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Abstract We report a first attempt to produce metastable hcp solid helium below
its melting pressure. A focused sound pulse is emitted alongthec-axis of a mono-
domain hcp helium-4 crystal starting from a static pressurejust above the melting
pressure. The sound pulse is made as simple as possible with one negative and one
positive swing only. Density at focus is monitored by an optical interferometric
method. Performed numerical simulations show that the crystal anisotropy splits
the focused wave into two separate pulses, corresponding toa longitudinal wave
along thec-axis and a radial one perpendicular to it. The amplificationfactor due
to focusing remains nevertheless important. Negative pressure swings up to 0.9
bar have been produced, crossing the static melting pressure limit. Improvements
in the detection method and in the focusing amplification areproposed.

PACS numbers: 67.80.B-, 67.80.bd, 64.70D-, 62.30.+d

1 Introduction

The hcp solid phase for helium-4 is stable only above a minimum pressurePf (T )≃
25 bar at low temperature. Recently it has been suggested1 that this solid phase
remains metastable at much lower pressures. Based on an extrapolation of the
equation of state, the spinodal line is predicted to be at negative pressure, about
-10 bar. Beside testing this prediction, there is another interest to investigate solid
helium at pressures below the melting pressure. Vacancies in this quantum solid
have been studied for a long time. In particular their energyEv has been measured
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at different pressures2, and also computed by Quantum Monte Carlo simulations3.
Although there is a significant scatter on the measured values of Ev, it is striking
that it is a strongly decreasing function of the molar volumeVm. A simple linear
extrapolation on the data gathered in reference2 suggests that an increase ofVm by
only 5% beyond the melting volume could bringEv near zero. Although this is a
large increase for a condensed phase, this is not so for solidhelium which is a very
compressible material. More precisely, the maximum molar volume for stable hcp
helium-44 is V f = 21 cm3, the aimed value isVa = 22 cm3, while the predicted
value ofVm at the spinodal line isVs = 34.7 cm3. HenceVa is within a possibly
accessible range. If so, this would bring interesting new physics for solid helium.
With Ev near zero, vacancies could proliferate, reach a sizable population, possi-
bly undergo a Bose-Einstein condensation, thus realizing the Andreev scenario for
supersolidity5. Or if the vacancy-vacancy interaction is strong enough3,6, it could
provide another mechanism for destabilizing the solid phase before reachingVs.

Many different methods have been used to study metastable condensed phases,
mostly liquid, under depression7. Metastability cannot be easily obtained for a
solid because the interfaces between a solid and the container walls are disordered,
and generally nucleates the liquid phase. Focused sound waves provide a way to
circumvent this difficulty. Starting from a pressureP0 abovePf , a sound pulse
with an amplitudeδPi smaller thanP0−Pf at the surface of the transducer will
not bring the solid below the melting pressure at the transducer surface. On its
propagation to the focus the sound pressure can be amplified by a large amount,
namelyΩR/λs (Ω , solid angle of the sound beam,R transducer radius,λs sound
wavelength). Hence the peak pressureP0+δPiΩR/λs can explore the metastable
domain belowPf with negativeδPi.

This article reports a first attempt to produce metastable hcp solid helium be-
low its melting pressure. A hemispherical transducer was used to produce a con-
verging sound wave. The density variations at focus are monitored by an optical
interferometric method. The experimental arrangement is described in section 2.
Because the sound velocity is anisotropic, the focusing is not expected to be per-
fect in hcp helium. A numerical simulation was made to model the remaining
amplification in this case and to determine the relation between the optical signal
and the density at focus. Numerical predictions are discussed in section 3. Experi-
mental results are reported and discussed in section 4. Possible improvements and
conclusions are given in section 5.

