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Investigating metastable hcp

Introduction

The hcp solid phase for helium-4 is stable only above a minimum pressure P f (T ) ≃ 25 bar at low temperature. Recently it has been suggested 1 that this solid phase remains metastable at much lower pressures. Based on an extrapolation of the equation of state, the spinodal line is predicted to be at negative pressure, about -10 bar. Beside testing this prediction, there is another interest to investigate solid helium at pressures below the melting pressure. Vacancies in this quantum solid have been studied for a long time. In particular their energy E v has been measured at different pressures 2 , and also computed by Quantum Monte Carlo simulations 3 . Although there is a significant scatter on the measured values of E v , it is striking that it is a strongly decreasing function of the molar volume V m . A simple linear extrapolation on the data gathered in reference 2 suggests that an increase of V m by only 5% beyond the melting volume could bring E v near zero. Although this is a large increase for a condensed phase, this is not so for solid helium which is a very compressible material. More precisely, the maximum molar volume for stable hcp helium-4 4 is V f = 21 cm 3 , the aimed value is V a = 22 cm 3 , while the predicted value of V m at the spinodal line is V s = 34.7 cm 3 . Hence V a is within a possibly accessible range. If so, this would bring interesting new physics for solid helium. With E v near zero, vacancies could proliferate, reach a sizable population, possibly undergo a Bose-Einstein condensation, thus realizing the Andreev scenario for supersolidity 5 . Or if the vacancy-vacancy interaction is strong enough 3,6 , it could provide another mechanism for destabilizing the solid phase before reaching V s .

Many different methods have been used to study metastable condensed phases, mostly liquid, under depression 7 . Metastability cannot be easily obtained for a solid because the interfaces between a solid and the container walls are disordered, and generally nucleates the liquid phase. Focused sound waves provide a way to circumvent this difficulty. Starting from a pressure P 0 above P f , a sound pulse with an amplitude δ P i smaller than P 0 -P f at the surface of the transducer will not bring the solid below the melting pressure at the transducer surface. On its propagation to the focus the sound pressure can be amplified by a large amount, namely Ω R/λ s (Ω , solid angle of the sound beam, R transducer radius, λ s sound wavelength). Hence the peak pressure P 0 + δ P i Ω R/λ s can explore the metastable domain below P f with negative δ P i .

This article reports a first attempt to produce metastable hcp solid helium below its melting pressure. A hemispherical transducer was used to produce a converging sound wave. The density variations at focus are monitored by an optical interferometric method. The experimental arrangement is described in section 2. Because the sound velocity is anisotropic, the focusing is not expected to be perfect in hcp helium. A numerical simulation was made to model the remaining amplification in this case and to determine the relation between the optical signal and the density at focus. Numerical predictions are discussed in section 3. Experimental results are reported and discussed in section 4. Possible improvements and conclusions are given in section 5.

Experimental arrangement and procedure

The experimental cell is a 4 cm stainless steel cube, with five silica windows (diam. 2.5 cm), cooled from the top by a pumped helium-4 fridge in the 1.0-1.4 K temperature range. To achieve single crystal growth, the nucleation and growth is made at constant temperature and pressure (1.2 K and 25.5 bar). An electro-crystallization device 8 provides a unique seed which falls on the bottom of the cell. The crystal is subsequently grown from this seed. The orientation of the c-facet (most often horizontal) is easily monitored visually during the growth process which takes place below the corresponding roughening transition 1.3 K 9 .

A hemispherical piezoelectric transducer of 6 mm internal radius (from Channel Industries) is suspended above the middle of the cell with its axis vertical, along the crystal c-axis. Such a transducer has two main resonant modes: the thickness mode frequency is ν h f ≃ 1 MHz, the inner and outer surfaces vibrat- ing in opposite directions. The breathing mode corresponds to an oscillation of the transducer radius and has a frequency ν l f ≃ 180kHz. In order to simplify as much as possible the pressure wave, a single oscillation of the thickness mode was used. The driving voltage is produce by an arbitrary function generator and amplified by a RF amplifier up to a voltage ranging from 100 V to 800 V on 50 Ω . The pulse shape is designed to leave the transducer at rest at the end of the pulse. Beside the one-cycle oscillation at 1 MHz, the exciting pulse also produces a parasitic oscillation of the low frequency breathing mode which appears after the end of the 1 MHz pulse. The sound velocity in hcp solid helium is anisotropic. For longitudinal waves, the velocity is about 540 m/s along the c-axis and 460 m/s when the wave vector is in the basal plane 10 . Hence the initially spherical wave does not remain so and breaks up into two parts: one along the c-axis, named as 'zpulse' hereafter, and another radial one, named 'r-pulse'. Both show a maximum amplitude near the center of the transducer. Their relative intensity and shape will be discussed in the next section. In order to have an optical access to the transducer center two small notches (1 mm wide, 1.5 mm high) were made on the transducer rim, along a diameter.

