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Physical interpretation of parameters in Synergistic Continuum Damage Mechanics model for laminates

, which is one of the most efficient for damaged laminate stiffness determination, is analyzed using earlier developed theoretical framework which links the macro-response of a damaged laminate to the opening and sliding displacements of crack surfaces in an exact form. The physical meaning of the material parameters in CDM is revealed. Exact expressions for these parameters are derived and transformation rules with changing layer orientation angle presented. These parameters were previously considered as the most troublesome part of the CDM model with need for additional tests for their determination. The error introduced by the two main assumptions in the CDM model ( a) stiffness change is linear with respect to damage tensor; b) crack face sliding effect can be neglected) is evaluated and found that the linearization is often justified but sliding can not be neglected in most of lay-ups.

1.

Introduction

Microdamage which develops in plies of laminated composites during service life is a result of complex combinations of thermo-mechanical and environmental loads. Since the transverse strain to failure of unidirectional composites is lower than other strength components, intralaminar (transverse) cracking in layers of laminates, caused by combined action of transverse tensile stress and shear stress, is the first mode of damage. The crack is usually well defined and the crack plane is transverse to the laminate middle-plane. In monotonic static or fatigue loading of laminates with rather thick layers the cracking is governed by initiation and these cracks propagate in an unstable manner parallel to fibers, spanning the whole width of the specimen. If layers are thin, cracks are growing stable with time and/or load level and usually they are covering just a part of the specimen width.

The described microdamage leads to degradation of macroscopic thermo-mechanical properties of the laminate. Many papers have been written to present experimental data and to describe models for prediction of the degradation, see review for example in [START_REF] Nairn | Matrix microcracking[END_REF][START_REF] Talreja | Damage characterization by internal variables[END_REF]. The two basic approaches used are either continuum damage mechanics or micromechanics based. Most of the micromechanics models are focused on an approximate description of the local stress distribution in the repeating element between two cracks, which is further used to determine certain thermo-elastic constant (most often the axial modulus or the Poisson's ratio which are easy to determine experimentally). The simplest calculation schemes used are based on shear lag assumption [START_REF] Han | Ply cracking and property degradation of symmetric balanced laminates under general in -plane loading[END_REF][START_REF] Smith | Poisson's ratio as a damage parameter in the static tensile loading of simple cross-ply laminates[END_REF] or variational principles [START_REF] Hashin | Analysis of cracked laminates: a variational approach[END_REF][START_REF] Varna | Multiple Transverse Cracking and Stiffness Reduction in Cross-Ply Laminates[END_REF][START_REF] Varna | Thermo-Elastic Properties of Composite Laminates with transverse cracks[END_REF][START_REF] Mccartney | Comparison of models for transverse ply cracks in composite laminates[END_REF]. Most of the analytical solutions are applicable to cross-ply type of laminates with cracks in 90-layers only. The most accurate numerical routines based on Reissner's variational principle are presented in [START_REF] Mccartney | Comparison of models for transverse ply cracks in composite laminates[END_REF]. An "equivalent constraint model" to determine the effective properties of the damaged layer was introduced in [START_REF] Zhang | Analysis of multiple matrix cracking in [± m /90 n ]s composite laminates. Part 1. In-plane stiffness properties[END_REF] to analyze general laminates using a modified shear lag model.

It is easy to realize that the stiffness reduction of composite laminates due to cracks in layers is uniquely related to the relative displacements of the corresponding points at both crack surfaces.

As long as the relative displacement is zero (points on the both surfaces coincide) the thermomechanical properties are not affected. The opening and sliding of crack surfaces reduce the average strain and stress in the damaged layer, thus reducing the portion of the load carried by this layer. It results in reduction of the laminate thermo-elastic properties. Thus the two components of the relative in-plane displacement of the crack faces: crack opening displacement (COD) and crack face sliding displacement (CSD) are the micromechanical parameters governing the macroscopic stiffness reduction. In a linear model these quantities are proportional to the applied load and, therefore, the COD and CSD should be normalized to be used in stiffness modeling. The normalized COD dependence on geometrical parameters of the laminate and on the material properties was studied experimentally using optical microscopy of loaded damaged specimens in [START_REF] Varna | A study of the crack opening displacement of transverse cracks in cross ply laminates[END_REF][START_REF] Varna | Damage in composite laminates with offaxis plies[END_REF]. FE studies were performed to understand which material and geometry parameters affect the COD and CSD [START_REF] Lundmark | Constitutive relationships for damaged laminate in in-plane loading[END_REF][START_REF] Lundmark | Crack face sliding effect on stiffness of laminates with ply cracks[END_REF]. Based on this analysis simple empirical relationships (power laws) were suggested.

