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Abstract 

The paper presents a methodology for evaluating the effects of voids on the fracture 

behaviour of woven fabric composites. The particular model studied consists of a double 

cantilever beam (DCB) in which voids are placed ahead of the crack tip and the Mode I Strain 

Energy Release Rate (SERR) is calculated. The standard beam-on-elastic-foundation theory is 

modified to account for shear compliance and material orthotropy, and the new formulation is 

used to evaluate the deformed shape, elastic deformation energy and SERR. The presence of 

the voids is simulated as an un-supported zone in the elastic foundation. The validation of the 

new analytical model, in terms of the deformed shapes and SERR values, is successfully 

carried out by suitable 2D Finite Element (FE) analyses. The effect of size, location and shape 

of the voids is investigated by a parametric study that showed that the enhancement of SERR 

increases with the size of the voids and the proximity to the crack tip and that elongated 

(elliptical) voids are more critical than the circular voids. Finally, the influence of more 

complex void distributions on the fracture toughness is evaluated by FE analysis. 

 

Keywords: Strain Energy Release Rate, mode I, fracture, voids, woven. 
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1. INTRODUCTION 

Voids are commonly found to form in composite manufacturing process and are likely to 

affect stiffness, strength and fracture properties. Since most of the cost of composite 

structures is often in the manufacturing process, it is important to assess the effect of voids in 

order to achieve cost-effectiveness. Voids can form by various reasons, e.g. by entrapment of 

air during liquid compression moulding and by enclosure of unfilled regions in resin transfer 

moulding. Inadequate temperature and pressure or tearing of the vacuum bag during the cure 

cycle can also contribute to their formation.  

Significant efforts have been devoted to understanding of the void effects on composite 

mechanical properties. The results show that while the fibre dominated mechanical properties 

are not significantly influenced by voids [1,2,3,4], the matrix dominated properties are 

strongly dependent on their presence. Reduction in interlaminar shear [1,5,6], compressive 

[7,8], transverse [1,2], bending [1,3,9], fatigue [4,10,11,12] and fracture toughness [13,14,15] 

properties have been reported. 

Wisnom et al. [5] investigated the influence of discrete and distributed voids on the 

interlaminar shear strength of glass/epoxy and carbon/epoxy UD laminates and reported a 

reduction ranging between 8 and 31% depending on the void size. Similar results were 

presented by Costa et al. [6] in the case of carbon/epoxy and carbon/bismaleimide fabric 

laminates. For the epoxy and bismaleimide resin the maximum reduction of the interlaminar 

shear strength was found to be 33% and 25%, respectively. SEM observations showed that the 

void location was strongly dependent on the matrix system. In the case of epoxy resin, in fact, 

the voids were preferentially located at the crossing of the woven fibre tows, while for 

carbon/BMI laminates the voids were found typically at interface of woven fibre tows. 

Moreover, observations carried out after interlaminar shear tests confirmed that in both cases 

the cracks nucleated from the voids, thus justifying the decrease in the interlaminar shear 
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strength. A similar decrease of ILSS was reported by Olivier et al. [1] by analysing the effects 

of cure cycle pressure on some mechanical properties of carbon/epoxy UD laminates. In the 

same paper the authors also investigated the void effects on tensile properties and they noticed 

that the longitudinal modulus as well as the longitudinal tensile strength (fibre-dominated 

properties) were not affected by voids. On the other hand, the transverse modulus and the 

transversal strength (matrix-dominated properties) were found to be extremely sensitive to the 

presence of defects with a reduction of 10 and 30%, respectively, for a void content of 10%. 

The shape and size of the voids also played an important role in the flexural behaviour. For a 

given void content, the specimens characterised by the largest voids showed a reduction in the 

bending modulus three times larger (15%) than those with small defects (5%).  

