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ABSTRACT
We present a new formal approach to retrieval personaliza-
tion which emcompasses a query personalization process at
the user’s side with a light document adaptation at the in-
formation server’s side. Our solution relies on the use of a
domain ontology: queries and documents are in fact indexed
by sets of concepts. For each concept of the query, the query
personalization process allows to express the importance of
linked concepts, which may vary according to the search con-
text. Each query concept can be ”clarified” by this process;
although the proposed method clarifies only central query
concepts. The initial query as well as its defined clarifica-
tions are sent to the server. Then, the server reconsiders its
document representations based on both the query and the
concepts clarifications it received. The proposed solution
does not require that the information server maintains any
user profile, and can be useful when, for privacy concerns,
it is committed not to profiling the users.

Keywords
Query Explanation, Document Adaptation, Similarity and
Propagation, Semantic Vector Space

1. INTRODUCTION
Personalization is nowadays an important issue for many

data and information retrieval applications, aimed at en-
hancing the user experience and business profits. Coping
with a huge and increasing amount of data accessible from
the Web, retrieval systems need to display not only relevant
information to a specific query but also information that
match specific users needs, interests, preferences. And this
is seen as an important marketing tool and a requirement
for many electronic businesses.

Most of the personalization models are based on two im-
portant and complementary aspects: (i) implicit or explicit
collection and consequent representation of user’s behavior,
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preferences, interests; (ii) leveraging that knowledge during
the retrieval process. This is mainly done by expanding
queries [10], by re-ranking search results or by re-indexing
documents [2]. Some of these tasks, like expanding queries,
can be achieved either at the user’s side or at the informa-
tion providers side (i.e. server’s side). This paper presents
a personalized information retrieval approach which does
not assume any user profiling by the information server.
Our model favors (semi-)automatic query explanation at the
user’s side. Then the server reconsiders its document repre-
sentations in the light of both the query and the explanation
it received, thus enhancing the query evaluation process by
specifically adapting it to the user. This approach can be
useful when the server privacy policy commits it to not pro-
filing the user.

In parallel to an ever increasing amount of information,
these last ten years have witnessed a huge work concerning
semantics, in particular with the definition of many domain
ontologies (like in medecine, biology, almost any domain)
and linked technologies. While a specific language, namely
SPARQL, has been designed to query triple stores, other
approaches consider using the concepts of the ontology to
represent both data (let it be semi-structured or unstruc-
tured) and queries, thus considering search at a more se-
mantic level. Our approach relies on the usage of a do-
main ontology, with queries and documents indexed by its
set of concepts. We represent both queries and documents
by semantic vectors [1]. Each concept is weighted according
to its representativeness in the document (respectively the
query). As in the classical vector space model, relevance is
then modeled as a distance between the two vectors.

This paper does not focus on the indexing, which can be
achieved (semi-)automatically by several indexers. Then,
given a user query (user’s side) and document vectors (server’s
side), the objectives of our approach are to define (i) a query
explanation process and (ii) a light weight adaptation pro-
cess which adapts the document representations to the query
(but does not require re-indexing) and thus conceptually en-
hancing the query evaluation process. Both objectives are
linked, as the adaptation process uses the query explana-
tion. The proposed solution relies on several assumptions
and choices.

First, each weighted concept of the query is explained sep-
arately. This seems more precise to us than a classical query
expansion, which may lead to an unbalance of the original
components of the query [10].



Second, the explanation of a given concept considers two
notions : given the user’s domain ontology, we assume that a
similarity function on the set of concepts specifies to which
extent a given concept is similar to another one. This is
part of the user’s modeling of the domain. However, to our
view, similarity is not enough to express the importance of
a linked concept in a query. Indeed, two different search
contexts may require to give more or less importance (inter-
est) to a same similar concept. We formalize this intuition
by introducing the concept of propagation function. For
each concept, it expresses the importance in the search of
concepts with given similarity values. Both the similarity
and importance values are computed automatically, but the
user can keep control on the process. Given that importance
propagation may vary depending on the search context, the
user should have a toolbox with several propagation func-
tions which she can choose or which are automatically pro-
posed depending on the context (there may be a profiling
module at the user’s side which helps).