A theoretical framework establishing unique link between the damaged laminate thermo-elastic properties and the microdamage parameters COD and CSD was developed in [START_REF] Lundmark | Constitutive relationships for damaged laminate in in-plane loading[END_REF][START_REF] Lundmark | Crack face sliding effect on stiffness of laminates with ply cracks[END_REF]. It was shown that the details of the relative displacement profile along the crack surface are not important: only the average values of these quantities enter the stiffness expressions. Certainly macro-properties are in an exact and explicit form related also to the density of cracks in different layers, material properties and geometrical characteristics of the laminate.

The developed model accounts also for crack interaction. If the crack density is high the stress perturbations of two neighboring cracks interact and the average stress between cracks at the given applied load is lower. It means that the COD and CSD of interacting cracks are smaller than for non-interactive cracks. This effect was found experimentally in [START_REF] Varna | Damage in composite laminates with offaxis plies[END_REF] and analyzed theoretically in [START_REF] Joffe | COD-based simulation of transverse cracking and stiffness reduction in [S/90n]s laminates[END_REF].

Similar approach was used also in [START_REF] Gudmundson | First order analysis of stiffness reduction due to matrix cracking[END_REF] using simplified expressions for COD and CSD obtained from fracture mechanics analysis of periodic systems of cracks in isotropic medium. The drawback of this approach is that these expressions does not account in a proper way for the constraint of surrounding layers on COD and CSD [START_REF] Lundmark | Constitutive relationships for damaged laminate in in-plane loading[END_REF].

In this paper we will focus on one of many CDM models: the model presented in [START_REF] Talreja | Damage characterization by internal variables[END_REF][START_REF] Talreja | Internal variable damage mechanics of composite materials[END_REF] where the effect of cracks on the laminate stiffness is represented by second order damage tensors related to crack face opening and sliding and where the stiffness reduction is linear with respect to the crack density. A brief description of this model is given in Section 2. References to other CDM models may be found in [START_REF] Talreja | Damage characterization by internal variables[END_REF].

The objective of the presented paper is to use the general framework for analysis of damaged laminates developed in [START_REF] Lundmark | Constitutive relationships for damaged laminate in in-plane loading[END_REF][START_REF] Lundmark | Crack face sliding effect on stiffness of laminates with ply cracks[END_REF] to identify the physical meaning of material constants in the CDM model [START_REF] Talreja | Damage characterization by internal variables[END_REF] and to give exact expressions for their calculation. We will present transformation expressions for these constants when the layer orientation angle changes. Since the CDM model is linear with respect to the damage tensor and is simplified by neglecting the crack face sliding displacement, we will evaluate the error introduced by these simplifications.

2.

Continuum Damage Mechanics model

We consider symmetric N-layer laminate the upper part of which is shown in Fig. 1. The k-th layer of the laminate is characterized by thickness k t and fiber orientation angle k θ . We denote by h the total thickness of the laminate,

∑ = = N k k t h 1 .
The crack density in a layer is ( )

k k k l θ ρ sin 2 1 =
and dimensionless crack density ρ kn is introduced as

ρ ρ k k kn t = .
(1)

The stiffness matrix of the damaged laminate is [ ] LAM Q and the stiffness of the undamaged

laminate is [ ] LAM Q 0
. All cracks of the same orientation belong to the same damage mode.

To reduce the number of indexes we will consider in this section only one mode of damage. is the tangent vector to the crack surface. From these two vectors a damage tensor is formed which represents the whole set of damage entities belonging to the given damage mode
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In (2) V is the volume of the representative volume element (RVE), S is the crack surface and summation is over all cracks belonging to this mode. In fact, if all cracks belonging to the particular mode are of the same size and all have the same surface displacements, the expression in brackets does not depend on the summation index. The second term in (2) corresponding to CSD was ignored in Talrejas work in this way limiting the analysis to cases where the crack opening is the dominant cause of stiffness degradation.