The phenomena at the focus are monitored optically. A CW-laser beam (λ o = 532 nm) propagating along the y-axis is focused at the cell center with a 30 µm waist. The laser polarization is along the vertical z-axis. The axis origin is taken at the transducer center. Density modulations along the beam path produced by the sound wave result in an optical phase change

δ φ (x, z) = 2π λ o l/2 -l/2 dy δ n( x 2 + y 2 , z) (1) 
where l is the cell length. The change in refractive index δ n is related to that of density δ ρ through δ n/(n -1) = δ ρ/ρ. This linear approximation of the Clausius-Mossotti relation holds for helium with a relative error less than 10 -4 for δ ρ/ρ up to 0.1, well beyond the strains discussed here (less than 10 -2 ). Because of the system cylindrical symmetry around the z-axis, δ n and δ ρ only depend on r = x 2 + y 2 and z. To measure δ φ (t), the laser beam is split before the cell to produce a reference beam which crosses the cell in an unperturbed region and is recombined with the monitoring beam on a photo-detector, making a Jamin interferometer. δ φ (t) contains a low frequency part δ φ l f (t) due to the transducer breathing mode (at ν l f ), and the interesting signal δ φ h f (t) due to the thickness oscillation (at ν h f ). To extract the latter from δ φ (t), a model of the low frequency signal As l f (t -t 0 ) has been constructed with two adjustable parameters: its amplitude A and its starting time t 0 . These parameters are determined from a fit of As l f (tt 0 ) to δ φ (t) filtered with a low-pass filter. Then δ φ h f (t) is found as

δ φ h f (t) = δ φ (t) -As l f (t -t 0 ). Extracting δ n(t) from δ φ h f (t)
is more involved. This amounts to determine a characteristic length a of the focused sound wave such that

δ φ h f (t, 0, 0) = 2πδ n(t, 0, 0)a/λ o . (2) 
For a continuous sinusoidal wave, a = λ s /2 12 . There are two ways to get a. If one can measure δ φ h f (t, x, 0) for the whole range of x where it is non-zero, one can invert formula 1 and get δ n(t, x, 0) from δ φ h f (t, x, 0) by an inverse Abel transform. This is not always possible however due to the small width of the notch. A simpler method relies on numerical simulation to get the ratio δ φ h f (t, 0, 0)/n(t, 0, 0) and thus a. In the following, results are discussed using the optical length variations δ L opt = λ o δ φ h f /(2π) as the signal instead of δ φ h f .

Numerical simulation of a focused spherical sound wave

Since solid helium has a close-packed hexagonal structure (hcp), its linear elastic properties are described by five elastic constants, c 11 , c 12 , c 13 , c 33 , c 44 as defined by Musgrave [START_REF] Musgrave | Reports on Progress in Physics[END_REF] . The ratio of shear stress to shear strain in the meridian plane, called c 55 is not an independent constant in hcp crystals [START_REF] Landau | Theory of Elasticity[END_REF] and is equal to (c 11 -c 12 )/2. Numerical values of the c i j have been taken from 15 : c 11 /ρ = 21.2, c 12 /ρ = 11.1, c 13 /ρ = 5.49, c 33 /ρ = 29.0, and c 44 /ρ = 6.52, all in units of 10 4 (m/s) 2 .

The axis of the transducer being parallel to the c-axis of the crystal, deformations are of cylindrical symmetry. Elastic waves are thus governed by two coupled second order differential equations for the only two possible components of the displacement vector, u r and u z :

ρ ür = c 11 ( ∂ 2 u r ∂ r 2 + 1 r ∂ u r ∂ r - u r r 2 ) + (c 13 + c 55 ) ∂ 2 u z ∂ r∂ z + c 55 ∂ 2 u r ∂ z 2 (3) 
ρ üz = (c 13 + c 55 )( ∂ 2 u r ∂ r∂ z + 1 r ∂ u r ∂ z ) + c 33 ∂ 2 u z ∂ z 2 + c 55 ( ∂ 2 u z ∂ r 2 + 1 r ∂ u z ∂ r ) (4) 
(c 44 plays no role in this geometry) Special care must be taken in r = 0: for symmetry reasons, u r , ur and ür must be 0 in r = 0. Using the l'Hospital's rule, equation 4 can be rewritten:

ρ üz = 2(c 13 + c 55 ) ∂ 2 u r ∂ r∂ z + c 33 ∂ 2 u z ∂ z 2 + 2c 55 ∂ 2 u z ∂ r 2 (r = 0) (5) 
These equations are integrated using a finite difference method and a staggered leap frog scheme with initial conditions corresponding to an undeformed crystal at rest. The model volume is 0 ≤ r ≤ 7.5 and -7.5 ≤ z ≤ 7.5 (in mm) and is discretized on a 1024 × 2048 grid. The spatial step δ l is then small enough compared to the wavelength (λ s ≃ 0.5 mm) that the dispersion introduced by the discretization is negligible. The time step δt is taken to be sufficiently small to fulfill the Courant criterion: essentially one must have δ l/δt < λ s ν h f . At each time step t one then calculates a new field of displacement vectors with the help of the above mentioned differential equations as a function of the fields at time tδt and t -2δt. The field is then adjusted so as to fulfill the boundary conditions: u r and u z are forced to be that of the transducer on the points belonging to it and u z (r = 0, z) is adjusted to the value u z (0, z) = (4u z (δ l, z) -u z (2δ l, z))/3 to ensure cancelation of its derivative ∂ u z ∂ r (r = 0, z). The other boundaries are left free, giving rise to reflected waves, which arrive at the focus with a long enough delay to be of no concern. From the displacement vector field, the change in molar volume can be computed (δV by a factor 50. This is not much less than the factor 75 expected for an isotropic medium with the same λ s . Figure 2 also shows the behavior of the optical length through the center of the transducer. A first striking result is that the optical length is vanishingly small for almost all times, although the integration path crosses the wave at any time. This is because the positive and the negative parts of the wave cancel almost exactly. Only when the wave reaches the center is this no more true. The z-pulse seems to be magnified, but this is only a geometrical effect due to the fact that this part of the wave is almost plane and perpendicular to the z-axis.

m /V m = ∂ u r ∂ r + u r r + ∂ u z ∂ z )
The ratio between the maximum amplitude of the optical length and the maximum amplitude of the index modulation is a characteristic length a (a ≃ 0.28 mm). It can be used to deduce the refractive index modulation, which is the quantity of interest, from the optical length, which is the measured quantity.

Presentation and discussion of some results

An example of observed optical signal δ L opt (t) is shown in Figure 3-a. It was taken with a driving voltage V d = 200 V at T = 1.16 K and a pressure 0.6 bar above P f (T ). An order of magnitude of the sound amplitude at the transducer surface can evaluated from the formula δ ρ/ρ = 2πd 33 V d /λ s f r , where d 33 = 0.3 nm/V is the piezoelectric constant at room temperature of the transducer ceramic, and f r ≃ 4 is an order of magnitude of its reduction factor at low temperatures [START_REF]Some examples for barium titanate compounds can be found on the web site of Morgan Electro Ceramics[END_REF] . One finds δ ρ/ρ ≃ 2 × 10 -4 , which can be converted to an acoustic pressure δ P = 54 mbar using solid helium bulk modulus B s = 269 bar. [START_REF] Grilly | [END_REF] . Thus the minimum pressure at the transducer surface is well above the melting pressure. Note that for low sound amplitudes (δ ρ/ρ < 10 -2 ), the computation of δ P using the bulk modulus instead of a non linear equation of state does not lead to a relative error larger than 10 -2 . Comparison of the optical signal with Figure 2-b helps to identify the radial wave. The expected time of flight is indicated by the arrow labeled 'r-pulse'. Note that in Figures 2 and3 the origin of time is the beginning of the transducer oscillation. To get the time of flight for the middle of the sound pulse, half its duration is to be subtracted, namely 0.5µs. The sound velocity at this particular pressure is determined using the scaling of c 11 and c 33 proposed by Maris 1 . For this signal, the laser beam is thought to cross the focal region. In fact extensive scanning of the focal region along the x and z-axis with the laser beam was performed to locate the sound focus.

The shape of the r-pulse is qualitatively similar to the expected one. The width in time measured by the delay between the secondary maximums is close to the 1.0 µs delay in Figure 2-b. There are several differences however. Some are parasitic effects. The high frequency modulation may be attributed to higher oscillation modes of the transducer which are found near 2.4 MHz and 3.6MHz. Oscillations before the expected z-pulse can be explained by the fact that the reference light beam is slightly perturbed by the wave emitted by the rim of the piezohemisphere.The distance between this rim and the reference beam is 4 mm and thus the sound wave reaches it in 7 µs. Concerning the r-pulse itself, the ratio of the main peak amplitude to the secondary maximums is much smaller than in the simulation. This could be due to an offset of the laser beam from the radial geometry or spatial averaging over the laser waist. Simulation shows that an offset of 0.1 mm would divide the peak by a factor 3.