Suarez et al. [7] investigated the effect of void content on the compressive strength of UD 

carbon/epoxy laminates. Their results indicate a roughly linear correlation between void 

content and compressive strength decrease, with a reduction of about 40% for 4% of void 

content. A reduced influence of voids was reported by Cinquin et al [8] for quasi isotropic 

carbon/epoxy laminates: in this case, the authors noticed a 14% reduction in the compressive 

strength for a void content of 11%. 

Varna et al. [2] analysed the effect of voids on failure mechanisms in glass-fibre/vinylester 

fabric laminates produced by RTM and showed that increasing the void content decreased the 

transverse static strength. Results indicate an increase in the ultimate transverse strain to as 

high as 2% at high void content, whereas at low void content the laminates failed at 0.3%. 

The influence of void content on flexural performance of UD glass fibre reinforced 

polypropylene composites was investigated by Hagstrand et al. [9]. Although they used 

different fibre and matrix with respect to reference [1], they found a decrease in both flexural 

modulus and bending strength of 20 and 28%, respectively, with a void content of 14%. 

Carbon/epoxy [0/90]3s laminates with different void contents have been investigated by Liu et 
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al. [3]. In order to correlate the void content with the mechanical properties, short beam shear, 

three-point bending and tensile tests were performed and significant reductions were found in 

interlaminar shear strength (the ILSS decreased by 6% for each 1% increase of voids), 

bending strength (the strength fell by 22% for a void content of 3.2%) and bending modulus 

(18% reduction for a void content of 3.2%).  

The influence of void on fatigue behaviour is, in general, much more severe than the effect 

on the static properties. Almeida and Nogueira Neto [10] carried out four-point bending tests 

on [0/90]12 carbon/epoxy laminates and found that a void content of 3% did not affect the 

static strength but had a detrimental effect on fatigue strength. Interesting results were 

reported by Bureau and Denault [4], for continuous glass fibre/polypropylene woven 

composites under cyclic bending: different void contents caused only a shift of the S-N curves 

without changing their slope, indicating a reduction of fatigue life with increasing voids. 

Tension-tension fatigue results for glass/epoxy [0]10 fabric reinforced laminates, reported by 

Dill et al [11], indicate that fatigue strength reduction can be significantly greater than 20% 

for lower fatigue lives and close to 20% at lives of a few million cycles.  

The damage evolution under flexural fatigue loading was investigated by Chambers et al. 

[12] for UD carbon fibre composites. They noticed that, by varying the void content from 1.6 

to 3.1%, the fatigue life changed from 106 to 2000 cycles, under the same applied stress level. 

This detrimental effect was justified considering the fatigue damage evolution: the main 

damaging mechanism was a delamination located mainly in the mid-plane position. The 

authors asserted that the voids played a fundamental role in the fatigue life when they were 

detected in the inter-ply region where the delamination occurred.  

The fracture toughness, measured as the critical Strain Energy Release Rate (SERR) value, 

was also found to be affected by the voids. Asp and Brandt [13] investigated the effects of 

pores and voids on the interlaminar delamination toughness of carbon/epoxy laminates, 
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carrying out static mode I, mode II and mixed mode (GII/GI = 0.5) tests. They found that the 

voids had deleterious or no effect on the critical SERR at crack growth initiation, depending 

on the irregularity of the void distribution. However, the void presence always increased the 

SERR values during propagation in mode I and in mixed mode. The authors attributed this 

behaviour to a change in failure mechanism: in the void-free specimens an insignificant 

amount of crack bridging was observed at the crack tip. In the coupons containing voids, 

however, ply splits were observed to bridge the crack. In the case of pure mode II loading, the 

effect of voids was always adverse. A very high sensitivity to voids for mode I fracture 

toughness was reported also by Olivier et al. [14]: a void content of 5% induces a decrease by 

about 22% in the mode I GIC.  

Rizov investigated the influence of void presence on the mode I fatigue behaviour of long 

glass reinforced injection moulded polypropylene plates [15]. An increase in the void content 

resulted in higher crack propagation rates. A limited influence was however reported for 

volume of voids lower than 1%, whereas higher contents (up to 7.14%) induced significant 

reductions in the crack propagation threshold and resistance.  