Finally, both the initial query and the concept explana-
tions (which are vectors) are sent to the information provider,
which has to evaluate the relevance of its documents. As ex-
plained before, our choice is to avoid re-indexing. Then,
given the document representations (i.e. vectors), there
are two options : (i) comparing each concept explanation
with each document, and then aggregate the results to get
a global relevance measure or (ii) computing an adapted
document representation (without changing the initial one)
which characterizes better each document with respect to
the search needs expressed by the concept explanations. We
have chosen the second option, in which, in the end, the
relevance computation considers the initial query and the
document adaptations.

Our contributions are: (i) a new formal approach to per-
sonalization which encompasses a query personalization pro-
cess from users together with a light document adaptation;
(ii) our solution does not require that the document provider
maintains user profile; (iii) our solution is non-intrusive for
existing systems, i.e. it can be plugged in systems with-
out need of document reindexing, query reformulation nor
special relevance function.

In the remaining of this paper, we first present a moti-
vating example which shows that questions ”how concepts
are similar?” and ”how much of them are interesting and
to what extent?” are crucial for personalized retrieval; this
is the core of our solution, and hence we present its archi-
tecture (Section 2). Then we formally define query per-
sonalization (Section 3) and document adaptation (Section
4). After a discussion on main assumptions of our work
(namely ontological heterogeneity and similarity and prop-
agation functions) in Section 6, we conclude (Section 7).

2. MOTIVATING EXAMPLE AND SYSTEM
ARCHITECTURE

While selecting query terms that are fully compatible to
documents’ providers terms (index terms) is in itself a diffi-
cult problem, a same term could also have slightly different
meanings to different users (term ambiguity).For instance
let us assume three users Alice, Bob and Chikako, willing
to adopt a dog. Their request, e.g. ”I would like a dog”, is
very straightforward, and they can send it to an animal wel-
fare organization nearby their living place. Unfortunately,

there are a lot of sheltered dogs in these organizations, and
scanning their data base could be tedious. Hence, it should
be useful to specify which kind of dog each people intend to
adopt. On the other hand, if they want a pedigree dog, they
could be disappointed when using the keyword ”dog”. In-
deed, dog breeders are canine specialists, and their animals
shall not be deemed to be ”dog”, but ”labrador”, ”akita”,
or whatever. In both cases, a more accurate description of
the user’s preferences, i.e. the intended objects should be
useful to specify or to expand queries.

Let’s Alice and Bob more likely consider as a dog pro-
totype the labrador, while Chikako’s dog prototype is rep-
resented by akitas (see Figure 1). Even if the concept dog

has the same meaning in their mind, the descendant (more
specific) concepts of dogs are not all similar, being some are
more relevant than others. The consequence is that when
querying the animal welfare organization data base, they
don’t look for the exactly same items. Then, a solution to
improve the results expected from the evaluation of their
queries should take into account the users’ prototypal con-
cepts and their similar concepts. This means to consider
a central concept (the prototype) and to formalise a con-

cept similarity function; the user will finally decide which
items in the ranked list will be relevant to her/him.Thus,
while labradors are the prototype ”dogs” to Alice and Bob,
it may happen that dalmatians and akita are still acceptable
to Alice while not to Bob. Likewise, Chikako considers that
dalmatians and labradors, even if they are less relevant than
akita, are still ok. We call this combination of proximity to
the central concept and interest values a propagation func-

tion. In Figure 1 the interest values that Alice, Bob and
Chikako give to the concepts according to their similarity to
dog.

Figure 1: Alice, Bob and Chikako’s similarity rank-

ing of concepts and the propagation of their interest,

both w.r.t. concept dog.