Polynomial expansion of the Helmholtz free energy ( )

ij ij D W , ε
of the damaged laminate was written using the irreducible integrity base for the case of orthotropic symmetry. Keeping in the expansion only second-order terms with respect to the strain and linear terms with respect to the damage, the stress-strain relationships for the damaged laminate were obtained using
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This procedure leads to the following expression for laminate stiffness reduction due to The COD related part in (2) can be written in the form [START_REF] Talreja | Damage characterization by internal variables[END_REF] 

In ( 7) ij a depend on the crack orientation. Due to the linearity with respect to damage the summary effect of several damage modes to the stiffness loss can be written as a sum of particular contributions. The interaction between different damage modes may be included in κ . The challenge of this paper is to prove that this "empirical" observation is correct and to find the intrinsic meaning of the [ ] a -matrix elements by performing micromechanics analysis. This task for the particular case of cross-ply laminates with cracks in 90-layers was successfully completed in [START_REF] Varna | A Synergistic damage mechanics approach to viscoelastic response of cracked cross-ply laminates[END_REF]. It was found that a -matrix for layers with arbitrary orientation will be derived.
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3.

Micromechanics analysis of thermo-elastic properties of damaged laminate

In this section exact expressions linking macro-properties of the RVE with the local stress state An exact expression for stiffness of a general symmetric laminate with intralaminar cracks in plies was derived in [START_REF] Lundmark | Constitutive relationships for damaged laminate in in-plane loading[END_REF][START_REF] Lundmark | Crack face sliding effect on stiffness of laminates with ply cracks[END_REF] [ In the high crack density region the normalized average COD of a crack is smaller than for noninteractive cracks. It is because for two close cracks the stress perturbations overlap and the stress is lower. Similar arguments apply for sliding displacement.
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The interaction effect may be described by crack interaction function λ which is a function of the crack density in the layer and depend on material and geometrical parameters of the cracked layer and surrounding layers. The "interaction function" for COD was determined using FE 

Linearized form of the damaged laminate stiffness expressions

The stiffness reduction equation ( 9) is non-linear with respect to the crack density. In this section we derive a linearized form to compare it with CDM expression [START_REF] Varna | Thermo-Elastic Properties of Composite Laminates with transverse cracks[END_REF] and to identify the [ ] amatrix elements. In contrast to Section 2 where stiffness reduction expressions for only one damage mode were written, here we keep in the analysis cracks in all layers. Equation ( 9) can be
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The stiffness matrix of the damaged laminate may be expanded in a power series with respect to the crack density. Neglecting second order and higher order terms in this expansion
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Substituting ( 15) in ( 14) and keeping only linear terms with respect to crack density we obtain
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According to [START_REF] Varna | A Synergistic damage mechanics approach to viscoelastic response of cracked cross-ply laminates[END_REF] (linearized stiffness reduction model) the stiffness change due to cracks in a certain layer depends only on the properties of this layer and its orientation. The dependence on the laminate lay-up is only through its effect on the crack face displacement matrix [ ]

U k .
Using the usual in-plane stiffness transformation expressions in matrix form,
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(17) by formal rearrangements may be reduced to more transparent form. We obtain
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We represent k U defined by ( 12) as a sum of opening and sliding terms The transformation rule is the same as for stiffness transformation (18). Using (27
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The CSD related matrix-function depends only on the layer shear modulus and orientation. The COD related matrix-function depends on the transverse modulus, Poisson's ratio of the layer material and on the orientation. The stiffness reduction relationship (25) can be now written as
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Calculation of CDM material constants for an arbitrary laminate

Since the sliding displacement is ignored in the CDM model [START_REF] Talreja | Damage characterization by internal variables[END_REF] we will first focus on the opening part, leaving evaluation of the effect of ignoring sliding to the end of this section.

Comparing the CDM stiffness reduction equation [START_REF] Varna | Thermo-Elastic Properties of Composite Laminates with transverse cracks[END_REF], with the micromechanics based equation 
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For 90 -layers (31) turns to [START_REF] Mccartney | Comparison of models for transverse ply cracks in composite laminates[END_REF] Finally we evaluate the significance of ignoring the sliding part in the CDM model, see [START_REF] Talreja | Damage characterization by internal variables[END_REF].