On the basis of the extensive amount of experimental results available, initially some 

empirical approaches to correlate the material strength (interlaminar shear, bending, 

compressive and fatigue) with the void content were proposed. Only later, physics based 

models have been presented in the literature to assess the material response due to voids. For 

instance, starting from the experimental evidence, Almeida and Nogueira Neto [8] proposed a 

modified version of the Mar-Lin criterion [16] to evaluate both the static and fatigue 

behaviour of composite laminates under bending. Wisnom [5], proposed an analytical 

expression to predict the interlaminar shear strength starting from the Greszczuk's approach to 

evaluate the net section in the presence of void [17]. The ultimate tensile strain has been 
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studied by Varna [2], who proposed a simple model to explain the large strain to failure of 

high void content laminates. 

Some analytical and computational models have also been proposed for predicting elastic 

properties in the presence of voids. A simple analytical approach, based on beam theory, was 

presented by Hagstrand [9] to evaluate the flexural modulus. A more complete and complex 

computational model was proposed by Huang and Talreja [18] who analysed the effects of 

void geometry on elastic properties of unidirectional laminates. Their model agreed with 

experimental data and predicted severe impact on the out-of-plane elastic properties due to 

voids. For example, for 6% voids of experimentally observed shape, they found reductions of 

2% in longitudinal modulus Ex, 4% in transverse modulus Ey and 35% in the out of plane 

elastic modulus Ez. The authors noticed that, for a given void content, flat voids are benign for 

in-plane elastic properties but undesirable for out-of-plane stiffness. Long voids reduce the 

out-of-plane shear modulus significantly, but have little effect on the in-plane properties. 

In the literature some analytical approaches are available for evaluating the fracture 

toughness of composite laminates, but only in the absence of voids. 

One of the first models was proposed by Kanninen [19], who studied the influence of the 

region beyond the crack tip on SERR, by developing a model based on the theory of beams on 

elastic foundation. One of the aims of the paper was to evaluate the Mode I SERR GI, and the 

Stress Intensity Factor KI, on a DCB specimen, accounting for the influence of length and 

height of the specimen, in order to study both the initial crack extension and the unstable 

crack propagation. The main result presented in [19] is that, for calculating KI (and GI), the 

simple built-in beam model is applicable only when both the specimen length beyond the 

crack tip and the initial crack length are very large compared to the beam height, otherwise 

one must account for the effect of the region beyond the crack tip. 
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Suo et al. [20] presented an interesting approach to analyse the role of material orthotropy 

on GI, called orthotropy rescaling technique, which can reduce plane elastic problems for 

orthotropic materials to equivalent ones for materials with cubic symmetry. This method is 

based on two dimensionless parameters, based on the elastic properties of the material, and on 

the solution of the local equilibrium equations by means of a dedicated Airy stress function. 

The orthotropy rescaling technique allowed the authors to extract approximate solutions for 

orthotropic materials on the basis of known isotropic solutions, such as those of stress 

intensity factors and stress concentration factors. 

Williams et al. in [21] analysed the influence of the shear on Mode I SERR considering the 

DCB geometry. Starting from the integration of the local equilibrium equations, they 

proposed an analytical solution to evaluate GI, which includes two constants to be calculated 

by FE analyses.  

The methods discussed above and others reported in the literature provide means for 

evaluating the SERR in composite cracked beams. However, it seems that analytical tools 

describing the crack-void interaction are available only for isotropic plate loaded in tension 

(see [22-25] for some examples) and, to the best of authors' knowledge, no solutions have 

been developed so far for composite DCBs.  

In an attempt to provide a contribution in this area, the paper presents an analytical model 

suitable to describe the SERR in a DCB under mode I loading in the presence of voids. The 

model is based on the beam-on-elastic-foundation theory refined to include the shear effect. 