The propagation function aims at describing a dimension
of a query, i.e. one of its main concept. As each user man-
ages its own propagation (own similarity and own interest
values), we call such a description a personalized dimension

of the query. Once the query is personalized, our solution is
to keep the query unchanged, but to transform the document
representations according to the personalized dimensions. It
brings us to adapted documents. Finally, the adapted docu-
ments are compared to the initial query. Architecture of our
system is composed of five modules (Figure 2), over both
user and document provider. Actually, the basic modules
(white) are already provided by current systems. You can



see two semantic indexing modules on both user’s and doc-
ument provider’s side; these modules represent the queries
and documents based on the representation model of the
IR system (in our case: semantic vectors). Every system
has also a relevance computation module (matching mod-
ule), which ranks documents according to their relevance
to the query (cosine). We add to this classical architecture
three new modules (grey). On the user’s side, the query

personalization module explains the central concepts of the
query, according to user’s similarity and propagation func-
tions. We see below in this paper how a user could obtain
these functions (see Section 6.2). The descriptions are then
given to the data adaptation module, which transform the
document representation w.r.t. them.

Figure 2: System architecture. All new grey mod-

ules are included in a classical semantic retrieval sys-

tem.

3. QUERY PERSONALIZATION
In this section, after a description of the semantic vec-

tors, we present a formalization of the propagation of users’
interests, which constitutes the main process of query pres-
onalization. We provide some inputs on similarity and prop-
agation functions later in this paper (see Section 6.2).

3.1 Semantic Vectors
In the vector space model [1], both queries and documents

are represented as vectors of keywords (terms). If there are n

keywords, each query or document is represented by a vector
in the n−dimensional space. Relevance of a document to a
query can then be calculated by measuring the proximity of
the two vectors. An approach based on semantic vectors [16]
uses the same kind of multi-dimensional linear space except
that it no longer considers as dimensions the keywords, but
concepts belonging to a considered ontology: the content
of each query (respectively document) is represented by a
semantic vector according to each concept.

We consider a very general definition of ontology [6]: it
is a set of concepts together with a set of relations between
those concepts. The only assumption we make is to be able
to compute a similarity between concepts of an ontology,
whatever the relations used. In the rest of the paper, we
assume the existence of an ontology Ω, CΩ being its set of
concepts. Then, a simple formal definition of a semantic
vector can be the following:

Definition 1 (Semantic Vector). A semantic vec-
tor −→vΩ is an application defined on the set of concepts CΩ

of the ontology:

∀c ∈ CΩ,
−→
vΩ : c → [0, 1]

Reference to the ontology will be omitted whenever there
is no ambiguity.

3.2 Propagation of Interest
Conceptual similarity is a function centered on a concept:

it gives a value to every concept according to its similarity
to the central concept.

Definition 2 (Similarity Function).
Let c be a concept of CΩ. simc: CΩ → [0, 1], is a similarity

function iff simc(c) = 1 and 0 ≤ simc(cj) ≤ 1 for all cj �= c

in CΩ.

Given a similarity function and a central concept c, we
define a propagation function as a function which describes
the importance of every concept according to c. We assume
this function is monotonically decreasing.

Definition 3 (Propagation function).
Let c be a concept of CΩ; and let simc be a similarity func-

tion. A function Pfc : [0, 1] �→ [0, 1]
simc(c

�) → Pfc(simc(c
�))

is a propagation function from c iff Pfc(simc(c)) = 1,
and ∀ck, cl ∈ CΩ simc(ck) ≤ simc(cl) ⇒

Pfc(simc(ck)) ≤ Pfc(simc(cl))

We have suggested some propagation functions in [14].
They are inspired by membership functions used in fuzzy
logic, i.e. the most similar concepts are given the value 1,
the most dissimilar are weighted with 0, and in between,
concepts receive a value according to their similarity:

Pfc(x) = fl1,l2(x) =
1 if x ≥ l1

1
l1−l2

x + l2
l1−l2

if l1 > x > l2

0 if l2 ≥ x

3.3 Semantic Personalized Query
As we said in the introduction we do not expand (by

propagation) in a single new vector the weights of the cen-
tral concepts of the query. Moreover, each central con-
cept c of a query −→q is personalized in a separate vector.

Thus a personalized dimension
−−−−→
persDc is a semantic vector

which records the propagation of one concept only. We use
C−→q = {c : c is a central concept}; a central concept is an
important concept, e.g. any weighted concept, a concept
weighted with a greater value than a threshold, etc.