Since according to FEM results the normalized average sliding and opening displacements are of the same order of magnitude, we can evaluate the CSD contribution by considering ratios
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for different layer orientation angles. Results for GF composite with properties from Table A2.1 are presented in Fig. 3. The relationships for composites are similar. Only the scale is changed due to different transverse modulus versus shear modulus ratio. From Fig. 3 follows that only in a very small regions close to 0-degrees and 90-degrees orientations the sliding effects on elastic moduli and Poisson's ratio may be ignored. Shear modulus change of the laminate is dominated by CSD except a small region between 40-and 50-degrees.

6.

Validation of assumptions used

In this Section we simulate stiffness degradation in laminates using three models of different accuracy:

a) the general model given by ( 9) is used as a reference; b) the linearized form of the general model given by (29) which contains COD and CSD; c) the CDM model which ignores the CSD but otherwise is the same as the linearized model (29).

The objective of presenting the results of numerical simulation is a) to evaluate the inaccuracy at The increase of the Poisson's ratio of the [0/+45/-45/0]s due to damage appears to be an unexpected result. However, experimental results published in [START_REF] Varna | Damage in composite laminates with offaxis plies[END_REF] for GF/EP [0/+θ4/-θ4/01/2]s laminates showed the same trend: for θ= 55° the Poisson's ratio was almost constant and for θ=40° Poisson's ratio is increasing by almost 20%. In [START_REF] Varna | Damage in composite laminates with offaxis plies[END_REF] this phenomenon was explained by shear modulus degradation (nonlinearity) in the high shear strain region (cracks did not appear in the θ=40° case). The intralaminar cracks have a similar effect: degradation of effective shear properties of the layer leading to increase of the laminate Poisson's ratio.

7.

Conclusions

The Continuum Damage Mechanics (CDM) model by Talreja [START_REF] Talreja | Damage characterization by internal variables[END_REF][START_REF] Talreja | Internal variable damage mechanics of composite materials[END_REF] has proven to be an efficient tool for stiffness analysis of laminates containing cracks in layers with large orientation angles. This model contains matrix of parameters which may be determined from experiment or using FEM. Studies show that this parameter matrix, which generally speaking, contains laminate parameters and not material parameters seems to be insensitive to such details as layer thickness, general lay-up and depends on the layer material properties and orientation.

To find the physical meaning of the parameter matrix and to obtain exact expressions for recalculation of this matrix when the ply orientation angle change, an alternative analysis of the damaged laminate stiffness was performed relating in an exact form the stiffness change to the total displacement (sliding and opening) of all crack surfaces.

These obtained exact expressions were linearized with respect to the crack density in layers to obtain forms consistent with the CDM formulation. Exact expressions for the material parameters in the CDM model were obtained and their transformation rule was derived.

The CDM model [START_REF] Talreja | Damage characterization by internal variables[END_REF] neglects the effect of the crack face sliding and includes only COD. It was found that the CSD effect is small only for layers with orientations very close to 90-degrees.

As expected, the linearized model predicts larger stiffness changes than the general model.

In numerical simulations the crack opening (COD) and crack face sliding displacements (CSD) in these expressions are described by power laws extracted from FE parametric analysis.

8.

Appendix 1. Expressions for COD and CSD of non-interactive cracks

The COD, 0 1an u and CSD, 0 2an u of non-interactive cracks are considered in a coordinate system where the cracked layer becomes 90-layer. Index k denoting the layer is omitted. A distinction has to be made between cracks in surface layers and cracks in inside layers, see Fig

. A.1.
Obviously the normalized average COD of surface cracks is larger because the cracked layer is supported only from one side. Here we summarize the FEM results obtained in [START_REF] Lundmark | Constitutive relationships for damaged laminate in in-plane loading[END_REF][START_REF] Lundmark | Crack face sliding effect on stiffness of laminates with ply cracks[END_REF].

The analysis was performed for symmetric case where the support layer S1 has equal properties, orientation and geometry as support layer S2. The obtained numerical results were fitted by power laws presented below. The expression for 0 2an

u is n s x an E B A E u         + = 2 0 2 (A1.1)
In (A1.1) E s x is the Young's modulus of the support layer measured in the x-direction, see Fig. 

A1. For a crack in internal layer
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In (A1.2) ts is thickness of the adjacent support layer and 90 t is thickness of the cracked layer as shown in Fig. A1.

For a crack in surface layer 
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The presented expressions correspond to a special case shown in Fig A1 b): the cracked layer is supported by a layer with certain s x E and thickness s t followed by another damaged 90-layer.