2 Experimental arrangement and procedure

The experimental cell is a 4 cm stainless steel cube, with fivesilica windows
(diam. 2.5 cm), cooled from the top by a pumped helium-4 fridge in the 1.0-
1.4 K temperature range. To achieve single crystal growth, the nucleation and
growth is made at constant temperature and pressure (1.2 K and 25.5 bar). An
electro-crystallization device8 provides a unique seed which falls on the bottom
of the cell. The crystal is subsequently grown from this seed. The orientation of
thec-facet (most often horizontal) is easily monitored visuallyduring the growth
process which takes place below the corresponding roughening transition 1.3 K9.

A hemispherical piezoelectric transducer of 6 mm internal radius (from Chan-
nel Industries) is suspended above the middle of the cell with its axis vertical,
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along the crystalc-axis. Such a transducer has two main resonant modes: the
thickness mode frequency isνh f ≃ 1 MHz, the inner and outer surfaces vibrat-
ing in opposite directions. The breathing mode correspondsto an oscillation of
the transducer radius and has a frequencyνl f ≃ 180kHz. In order to simplify as
much as possible the pressure wave, a single oscillation of the thickness mode
was used. The driving voltage is produce by an arbitrary function generator and
amplified by a RF amplifier up to a voltage ranging from 100 V to 800 V on 50Ω .
The pulse shape is designed to leave the transducer at rest atthe end of the pulse.
Beside the one-cycle oscillation at 1 MHz, the exciting pulse also produces a par-
asitic oscillation of the low frequency breathing mode which appears after the end
of the 1 MHz pulse. The sound velocity in hcp solid helium is anisotropic. For
longitudinal waves, the velocity is about 540 m/s along thec-axis and 460 m/s
when the wave vector is in the basal plane10. Hence the initially spherical wave
does not remain so and breaks up into two parts: one along thec-axis, named as ‘z-
pulse’ hereafter, and another radial one, named ‘r-pulse’. Both show a maximum
amplitude near the center of the transducer. Their relativeintensity and shape will
be discussed in the next section. In order to have an optical access to the transducer
center two small notches (1 mm wide, 1.5 mm high) were made on the transducer
rim, along a diameter.

The phenomena at the focus are monitored optically. A CW-laser beam (λo =
532 nm) propagating along they-axis is focused at the cell center with a 30µm
waist. The laser polarization is along the verticalz-axis. The axis origin is taken at
the transducer center. Density modulations along the beam path produced by the
sound wave result in an optical phase change

δφ(x,z) =
2π
λo

∫ l/2

−l/2
dy δn(

√

x2+ y2,z) (1)

where l is the cell length. The change in refractive indexδn is related to that
of density δρ through δn/(n − 1) = δρ/ρ. This linear approximation of the
Clausius-Mossotti relation holds for helium with a relative error less than 10−4

for δρ/ρ up to 0.1, well beyond the strains discussed here (less than 10−2). Be-
cause of the system cylindrical symmetry around thez-axis,δn andδρ only de-
pend onr =

√

x2+ y2 and z. To measureδφ(t), the laser beam is split before
the cell to produce a reference beam which crosses the cell inan unperturbed re-
gion and is recombined with the monitoring beam on a photo-detector, making
a Jamin interferometer.δφ(t) contains a low frequency partδφl f (t) due to the
transducer breathing mode (atνl f ), and the interesting signalδφh f (t) due to the
thickness oscillation (atνh f ). To extract the latter fromδφ(t), a model of the low
frequency signalAsl f (t− t0) has been constructed with two adjustable parameters:
its amplitudeA and its starting timet0. These parameters are determined from a
fit of Asl f (t − t0) to δφ(t) filtered with a low-pass filter. Thenδφh f (t) is found as
δφh f (t) = δφ(t)−Asl f (t − t0).

Extractingδn(t) from δφh f (t) is more involved. This amounts to determine a
characteristic lengtha of the focused sound wave such that

δφh f (t,0,0) = 2πδn(t,0,0)a/λo. (2)

For a continuous sinusoidal wave,a = λs/212. There are two ways to geta. If one
can measureδφh f (t,x,0) for the whole range ofx where it is non-zero, one can
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invert formula 1 and getδn(t,x,0) from δφh f (t,x,0) by an inverse Abel transform.
This is not always possible however due to the small width of the notch. A simpler
method relies on numerical simulation to get the ratioδφh f (t,0,0)/n(t,0,0) and
thusa. In the following, results are discussed using the optical length variations
δLopt = λoδφh f /(2π) as the signal instead ofδφh f .

