ⇒ 0, j = 1,

  2, . . . , k.

										(10)
	So from the formula (see Minkevičius (1991))
			τ nt
	-sup 0≤s≤t	α j,n •	x j (ns) -√ n	ns α j,n		√ n -α j,n •	α j,n τ j-1 (ns) -√ n	α j-1,n ns	,	(11)
	However,		α j,n •	x j (nt) -√ n	ns α j,n	⇒ σj • z j (t),	(12)
	where z j (t) are independent standard Wiener processes, j = 1, 2, . . . , k, 0 ≤
	t ≤ 1.								
	Define								
	τj,n (t) = α j,n •	x j (ns) -√ n	ns α j,n	, j = 1, 2, . . . , k, 0 ≤ t ≤ 1.

j (t) = x j (t) -sup 0≤s≤t (x j (s) -τ j-1 (s)) it follows that α j,n • τ j (nt) -nt α j,n √ n = α j,n • x j (nt)j = 1, 2, . . . , k, 0 ≤ t ≤ 1.
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Hence, from (11) and (12) we get τj,n (t) ⇒ τj (t), where τj (t) are fulfilled functional recurrent stochastic equation

Thus, ( 6) -( 12) imply that we have proved the theorem. The proof is complete.

Concluding remarks

1. A single phase case of Theorem 2.1 is investigated in Kyprianou (1971). 2. Theorem 2.1 of this paper has been proved for a class of multiphase queueing systems in heavy traffic with the service discipline "first come, first served", endless waiting time of customers in each phase of the queue, and where the times between the arriving customers to queue are independent identically distributed random variables. However, Theorem 2.1 can be applied to a wider class of multiphase queueing systems in heavy traffic: when arrival and service of customers in a queue is by group, when times between the arriving customers to the multiphase queueing systems are independent and weakly dependent random variables, etc.
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