The 0 1an u , see [START_REF] Lundmark | Crack face sliding effect on stiffness of laminates with ply cracks[END_REF] for details, also follows a power law Similar arguments apply for sliding: additional layers give additional support compared with stress free boundaries or support given by a damaged 90-layer.

Calculations according to the presented power laws agree extremely well with numerical data obtained using FEM. The normalized average COD and CSD are larger for less stiff surrounding layers and approach to certain asymptotic value with increasing stiffness ratio. For thicker adjacent layers the COD is smaller. The interaction of cracks in GF laminates is stronger than in CF laminates. In CF laminates with high layer stiffness ratio the interaction function is not sensitive to layer thickness ratio. In GF laminates characterized by lower layer stiffness ratio the interaction is stronger if the support layer is thicker. to shear lag models the local stress distribution is described hyperbolic functions. Using the relationship between stress perturbations and the average normalized COD [START_REF] Joffe | COD-based simulation of transverse cracking and stiffness reduction in [S/90n]s laminates[END_REF][START_REF] Varna | A Synergistic damage mechanics approach to viscoelastic response of cracked cross-ply laminates[END_REF] the interaction function according to the shear lag model is ( )

The calculated values of the interaction function in
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Coefficient k can be calculated using any modification of the shear lag model. However, due to oversimplified stress state analysis, we have no reason to expect that the FEM data in Fig. A2 can be described by this type of model without any fitting procedure. We use the shape function (A2.2) and obtain the k value from the best fit in the region shown in Fig. A2. The best fit with this function to data corresponding to CF laminates (k=1.12) and for GF [03/90]s laminate (k=0.84) is shown in Fig. A2. The shape of the interaction function in this region is described with sufficient accuracy. Values of k for other lay-ups used in this study are shown in Table A2.2.

It has to be noted that the function (A2.2) is nothing else as a simple and convenient fitting function with application only in the fitting region. An attempt to apply it at infinite crack density to check with the ply-discount model predictions, which is valid at infinite crack density, leads to erroneous value.

The interaction effect on an u 2 for cracks in surface layer and the interaction effect on an u 1 have not been studied. Hence, the assumption used in this paper that the interaction in these cases follows the same interaction law, is rather voluntary. For example, it is possible that interaction of surface cracks is stronger than interaction of internal cracks because of larger COD.

Numerical analysis has to be performed to clarify this question. 

  The explanation below follows the Continuum Damage Mechanics (CDM) model developed by Ramesh Talreja[START_REF] Talreja | Damage characterization by internal variables[END_REF][START_REF] Talreja | Internal variable damage mechanics of composite materials[END_REF]. The damage entity (intralaminar crack in our study) is defined by its orientation in the layer represented by the unit normal average crack opening displacement (COD) normalized with respect to the load and t b is proportional to the average crack face sliding displacement (CSD) normalized with respect to the load. Vector

  κ may be considered as the average COD normalized with respect to the far-field ply stress and the crack size, c t . Actually k is a parameter proportional to the COD but the coefficient of proportionality can be included in the unknown and undefined material constants i c . Substituting (6) in (4) we can write the result in the form

For a given laminate

  the [ ] a -matrix can be determined using two alternative methods: a) using experimental stiffness data for the virgin laminate and for the laminate with certain crack density; b) using FEM to calculate stiffness matrix of the virgin laminate and stiffness matrix of a laminate with cracks. Generally speaking, in the presented continuum damage mechanics formulation elements of the [ ] a -matrix are not material (layer) properties. According to the model they are laminate properties and may be different for laminates with different lay-ups. However, many studies using both experimental stiffness data and FEM results have shown that the calculated [ ] a -matrix does not depend on the cracked layer thickness and may be only slightly depends on the laminate lay-up. In other words, there are strong indications that it depends only on the elastic properties of the layer with cracks and its orientation with respect to the global coordinate system.