There is not a clear evidence for the z-pulse. It is either absent or hidden by parasitic oscillations. Its weakening may be correlated to that of the r-pulse peak. Another possible explanation is that the initially well oriented mono-crystal has been broken and turned to a more or less isotropic polycrystal by the sound wave. As a matter of fact, during long measurement series for scanning the laser beam position, we occasionally observed evolution of the optical signal, generally a weakening of the pulse amplitude.

Let us come back to the intensity of the negative swing at focus. Using the value of a determined by the simulation (a = 0.28 mm), one gets an order of magnitude of the negative pressure swing from the formula δ P = δ L opt B s /a(n -1) ≃ -0.35 bar. The initial pressure was 0.6 bar from the melting pressure, so that the minimum pressure does not reach the melting line. Figure 3-b shows another signal taken with a larger driving voltage (600 V) and starting closer to the melting line, P -P f = 0.11 bar. The signal is clearly more distorted than in Figure 3-a. If one converts nevertheless the negative swing into pressure using the same formula quoted above, one gets δ P = -0.9 bar. In that case, it appears that the pressure has crossed the equilibrium melting line by at least 0.8 bar.

Has helium remained in the solid phase? Had a liquid droplet nucleated at the focus, it would have expanded for a fraction of the sound half period at a velocity close to the sound velocity. Thus it would have reached a diameter on the order of 100 µm. Taking into account the refractive index difference between liquid and solid phases (about 0.0035), the liquid bubble would have created a jump in δ L opt as large as 0.35 µm. Also a large asymmetry would be found between positive and negative pressure swings. Neither of the two phenomena are observed and it can be concluded that transient melting did not occur.

Possible improvements and conclusions

A direct interferometric imaging has been developed 18 to provide a map of δ L opt . It uses the same interferometer, but the laser is a pulsed laser and the detector a CCD camera. Images are taken for various t and reference phases. Then a map of δ φ (t, x, z) can be computed for all the pixels in parallel. Beside providing a direct image of the sound pulse propagation in the crystal, inverse Abel transform will give access to the map of δ n(t, r, z), provided that it has a cylindrical symmetry. This should overcome the major shortcoming in the present experiment, namely the conversion from the measured δ L opt to the pressure swing δ P at the focus. Since the observed signal differs from the simulation, a more direct way to computed the latter will be valuable. It will also avoid scanning the laser beam to locate the focus, which is both time consuming and harmful for the crystal. In order to view the focus and an extended portion of the x-axis, the lower part of the hemispherical transducer will be shorten by 1 mm or so. This new method will also help assessing whether the crystal is broken by repetitive sound pulses. If this is the case, it would be of interest to try to work with a polycrystal with grains smaller than λ s . The medium will then be quasi-isotropic 19 . Whether the sound attenuation will be acceptable remains an open question. In the case monocrystals survive their repetitive stress, it would be more efficient to use a transducer with a shape conforming the wavesurface of the hcp crystal, or at least half of it. As depicted in reference 10 , it is an elongated bowl, nearly conical in the directions between z and x-axis. Finally using longer multi-oscillation excitation pulses will allow to reach oscillation amplitudes δ P about 10 times larger. The more complex wave pattern will not be a problem if inverse Abel transform can be performed.

To summarize, it has been shown that interesting motivations exist to investigate solid helium below the melting pressure. Numerical simulations confirmed that sound waves can be efficiently focused in the anisotropic hcp crystal and provides a tool to investigate the metastable region below the melting curve. A first example of incursion in this domain has been reported, and perspectives exist to enlarge the explored domain.
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 612 Fig. 1 Map in the zx-plane of the refractive index variations while the mono-oscillation sound wave is propagating. The thick black line represents the section of the transducer surface. The initially hemispherical wave splits into an axial wave and a radial one.
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 3 Fig. 3 Observed optical length modulation by focused sound pulses. Time origin is the beginning of the transducer oscillation which lasts 1 µs. Arrows indicate the middle of expected z-and r-pulses. (a) driving voltage 200 V, initial offset from melting pressure 0.6 bar, pressure swing at focus -0.35 bar. (b) Same signal with parameter values 600 V, 0.1 bar, -0.9 bar respectively.
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