The presence of voids is simulated by an unsupported zone in the elastic foundation. After 

presentating the analytical framework of a refined beam theory, developed to account for the 

transverse shear compliance, the mode I SERR component is analytically evaluated following 

Kanninen's approach [19] and the shear effect is analysed. Then, the analytical model is 

extended to include the presence of voids and the influences of their shape, dimension and 
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position are investigated. The analytical approach is validated by comparison with the results 

obtained by dedicated Finite Element analyses, performed by using the Virtual Crack Closure 

Technique (VCCT) [26,27]. Finally, FE analyses are used to analyse more complex void 

distributions. 

 

2. REFINED BEAM THEORY INCLUDING SHEAR EFFECT 

The proposed model is based on the beam on elastic foundation approach, including shear 

effect and material orthotropy. The analytical background is described below, considering the 

co-ordinate system shown in figure 1. 

For an elastic body undergoing small displacements, the strain-displacement equations are: 

dx
du

x =ε  
dz
dw

z =ε  �
�

�
�
�

� +=ε
dx
dw

dz
du

2
1

xz   (1) 

where u and w are the displacements in the x and z directions, respectively, and their 

functional forms can be written as: 

)x(w)x(w

)x(z)x(u)z,x(u 0

=
⋅+= θ

  (2) 

where u0 is the midplane displacement in the x-direction. 

In classical beam theory θ(x) is the negative of the first derivative of the lateral 

displacement w with respect to x. However, if transverse shear compliance is non zero, θ(x)� is 

an unknown dependent variable which must be determined. Therefore, to include shear 

deformation effect, one uses the third of (1). 

Now, substituting the admissible form of the displacement into third of (1), we have 

�
�

�
�
�

� +=
dx
dw

)x(
2
1

xz θε   (3) 
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To determine the resulting three geometric unknowns, u0(x), w(x) and θ(x), �it is necessary 

to consider the equilibrium, constitutive and compatibility equations, as well as the strain-

displacement relationships. 

For a midplane symmetric beam made of orthotropic material (without coupling terms), the 

constitutive equations are: 

0
x

yxxy

x0
x11x h

)1(
E

AN ε
νν

ε ⋅
�
�
�

	





�

�
⋅

⋅−
==   (4) 

xz
xz

xz55x
hG

2A2Q ε⋅��
�

�
��
�

�

χ
⋅=ε=   (5) 

dx
)x(d

12
h

)1(
E

dx
)x(d

DM
3

yxxy

x
11x

θ
νν

θ ⋅
�
�
�

	





�

�
⋅

⋅−
==  (6) 

where Nx and Qx are the normal and shear stress resultants and Mx is the stress couple per unit 

edge distance; 0
xε  is the middle surface strain in x direction; A11, A55 and D11 are the terms of 

stiffness matrix derived from the lamination theory, Ex is the Young modulus in x direction, 

νxy and νyx are the Poisson's coefficients, Gxz is the shear modulus, h is the beam height and 

and χ is the shear factor (figure 1). The equilibrium of the beam can be written as: 

0)x(p
dx

dQx =+   (7) 

0Q
dx

dM
x

x =−   (8) 

where p(x) is the lateral load acting in the z-direction.  

The elastic foundation is usually described in the literature as an elastic medium with a 

constant foundation modulus. This foundation, represented by a spring bed, acts on the beam 
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as a distributed load, proportional to the local lateral displacement w(x). The force per unit 

area p(x) is therefore –k�w(x) and the equation (7) becomes: 

0)x(wk
dx

dQx =⋅−   (9) 

Substituting (3) into (5), through (7) and (8), it is possible to write the following ordinary 

differential equation (ODE) system as 
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  (10) 

After double differentiation of the last equation, we obtain: 

hG
k

dx

)x(wd
dx

)x(wd

dx

)x(d

xz
2

24

3

3

⋅
⋅+−= χθ   (11) 

and substituting the first of Eq. (10), we obtain the governing fifth order ODE system for a 

beam on elastic foundation including the shear effect, as 
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The integration of last equation of (12) gives the w(x) expression and then from the first 

equation we can obtain θ(x). The general solution for w(x) is: 
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�
=

λ=
4

1i

x
i iec)x(w   (13) 

where λi are the roots of the characteristic polynomial and ci constants depending on 

boundary conditions. The λi are: 

( )β−α+α±=λ 422
2
1 2
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2
1 2

4,3  (14) 

and they can be either real or complex depending on the elastic material constants. 