Definition 4 (personalized dimension).
Let

−→
q be a query vector and let c be a concept in C−→q . A se-

mantic vector
−−−−→
persDc is a personalized dimension (persD),

iff ∃Pfc∀c� ∈ CΩ,
−−−−→
persDc[c

�] = Pfc(simc(c
�)) and

−−−−→
persDc[c] =

1.

The mathematical expression ending the definition means
that no matter how the personalized dimension is obtained
the only restriction is that no concept can have a greater
weight than c. And most importantly, the value of the cen-

tral concept c in a
−−−−→
persDc is always 1, and not the original



value, because a personalized dimension is an explanation
of a dimension of the query. The original query, and then
the original values of the central concepts, are kept for the
matching process.

A personalized query is the set of personalized dimen-
sions, one for each central concept of a query: persQ−→q =

{−−−−→persDc : c ∈ C−→q }. Figure 3 shows the personalization of a
query −→

q with two weighted concepts c4 and c7.

Figure 3: A personalized query composed of 2 per-

sonalized dimensions.

4. DOCUMENT ADAPTATION
Once user has explained central concepts of his/her query

−→
q , s/he sends the query personalized to the document provider,
who adapts his/her documents to the persQ−→q . Adaptation
is not a reindexing of the documents, like with Bordogna and
Pasi [2] for instance. It is a lightweight filter of documents
through what the query explains as important in its person-

alized dimensions. If a concept ci is relevant for
−−−−→
persDcj ,

then every document with this concept ci should give that

information in its adaptation. In fact, for any
−−−−→
persDcj ,

documents retain a unique value in the adaptation vector
for concept cj , which is the best correlation between per-

sonalization value of ci ∈
−−−−→
persDcj and value

−→
d [ci]. While

all concepts involved in some personalized dimension are al-
ready captured by this process, their values are then null in
the adaptation. Other concepts, not relevant for any per-
sonalized dimension, keep their original value, as they show
some dimensions of the document not relevant for the per-
sonalized query. Indeed, the norm of the vector gets higher
(and consequently, its relevance lower). For example, this is
the case for concepts c1 and c9 in Figure 4.

Algorithm 1 details the computation of the personaliza-

tion of document representation
−→
d .This algorithm ensures

that all the central concepts of the initial query vector are
also weighted in the personalized document representation
as far as it is related to them. With respect to the query,
the personalization of the document representation is more
accurate because it somewhat enforces the characterization
of the document over each dimension of the query.

The example of Figure 4 illustrates the computation of
a persR. Each persD of the personalized query is combined
with the semantic vector of the document. Let us consider−−−−→
persDc4 . In the document, the weight of c4 is null. How-
ever, the personalized dimension related to c4 weights other

concepts. In particular, we have
−−−−→
persDc4 [ c2 ] = 0.3. As

−→
d [ c2 ]= 1, the resulting product is 0.3. This value improves
−→
d [ c4 ] (which is null), so we keep it in the adaptation of
the document representation. Hence, in the persR, we can
express that the document is related to concept c4 of the
query, even if it wasn’t the case initially. Likewise, three
concepts of the document (c6, c7 and c11) are important

to
−−−−→
persDc7 , and the adaptation retains only one value for

Algorithm 1: Adaptation of document representation
wrt. a query.

input : a semantic vector
−→
d and a personalized query

persQ−→q on an ontology Ω

output: a semantic vector persR
−→q
−→
d
.

begin

forall c ∈ C−→q do

forall c
� :
−−−−→
persDc[c

�] �= 0 do

persR
−→q
−→
d
[c] ←

max(
−→
d [c�]×−−−−→persDc[c

�], persR
−→q
−→
d
[c]);

forall c �∈ C−→q do

if ∃c� ∈ C−→q :
−−−−→
persDc� [c] �= 0 then

persR
−→q
−→
d
[c] ← 0

else

persR
−→q
−→
d
[c] ←

−→
d [c];

return
−→
i d;

end

−−−−→
persDc7 [c7] = 0.6. Note that while a classical expanded
query would have given one single value from central con-
cept c4 (but possibly on c2 instead of c4), expansion should
have weighted 3 concepts from c7 (c6, c7 and c11). Our so-
lution does not add as much noise as it could with classical
expansion. Concepts c1 and c9 eventually keep their original
value in persR of document �d because they are not involved
in any persD.