3 Numerical simulation of a focused spherical sound wave

Since solid helium has a close-packed hexagonal structure (hcp), its linear elas-
tic properties are described by five elastic constants,c11, c12, c13, c33, c44 as
defined by Musgrave13. The ratio of shear stress to shear strain in the meridian
plane, calledc55 is not an independent constant in hcp crystals14 and is equal to
(c11− c12)/2. Numerical values of theci j have been taken from15: c11/ρ = 21.2,
c12/ρ = 11.1, c13/ρ = 5.49, c33/ρ = 29.0, andc44/ρ = 6.52, all in units of
104 (m/s)2.

The axis of the transducer being parallel to thec-axis of the crystal, deforma-
tions are of cylindrical symmetry. Elastic waves are thus governed by two coupled
second order differential equations for the only two possible components of the
displacement vector,ur anduz:

ρ ür = c11(
∂ 2ur

∂ r2 +
1
r

∂ ur

∂ r
−

ur

r2 )+(c13+ c55)
∂ 2uz

∂ r∂ z
+ c55

∂ 2ur

∂ z2 (3)

ρ üz = (c13+ c55)(
∂ 2ur

∂ r∂ z
+

1
r

∂ ur

∂ z
)+ c33

∂ 2uz

∂ z2 + c55(
∂ 2uz

∂ r2 +
1
r

∂ uz

∂ r
) (4)

(c44 plays no role in this geometry)
Special care must be taken inr = 0: for symmetry reasons,ur, u̇r andür must

be 0 inr = 0. Using the l’Hospital’s rule, equation 4 can be rewritten:

ρ üz = 2(c13+ c55)
∂ 2ur

∂ r∂ z
+ c33

∂ 2uz

∂ z2 +2c55
∂ 2uz

∂ r2 (r = 0) (5)

These equations are integrated using a finite difference method and a stag-
gered leap frog scheme with initial conditions corresponding to an undeformed
crystal at rest. The model volume is 0≤ r ≤ 7.5 and−7.5 ≤ z ≤ 7.5 (in mm)
and is discretized on a 1024×2048 grid. The spatial stepδ l is then small enough
compared to the wavelength (λs ≃ 0.5 mm) that the dispersion introduced by the
discretization is negligible. The time stepδ t is taken to be sufficiently small to ful-
fill the Courant criterion: essentially one must haveδ l/δ t < λsνh f . At each time
stept one then calculates a new field of displacement vectors with the help of the
above mentioned differential equations as a function of thefields at timet − δ t
andt −2δ t. The field is then adjusted so as to fulfill the boundary conditions:ur
anduz are forced to be that of the transducer on the points belonging to it and
uz(r = 0,z) is adjusted to the valueuz(0,z) = (4uz(δ l,z)−uz(2δ l,z))/3 to ensure
cancelation of its derivative∂ uz

∂ r (r = 0,z). The other boundaries are left free, giving
rise to reflected waves, which arrive at the focus with a long enough delay to be of
no concern. From the displacement vector field, the change inmolar volume can
be computed (δVm/Vm = ∂ ur

∂ r + ur
r + ∂ uz

∂ z ) and thus the change in refractive index
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Fig. 1 Map in thezx-plane of the refractive index variations while the mono-oscillation sound
wave is propagating. The thick black line represents the section of the transducer surface. The
initially hemispherical wave splits into an axial wave and aradial one.