2 E is transverse modulus an 12 ν

 212 is Poisson's ratio of the UD layer. In following sections exact expressions for the [ ] θ

  features close to the crack are presented. The integral effect of the crack caused stress perturbation is expressed in terms of crack face opening and sliding. The k-th layer of a symmetric N-layer laminate shown in Fig. 1 is characterized by stiffness in the local axes [ ] k Q (layers may have different materials), thickness k t and fiber orientation angle k θ , which defines the stress transformation matrix between global and local coordinates [ ] k T used in Classical Laminate theory (CLT). A bar above the matrix and vector entities in following text indicates layer characteristics in the global coordinate system x,y,z. The compliance matrix of the undamaged laminate [ ]

)σ

  This matrix expression contains elastic ply properties, details of laminate lay-up and dimensionless density of cracks in each layer. The influence of each damage entity is represented by matrix [ ] U k which contains the normalized average COD and normalized average CSD of the crack surfaces. It is assumed that all cracks in the same layer are equal: they have the same crack face displacements. In (9) [ ] I is identity matrix and k E 2 is the transverse modulus. The [ ] U k matrix depends on the average COD and CSD of a crack in a k -th layer, considered in the layer symmetry axes the displacement gap between points at both crack faces. Since the average displacements k a u 2 and k a u 1 are linear functions of the stress and the RVE dimensions, they may be normalized with respect to the far field (CLT) shear stress in the layer and the thickness of the cracked layer k constants k G 12 and k E 2 are used in (11) for the sake of dimensions. In result factor k E 2 appears in (9) and the expression for [ ]

  the distance between cracks is much larger than the crack size, the stress perturbations of two neighboring cracks do not overlap and we call cracks in this region non-interactive. The normalized average COD and CSD in this crack density region are independent on the value of the crack density. Superscript 0 used to indicate values in this region ( simple and accurate fitting expressions are presented to calculate k surrounding layer properties. These expressions were obtained using FEM based parametric analysis[START_REF] Lundmark | Constitutive relationships for damaged laminate in in-plane loading[END_REF][START_REF] Lundmark | Crack face sliding effect on stiffness of laminates with ply cracks[END_REF].

  analysis. The k an u 2 has been related to COD of non-interactive cracks, results were used to establish the shape of the interaction function and to analyze its dependence on ply properties. The results are presented in Appendix 2.

  26)It is very important to notice that [ ] in (25) are the corresponding expressions in the global system.

( 29 )

 29 we can find relationship between the [ ] a -matrix and matrix [ ]

2

 2 loss of generality we can for a crack in a certain layer identify the κ parameter with k an u

  the [ ] a -matrix for the k -th damaged layer [ ] (

  high crack density introduced by linearization; b) to evaluate the error introduced in the CDM model by neglecting crack face sliding displacement in the linearized model. Calculations are performed for CF/EP and GF/EP laminates with material properties given in Table A2.1. For cross-ply laminates shown in Fig. 4 the CSD does not affect the axial modulus and Poisson's ratio and hence the linearized and the CDM models coincide. If cracks are in 90-layer only a noticeable deviation between axial modulus curves is only for GF/EP laminates, see Fig.4. Differences in Poisson's ratio are noticable for both materials at n ρ =0.4 which for the considered laminate (prepreg ply thickness 0.125mm) is 0.8 crack/mm. The linearized model predicts larger stiffness change and the error introduced by linearization is higher a) for GF/EP laminates; b) if cracks are in both layers. In Fig. 5 and 6 the prediction according to all three models are shown for laminates with cracks in off-axis layers. The first observation is that the elastic properties changes are very small in CF/EP laminates of both [0/+60/-60/0]s and [0/+45/-45/0]s lay-up and much larger in GF/EP. It is clear that linearization in both cases introduces a reasonably small error whereas ignoring CSD in the CDM model leads to rather erroneous predictions: a) the CDM predicted axial modulus change is too small; b) in the [0/+60/-60/0]s case the CDM predicted reduction of the Poisson's ratio is too large but in case of the [0/+45/-45/0]s laminate even the trend of the change is wrong: models accounting for sliding show slight increase of the Poisson's ratio whereas the CDM model shows a decrease.

  in-plane shear modulus of the support layer, see Fig A1.

For cracks in internal layer 3 6 )

 36 The external boundaries of the model are free of any constraint. This means that in a more complex laminate where other layers surround the configuration shown in Fig.A1the 0 2an u will be slightly smaller than according to (A1.1), (A1.2).

=2. 5 .

 5 on elastic properties of the cracked and adjacent layers and on their relative thickness. For non-interactive cracks1 = λ .FEM results for the analyzed cases are presented in Fig.A2. The cracks do not interact when the normalized spacing equals to 5. Weak interaction (2-5%) is observable at normalized spacing Further increase of crack density leads to dramatic drop of the values of the interaction function to 0.3.

  Fig A2 where fitted by an empirical relationship with an origin in a simple shear lag model used for local stress analysis. According

Figure 1 .