Considering that λ2 = - λ1 = �δ and λ4 = -�λ3 �= �ε, the displacement w(x) becomes 

x
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x
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Hence, the equation of the beam curvature is  
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The constant c5 must be zero to satisfy (8) for each value of the co-ordinate x.  

When Gxz tends to infinity, the last equation of system (12) becomes the classical fourth 

order differential equation of beam on elastic foundation reported in Ref. [19]. 

 

3. MODE I STRAIN ENERGY RELEASE RATE  

The Mode I fracture toughness in composite laminates is usually measured on DCB 

specimens. In the DCB analysis, one can take advantage of the geometric symmetry and 

model only half of the specimen, as frequently done in literature. The support provided by the 

remaining part is represented by an elastic foundation with stiffness depending on the material 

properties. Following Kanninen's approach [19] and using the new formulation described 

above, the mathematical description of a DCB arm can be made by considering two geometry 
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domains (-a,0) and (0,c) separately and then matching the values of w(x) and θ(x) and the 

equilibrium equations at x=0, (see figure 2). Furthermore, at x=c, both bending moment and 

shear force must be zero; at x=-a shear force must be -F and bending moment zero. 

Considering the material orthotropy and according to ref. [19], the value of spring bed 

stiffness can be calculated as k = 2b·Ezz/h. For 0xa ≤≤−  the parameter k becomes, 

obviously, zero and the solutions of system (12) are polynomial functions.  

The results obtained from the analytical model for w(x) and θ(x), considering the material 

properties, geometry and load data listed in Table 1, are plotted in figure 3. The results of the 

FE validation discussed later are also reported in the figure. 

Once the displacement function is known, the elastic strain energy W of the beam shown in 

figure 2 can be evaluated as the external work done by the applied load F per unit width. 

Considering that the DCB specimen is characterised by two arms, the elastic strain energy W 

of the entire specimen is: 

 )ax(wF
2
1

2W −=⋅⋅=         (17) 

Hence, the Mode I component of SERR is: 

 
c

W
a
W

da
dW

GI ∂
∂−

∂
∂==         (18) 

The closed form for GI was obtained by using the symbolic toolbox of Matlab 6.5 code. 

The proposed analytical model allows the influence of the shear modulus Gxz on GI to be 

evaluated. Figure 4 shows the results obtained with the data summarised in Table 1: as 

expected, an increase in the transverse shear modulus Gxz induces a decrease in the Mode I 

SERR. In the same figure, the GI values calculated following the classical beam theory and 

Kanninen's approach are reported. The error ranges from 30.6 to 13.8% and from 25.2 to 
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7.0%, respectively, for the two approaches, with increasing value of the shear modulus. FE 

results are also reported for comparison. 

 

4. EFFECT OF VOIDS ON STRAIN ENERGY RELEASE RATE 

The analytical model described above can now be effectively applied to investigate the 

potential effects of voids on the Mode I component of SERR. The application is restricted 

here to the case of a single void, since the extension to the case of multiple aligned voids is 

conceptually straightforward and characterised only by a significant increase of mathematical 

formalism. To describe the void presence beyond the crack tip, the beam length for 

cx0 ≤≤ is divided into three separate zones: the first and the third on elastic foundation and 

the second, simulating the void, without constraints and characterised by suitable moment of 

inertia Jv and area Av (see figure 5).  