δn. An example of the wave resulting of a single oscillation of the transducer is
shown on Figure 1 at timet = 9 µs. As expected, the wave has split into two parts,
one along thez-axis and a slower one which becomes almost cylindrical, traveling
roughly in ther direction. At the center one thus expects two pulses, as confirmed
by Figure 2-a. When passing through the center, ther-wave undergoes a Gouy
phase reversal. As a result ther-pulse is tripolar instead of being bipolar like the
z-pulse. Note that this is true only at the center, because only at the center does
the incoming and the outgoing waves interfere. An importantresult is the ampli-
fication factor. Thez-pulse is almost not amplified, while ther-pulse is amplified
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Fig. 2 (a) Refractive index modulation near the transducer surface (dashed line) and at the center
(solid line). The small modulation around 11µs is the part of the sound wave coming along the
z-axis (z-pulse). The large one around 13.5µs is the radial one (r-pulse). (b) Modulation of the
optical length through the center of the transducer for the same pulse.
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by a factor 50. This is not much less than the factor 75 expected for an isotropic
medium with the sameλs. Figure 2 also shows the behavior of the optical length
through the center of the transducer. A first striking resultis that the optical length
is vanishingly small for almost all times, although the integration path crosses the
wave at any time. This is because the positive and the negative parts of the wave
cancel almost exactly. Only when the wave reaches the centeris this no more true.
The z-pulse seems to be magnified, but this is only a geometrical effect due to
the fact that this part of the wave is almost plane and perpendicular to thez-axis.
The ratio between the maximum amplitude of the optical length and the maximum
amplitude of the index modulation is a characteristic length a (a ≃ 0.28 mm). It
can be used to deduce the refractive index modulation, whichis the quantity of
interest, from the optical length, which is the measured quantity.

4 Presentation and discussion of some results

An example of observed optical signalδLopt(t) is shown in Figure 3-a. It was
taken with a driving voltageVd = 200 V atT = 1.16 K and a pressure 0.6 bar above
Pf (T ). An order of magnitude of the sound amplitude at the transducer surface can
evaluated from the formulaδρ/ρ = 2πd33Vd/λs fr, whered33 = 0.3 nm/V is the
piezoelectric constant at room temperature of the transducer ceramic, andfr ≃ 4
is an order of magnitude of its reduction factor at low temperatures16. One finds
δρ/ρ ≃ 2×10−4, which can be converted to an acoustic pressureδP = 54 mbar
using solid helium bulk modulusBs = 269 bar.17. Thus the minimum pressure at
the transducer surface is well above the melting pressure. Note that for low sound
amplitudes (δρ/ρ < 10−2), the computation ofδP using the bulk modulus instead
of a non linear equation of state does not lead to a relative error larger than 10−2.
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Fig. 3 Observed optical length modulation by focused sound pulses. Time origin is the begin-
ning of the transducer oscillation which lasts 1µs. Arrows indicate the middle of expectedz- and
r-pulses. (a) driving voltage 200 V, initial offset from melting pressure 0.6 bar, pressure swing
at focus -0.35 bar. (b) Same signal with parameter values 600V, 0.1 bar, -0.9 bar respectively.

Comparison of the optical signal with Figure 2-b helps to identify the radial
wave. The expected time of flight is indicated by the arrow labeled ‘r-pulse’. Note
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that in Figures 2 and 3 the origin of time is the beginning of the transducer oscil-
lation. To get the time of flight for the middle of the sound pulse, half its duration
is to be subtracted, namely 0.5µs. The sound velocity at this particular pressure is
determined using the scaling ofc11 andc33 proposed by Maris1. For this signal,
the laser beam is thought to cross the focal region. In fact extensive scanning of
the focal region along thex andz-axis with the laser beam was performed to locate
the sound focus.

The shape of ther-pulse is qualitatively similar to the expected one. The width
in time measured by the delay between the secondary maximumsis close to the
1.0 µs delay in Figure 2-b. There are several differences however. Some are par-
asitic effects. The high frequency modulation may be attributed to higher oscilla-
tion modes of the transducer which are found near 2.4 MHz and 3.6MHz. Oscil-
lations before the expectedz-pulse can be explained by the fact that the reference
light beam is slightly perturbed by the wave emitted by the rim of the piezo-
hemisphere.The distance between this rim and the referencebeam is 4 mm and
thus the sound wave reaches it in 7µs. Concerning ther-pulse itself, the ratio of
the main peak amplitude to the secondary maximums is much smaller than in the
simulation. This could be due to an offset of the laser beam from the radial geom-
etry or spatial averaging over the laser waist. Simulation shows that an offset of
0.1 mm would divide the peak by a factor 3.