Figure 4: Obtaining the adapted document repre-

sentation.

5. EXPERIMENTS
Our goal is to validate our approach in several steps: first

step is cost analysis which enables to quantify the additional
costs induced by the method. Second one is just to verify
that given a query and different search contexts, the users
get different results; this is can be viewed as a minimum re-
quirement to get personnalized results. Finally, the method
should be faced with a significant number of users who would
estimate whether (or to which extent) they get personalized
results. As we currently judge our number of users not sig-
nificant enough, the paper focuses on the first two steps.

Complexity of our solution relies on the complexity of
similarity and propagation functions, which together define
query personalization, and document adaptation. There ex-
ist a lot of similarity measures (see Section 6.2) but they
always consist on two nested loops. Let n be the number
of concepts in the ontology, then similarity computation is



in O(n2). Propagation gives a weight to every concept; and
there are as many propagation functions as there are cen-
tral concepts. Assume m the number of central concepts,
then we need O(m × n) to compute propagation. As m is
generally very small compared to n, query personalization
has a complexity of O(n2 + n). However, these two steps
can be computed before and cached; so there is not always
needed to compute them whenever user queries the system.
Adaptation mainly consists of a loop on every concept of
the ontology for every document and persD. Then, for every
central concept and every document, values are inserted at
indices of central concepts. Finally, a loop is processed on
concepts to put the values of concepts not involved in any
persD. If d is the number of documents, we have an adapta-
tion computation in O(d(2(m× n) + m× log(n) + n)). But
this can be strongly reduced by using proper data model:
big vectors (as many indices as there are concepts in the
ontology) are useless while documents and queries are not
expressed on all the concepts but a very small subset, etc.
The worst case is not realistic and we assume a fast com-
putation, by replacing at least n by n

� which is drastically
smaller.

Our experiments use the Cranfield corpus and WordNet
(considered as a ”lightweight” ontology) to index the docu-
ments. We developped a prototype software called Mysins
[15] with a service oriented architecture. In Mysins search
can be personalized by choosing the similarity and prop-
agation functions. Later versions will have a more friendly
interface, with automatic or semi-automatic personalized ex-
planations (which can be obtained through profiling for ex-
ample). The server side of Mysins runs the document adap-
tation module. We ran the 225 queries of the corpus. The
number of retrieved documents is 50 (among the 1400 of the
corpus). This later assumption seems reasonable as several
user behavior analysis show that users generally consult the
first result pages only. We use two different similarity mea-
sures: Wu and Palmer [17] noted sim

1, and a modified ver-
sion of sim

1 (which permutes values of three closest groups
of concept) as sim

2. Likewise we use two different propaga-
tion functions: prop

1 = f0.95,0.9 and prop
2 = f0.8,0.6.

In order to compare two sets of retrieved documents with
their relevance value, we consider two measures. First one
(Jaccard coefficient) measures the similarity of the two sets
of documents under consideration (without considering their
relevance value). It is defined as the number of documents in
the intersection divided by the number of documents in the
union the two sets. Second one takes into account the order
in the ranking of retrieved documents. We have chosen a
modified version of Rank Distance (RD) [4]: each document
is given a value according to its position in the top-50, 50
for the 1st, 49 for the 2nd, etc. and 0 for the 51st onwards.
Value of each document in first list is then compared to its
value in second list. This measure gives of course more im-
portance to permutations on top of the list of retrieved docu-
ments. You can see in Figure 5 (a), (b) and (c) the results for
�(sim1

, prop
1), (sim1

, prop
2)�, �(sim1

, prop
1), (sim2

, prop
1)�

and �(sim1
, prop

1), (sim2
, prop

2)� respectively. Every dot
corresponds to the comparison of answer lists of a query,
using the given parameters. X-axis shows Jaccard measure
and y-axis the home-made RD.