Considering the integral average of the beam height evaluated in the void region, Jv and Av 

were calculated through the following equations: 

3R

R

3
22

v 4
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h
12
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Then, the first and the third domains are described by an ODE system in the following 

form: 

cxRd
R-dx0

     

0)x(w
dx

)x(wd
dx

)x(wd

)x(w
dx

)x(d

2

24

3

3

≤≤+
≤≤






�






�

�

=⋅+−
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 (21) 

where "d" is the distance between the crack tip and the centre of the void and “R” is the void 

radius.  
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On the other hand, the “unsupported” domains are described by: 

( )
( )VV
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2
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3

A,JRdxR-d
A,J0xa-

     

0
dx

)x(wd
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θ
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 (22) 

A similar approach can be used in the case of a single elliptical void, with maximum and 

minimum axes of length 2e and 2f, respectively. Jv and Av are evaluated by substituting "f" 

for "R" in equations (19) and (20) and the domain of integration is defined by considering "e" 

for “R” in equations (21) and (22). The deformed state of the specimen is then described by 

four fifth order ODE systems, which require 20 constants to be determined for the solution. 

The equilibrium and compatibility equations used are summarised in Table 2. As a further 

condition, the solution of each ODE system must again satisfy the equilibrium equation (8). 

The previous conditions generate a linear system of 20 equations, which was solved by 

using the symbolic toolbox of Matlab 6.5 code. After the calculation of the work done by the 

external loads, the Mode I SERR can be evaluated as: 

c
W

d
W

a
W

da
dW

G vvvv
v,I ∂

∂−
∂

∂−
∂

∂==         (23) 

Some results of the application of the new model are presented in figures 6-8. In figure 6, 

the effect of a void is represented by the ratio between the SERR evaluated in the presence of 

the void, GI,V, and the SERR for the pristine specimen GI. The analysis was made for both 

circular and elliptical voids, at several distances between void and crack tip. Figure 7 shows 

the effect of the void size and it is clearly evident that the SERR values increase in the 

presence of larger voids located in the vicinity of the crack tip. The shape of the elliptical 

voids was also found to have a significant effect, with elongated voids being much more 

critical (figure 8).  
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5. MODEL VALIDATION 

The validation of the analytical model was done by a comparison with the results obtained by 

dedicated FE analyses. A 2D FE model was developed by using the Ansys 8.0® code and 

PLANE82 elements under plane strain conditions. Material properties, geometry and load 

data are listed in Table 1.  

As first check, the results obtained from the analytical model for w(x) and θ(x) were 

compared (see figure 3). It is important to highlight that the comparison is made between a 

1D (analytical) model with a 2D (FE) model. For this reason, during the FE analyses, the w(x) 

and θ(x) values were evaluated on both middle and top surfaces of the arm. A general good 

agreement between analytical and numerical results can be observed in figure 3, confirming 

the accuracy of the analytical model proposed above. However, in the cx0 ≤≤ domain 

(figure 3b), significant discrepancies between analytical and FE middle surface solution for 

w(x) and analytical and FE top surface solution for θ(x) were found. This apparent 

inconsistency can be easily justified when considering the dimensionality of the problem (1D 

for the analytical model, 2D for the FE model). 

As a further validation of the analytical model, the influence of the transverse shear 

modulus Gxz on the Mode I component of SERR is calculated and compared with suitable FE 

calculations (see figure 4). The FE evaluation of GI was made by applying the VCCT [26, 

27]. As required by this method, the region near the crack tip was modelled with regular 

shape elements of uniform size, as shown in figure 9. The element size "e" was chosen equal 

to 0.005 mm for the DCB model without voids. In the case of void presence, instead, the "e" 

value was imposed equal to 1/20 of the void radius R. 

As shown in figure 4, where the influence of shear modulus on GI is analysed, a good 

agreement between analytical and numerical results was found (maximum error around 4%). 
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In order to validate the present analytical model in the case of voids, several FE analyses 

were performed to calculate the mode I SERR component for different dimensions, shape and 

distribution of voids from the crack tip. As shown in figure 6, the analytical results obtained 

from Eq. (23) are in reasonably good agreement with FE calculations.  