There is not a clear evidence for thez-pulse. It is either absent or hidden by
parasitic oscillations. Its weakening may be correlated tothat of ther-pulse peak.
Another possible explanation is that the initially well oriented mono-crystal has
been broken and turned to a more or less isotropic polycrystal by the sound wave.
As a matter of fact, during long measurement series for scanning the laser beam
position, we occasionally observed evolution of the optical signal, generally a
weakening of the pulse amplitude.

Let us come back to the intensity of the negative swing at focus. Using the
value of a determined by the simulation (a = 0.28 mm), one gets an order of
magnitude of the negative pressure swing from the formulaδP = δLoptBs/a(n−
1)≃−0.35 bar. The initial pressure was 0.6 bar from the melting pressure, so that
the minimum pressure does not reach the melting line. Figure3-b shows another
signal taken with a larger driving voltage (600 V) and starting closer to the melting
line, P−Pf = 0.11 bar. The signal is clearly more distorted than in Figure 3-a. If
one converts nevertheless the negative swing into pressureusing the same formula
quoted above, one getsδP = −0.9 bar. In that case, it appears that the pressure
has crossed the equilibrium melting line by at least 0.8 bar.

Has helium remained in the solid phase? Had a liquid droplet nucleated at the
focus, it would have expanded for a fraction of the sound halfperiod at a velocity
close to the sound velocity. Thus it would have reached a diameter on the order of
100 µm. Taking into account the refractive index difference between liquid and
solid phases (about 0.0035), the liquid bubble would have created a jump inδLopt
as large as 0.35µm. Also a large asymmetry would be found between positive and
negative pressure swings. Neither of the two phenomena are observed and it can
be concluded that transient melting did not occur.
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5 Possible improvements and conclusions

A direct interferometric imaging has been developed18 to provide a map ofδLopt.
It uses the same interferometer, but the laser is a pulsed laser and the detector a
CCD camera. Images are taken for varioust and reference phases. Then a map
of δφ(t,x,z) can be computed for all the pixels in parallel. Beside providing a
direct image of the sound pulse propagation in the crystal, inverse Abel transform
will give access to the map ofδn(t,r,z), provided that it has a cylindrical sym-
metry. This should overcome the major shortcoming in the present experiment,
namely the conversion from the measuredδLopt to the pressure swingδP at the
focus. Since the observed signal differs from the simulation, a more direct way
to computed the latter will be valuable. It will also avoid scanning the laser beam
to locate the focus, which is both time consuming and harmfulfor the crystal. In
order to view the focus and an extended portion of the x-axis,the lower part of
the hemispherical transducer will be shorten by 1 mm or so. This new method will
also help assessing whether the crystal is broken by repetitive sound pulses. If this
is the case, it would be of interest to try to work with a polycrystal with grains
smaller thanλs. The medium will then be quasi-isotropic19. Whether the sound
attenuation will be acceptable remains an open question. Inthe case monocrystals
survive their repetitive stress, it would be more efficient to use a transducer with
a shape conforming the wavesurface of the hcp crystal, or at least half of it. As
depicted in reference10, it is an elongated bowl, nearly conical in the directions
betweenz andx-axis. Finally using longer multi-oscillation excitationpulses will
allow to reach oscillation amplitudesδP about 10 times larger. The more complex
wave pattern will not be a problem if inverse Abel transform can be performed.

To summarize, it has been shown that interesting motivations exist to inves-
tigate solid helium below the melting pressure. Numerical simulations confirmed
that sound waves can be efficiently focused in the anisotropic hcp crystal and pro-
vides a tool to investigate the metastable region below the melting curve. A first
example of incursion in this domain has been reported, and perspectives exist to
enlarge the explored domain.
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