It is first worth noticing that dots are not close to (0,0),
which means that there are differences between the two re-
sults sets. Most dots have Jaccard values between 0.05 and

0.4, while their RD values are between 0.1 and 0.6. Results
sets are different (not the same collection of documents) and
their ranking are even more different. Propagation eventu-
ally seems more important than similarity, because Figures
5 (a) and (c) have more scattered dots, with higher dissim-
ilarity and/or disorder values in average.

This section has proven that: (i) additional cost of our
solution is limited and (ii) in different contexts the results
sets are different and show a personalization of the retrieval.
Future work intends to validate the approach with ”real”
users.

6. DISCUSSION AND RELATED WORK
In this section, we first position our assumptions and

propositions w.r.t. related work. We then discuss how
collection of similarity and propagation functions can be
thought.

6.1 IR, Personalization and Ontologies
Context formalization for IR has focused a lot of atten-

tion in past few years [9]. Many work address this problem
through the construction of a contextual space, collecting
information on past queries, users clicks, etc. While most
of them use terms to characterize the context, Mylonas et
alii [9] propose to use an ontology. Their work is very in-
teresting and can be compared to ours. But it does not use
semantic vectors and our solution is more lightweight.

Query expansion has been seen promising to enhance small-
size queries in order to help IR engines [3]. But while query
expansion is a worthwhile contribution to IR, offering more
relevant results, it often adds noise in the retrieval. So IR
systems need to know when to use it [12]. Our solution
do not use a query expansion, but a description of central
concepts of the query through a propagation function on the
concepts of the ontology. We have proven in [14] that our so-
lution performs better than expansion in general case. And
it is specifically more resistant to the use of many concepts.

Assuming a total agreement on ontologies on both sides
is not realistic: an ontology is a conceptualization of knowl-
edge upon the world, and we can hardly imagine a unique
model of the world for every users. Alignment of ontologies,
i.e. mappings between parts of the ontologies [5], are mostly
used to address these problems. However these alignments
are often incomplete: either because the process is time or
resource consuming, or because users do not want to share
all their conceptualizations, or because it is not always pos-
sible. While query or document indexing could be done on
unshared parts of ontologies, it is useless. Indeed, every un-
shared element could not be understand, and hence no docu-
ment would be relevant (cosine works only on common parts
of queries and documents vectors). However, these unshared
parts are meaningful for users and document providers and
they are worthy of being used. We propose in [14] an inter-

pretation process which let users and providers free to use
their own ontologies during the information retrieval pro-
cess. We are still working on an extension of the system
described in this paper to heterogeneous context.

6.2 Similarity and Propagation
Similarity functions have been studied for a very long time

[11, 13], etc. There exist a lot of different similarity func-
tions, depending on the application and some desired prop-
erties. While most of them are context-independant, some



(a) (b) (c)

Figure 5: Comparisons of three pairs of parameters: same similarity and different propagation functions

(a), different similarity and same propagation functions (b) and different similarity and different propagation

functions, using Jaccard (x-axis) and home-made RD (y-axis).

takes it into account [7, 8]. Even if the problem of finding a
personalized similarity function is not exactly addressed in
these studies, we assume it could be done quite easily. For
instance, we could imagine to collect the relative use fre-
quency of sister concepts (e.g. labrador and akita) to give
them different similarity values.

We do not address either the issue of propagation function
personalization. It is a topic in itself and we focus here
on the general process of personalization. However, we can
imagine to first use a basic propagation, like we used in
the worked mentioned before; then the system could collect
feeedback from the user and change this basic propagation,
according or not to some context. We would like to focus
later on this issue.

7. CONCLUSION
Personalization of answering, content filtering, recommen-

dation systems, etc. have been a topic of immense interest in
recent times. While some solutions use a collection of user’s
behavior at providers’ side or may substantially modify the
retrieval system, our solution does not require that the infor-
mation server maintains any user profile and is non-intrusive
for retrieval systems. Moreover, we focus on a description
of the query in order to watch documents in the light of its
needs, and do not invent a new query formulation paradigm,
or a reindexing of documents. Once users provide similar-
ity and propagation functions, our system is lightweight and
can be integrated in most information systems, assuming the
system use semantic vector representations for queries and
documents; then our solution can be used with documents,
comments in blog, etc.
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