 

 

5.1 Multiple aligned voids 

As previously described, the proposed analytical model can be extended in the case of 

multiple aligned voids with a significant increase in the mathematical formalism. Only for this 

reason we decided to investigate the influence of multiple voids on GI by means of 2D FE 

analyses. Again the VCCT method was used and 2 and 3 aligned circular voids were 

considered, changing both the distance from the crack tip "d" and the mutual distance "D" 

between the voids, as shown in figure 10.  

In figure 11 are shown the FE results obtained in the case of multiple aligned circular 

voids, with a radius of 0.1 mm and mutual distance kept constant and equal to 2 mm. The 

influence on GI here is similar to that for the single void, but the influence is greater. 

Moreover, increasing the number of aligned voids, it seems that the influence on mode I of 

SERR is controlled by the first 2 voids.  

When the position of the first void is fixed, as shown in figure 12, the effect of voids 

beyond the nearest one from the crack tip shows a maximum at a characteristic distance from 

the first void.  

 

6. CONCLUSIONS  

A new methodology for the evaluation of Mode I Strain Energy Release Rate for 

composite DCB specimens in the presence of voids has been presented and discussed. 
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The analytical model is based on the beam-on-elastic foundation theory, improved and 

modified to account for transverse shear effect and material orthotropy. The presence of a 

single void in front of the crack tip has been considered here; the extension to the case of 

more aligned voids requires only a significant increase in the mathematical formalism without 

any conceptual difficulty. After a successful validation based on FE analyses, the application 

of the model allowed us to investigate the influence on the SERR of design parameters like 

material properties, location, shape and size of the void. Finally, different void distributions 

were analysed, in order to investigate the influence of other parameters such as the number of 

the voids aligned behind the crack tip and their mutual distance. 

The main results can be briefly summarised as follows: 

• the Mode I SERR in DCB specimens is significantly influenced by the transverse shear 

properties of the laminate; 

• in the presence of voids, SERR values increase as the dimension of the void increases and 

with the decrease in the distance between void and crack tip;  

• the void shape plays an important role: circular and elliptical voids are equally critical 

when they have the same longitudinal size (R=e). On the other hand, elliptical voids are 

much more critical when the vertical size is the same (R=f). Morever, SERR values for 

elliptical void increase significantly with the aspect ratio.  

• with increasing number of aligned voids it seems that the influence on GI is controlled by 

the first two voids. 

• the effect of voids beyond the nearest one from the crack tip shows a maximum at a 

characteristic distance from the first void. 

Finally, considering the results presented in this paper, a general conclusion can be drawn. 

Even supported by the experimental observations presented by Asp [13], in the authors' 

opinion the presence of voids cannot be measured by using only their volume content. In fact 
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important parameters are their position, shape and dimensions. For the effect of voids on 

fracture toughness, a small void near the crack tip has a stronger influence than a big void far 

away from the crack tip. 
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Figure 1: Co-ordinate system and positive directions for stress resultants and stress couple 

(per unit edge length in the y-direction) 
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Figure 2. Beam-on-elastic-foundation model of one arm of a DCB specimen 
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Figure 3. Comparison between analytical model and FE results 
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Figure 4. Influence of shear modulus Gxz on Mode I component of SERR. 
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Figure 5. Model of void presence based on the beam-on-elastic-foundation approach. 
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Figure 6. Effect of the void presence on the Mode I component of SERR 
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Figure 7. Influence of the void size 
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Figure 8. Influence of aspect ratio for elliptical void 
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Figure 9. Finite element model of the DCB with boundary conditions and details of the mesh 

near the crack tip and around the void edge. 
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Figure 10. Schematic view of the analysed parameters in the case of multiple aligned voids. 
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Figure 11. Influence of the number of the voids on GI. 
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Figure 12. Effect on GI of the number of aligned voids with different mutual distances. 
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Table 1: Elastic material properties, DCB geometry and external applied load.  
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Table 2: Equilibrium and compatibility equations in the case of a single void 
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