 1 Figure 1. RVE of the damaged laminate with intralaminar cracks in layers.

Figure 2 .

 2 Figure 2. Normalized material parameters in the CDM model versus the cracked layer orientation angle. Poisson's ratio is 0.3.

Figure

  Figure 3. Relative significance of crack face sliding in laminate stiffness reduction in terms of

Figure 4 .

 4 Figure 4. Stiffness degradation in CF/EP cross-ply laminates versus normalized crack density n ρ according to the general model and CDM model: a) axial modulus reduction due to cracks in 90-layer; b) Poisson's ratio reduction in cases of cracks in 90-layer only and also in case of the same normalized crack density in 0 and in 90-layers.

Figure 5 .

 5 Figure 5. Axial modulus (a) and Poisson's ratio (b) reduction in CF/EP [0/+60/-60/0]s laminate due to equal dimensionless crack density in all off-axis layers.

Figure 6 .

 6 Figure 6. Axial modulus (a) and Poisson's ratio (b) changes in [0/+45/-45/0]s laminate due to cracks in all off-axis layers. The dimensionless crack density is the same in all layers.

Figure A1 .

 A1 Figure A1. Laminate with cracks in a) internal layer; b) surface layer.

Figure A2 .

 A2 Figure A2. Values of the interaction function for carbon fiber (CF) and glass fiber (GF) laminates. Relative 0-layer and 90-layer thickness is indicated as M-N. Curves represent simulation according to (A2.2) using indicated values of the k-parameter.
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 23456 Figure 2. Normalized material parameters in the CDM model versus the cracked layer orientation angle. Poisson's ratio is 0.3.

Figure A2 .

 A2 Figure A2. Values of the interaction function for carbon fiber (CF) and glass fiber (GF) laminates. Relative 0-layer and 90-layer thickness is indicated as M-N. Curves represent simulation according to (A2.2) using indicated values of the k-parameter.

  . For balanced laminates containing θ

								a -matrix is shown
	in Fig.2. The results are presented in a normalized form
		[ ] [ ] ( n a a 1 θ θ -=	-	2 ν	k 2 ν E k 12	k 21	) 2	(32)
	Obviously [ ] θ n a	depends only on the Poisson's ratio and orientation angle. Results in Fig.2 are
	for a 12 ν =0.3 which is a typical value for UD composites. One can see that the parameter 12 n a is
	the less sensitive with respect to the orientation angle. In the orientation angle region between 50
	to 90 degrees, which in uniaxial tension is the typical range of layers containing cracks, 11

± -layers the contribution of cracks in both layers to laminate stiffness elements LAM Q 16 and LAM Q 26 cancels out if the COD's of both layers is equal. The latter, generally speaking, may be not entirely true due to different constraints to θ + and θ -layers. The effect of the layer orientation on the [ ] n a which is responsible for axial modulus reduction is changing significantly.

  3. Relative significance of crack face sliding in laminate stiffness reduction in terms of

	) 1 ( ij Y	( ij Y	2	)	as a function layer orientation: a) effect on LAM Q 11 , LAM Q 12 and LAM Q 22 ; b) effect on
	laminate shear modulus LAM Q 66 .

Table A2 .

 A2 1 Material properties used in FE calculations Table A2.2 Values of shape parameter obtained fitting FEM results Figure1. RVE of the damaged laminate with intralaminar cracks in layers.

  Table A2.1 Material properties used in FE calculations

	Property	GF/EP	CF/EP	
	1 E (GPa)	45	150	
	2 E (GPa)	15	10	
	G (GPa) 12 12 ν	5 0.3	5 0.3	
	Table A2.2 Values of shape parameter obtained fitting FEM results
	Lay-up	[0/90]s	[02/90]s [03/90]s
	GF/EP	0.92	0.87	0.840
	CF/EP	1.12	1.12	1.12
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It has to be mentioned that the use of solutions for a periodic system of cracks in homogeneous isotropic material [START_REF] Gudmundson | First order analysis of stiffness reduction due to matrix cracking[END_REF] to calculate COD and CSD leads to significant overestimation and in result the stiffness reduction is also overestimated.

The calculation of 0 1an u and 0 2an u is not straightforward if the configuration is not symmetric and the upper support layer is different than the bottom layer. We may still use the available expressions assuming that the top support layer is affecting the displacements t