
HAL Id: hal-00533962
https://hal.science/hal-00533962v1

Submitted on 8 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Jedule: A Tool for Visualizing Schedules of Parallel
Applications

Sascha Hunold, Ralf Hoffmann, Frédéric Suter

To cite this version:
Sascha Hunold, Ralf Hoffmann, Frédéric Suter. Jedule: A Tool for Visualizing Schedules of Parallel
Applications. 1st International Workshop on Parallel Software Tools and Tool Infrastructures (PSTI
2010), Sep 2010, San Diego, United States. pp.169-178, �10.1109/ICPPW.2010.34�. �hal-00533962�

https://hal.science/hal-00533962v1
https://hal.archives-ouvertes.fr

Jedule: A Tool for Visualizing Schedules

of Parallel Applications

Sascha Hunold∗

International Computer Science Institute

Berkeley, CA

sascha@icsi.berkeley.edu

Ralf Hoffmann

Department of Computer Science

University of Bayreuth

ralf.hoffmann@uni-bayreuth.de

Frédéric Suter‡
IN2P3 Computing Center, CNRS/IN2P3,

Lyon-Villeurbanne, France

Frederic.Suter@cc.in2p3.fr

Abstract—Task scheduling is one of the most prominent
problems in the era of parallel computing. We find scheduling
algorithms in every domain of computer science, e.g., mapping
multiprocessor tasks to clusters, mapping jobs to grid resources,
or mapping fine-grained tasks to cores of multicore processors.
Many tools exist that help understand or debug an application
by presenting visual representations of a certain program run,
e.g., visualizations of MPI traces. However, often developers want
to get a global and abstract view of their schedules first. In this
paper we introduce Jedule, a tool dedicated to visualize schedules
of parallel applications. We demonstrate the effectiveness of
Jedule by showing how it helped analyzing problems in several
case studies.

I. INTRODUCTION

Scheduling limited resources among requesting entities is

one of the most challenging problems in computer science.

Traditional domains of scheduling algorithms were process

or I/O scheduling in operating systems. The current era of

computing has undergone a tremendous change of application

and hardware design. The number of cores per physical

processor has been increasing over the last couple of years and

is still growing. On the other hand, fast interconnects made it

possible to create large computational grids over the Internet.

Each new computational layer from instruction level to host

level raises new scheduling problems. Many research projects

exist that target the optimization of scheduling algorithms in

one computational layer. On grid level, there are job schedulers

like Condor [1] that try to optimize the throughput of jobs on

a peer to peer grid. On a single subnet, job scheduling of

multiprocessor tasks is often found on cluster front-ends. In

this case, jobs are defined by a job description file in which the

user can reserve resources (usually processors) for an amount

of time. The scheduler on the front-end has to decide the order

of jobs on the cluster while fulfilling certain criteria, e.g.,

quality of service. Examples of such schedulers are PBS [2]

and Maui [3]. On lower software levels, schedulers assign

fine-grained tasks to threads, e.g., tasks schedulers of Intel’s

Threading Building Blocks [4].

Each scheduling algorithm tries to optimize an objective

function. Usually schedulers try to minimize the overall time

∗ This work was supported by a fellowship within the postdoctoral program
of the German Academic Exchange Service (DAAD).

‡ This work was partially supported by the ANR project USS SimGrid
08-ANR-SEGI-022.

of a schedule, which often corresponds to maximizing the

throughput of the system. In many articles, scheduling al-

gorithms are explained by showing abstract graphics of the

key idea but are evaluated in an experiment, measuring, for

example, the makespan of a schedule. It is hardly possible

for humans to get a rough idea of the entire schedule by

only looking at the log files. A new algorithm might perform

better than all its competitors in most cases. Nevertheless,

there might be corner cases, which could be easily spotted

in a graphical representation of schedules. On the other hand,

debugging scheduling algorithms is harder without having a

graphical representation. A visualization of a schedule lets the

user easily do some sanity checks, e.g., checking the number

of requested and assigned processors for a multiprocessor job.

Even though scheduling is an important problem in com-

puter science, only a few tools exist that help scientists to

develop scheduling algorithms. Most tools are tied to a specific

use case like displaying the trace of an execution of a single

parallel program [5].

In the present article we introduce the software tool Jedule,

which can visualize arbitrary schedules. Originally, Jedule was

designed to help develop scheduling algorithms for multipro-

cessor tasks on clusters and multi-clusters. Over time it has

been extended to support all sorts of task schedules.

The remainder of the article is structured as follows. The

tool Jedule and its features are described in Section II. In

Sections III - VII we describe several scenarios in which Jedule

has been successfully applied. In Section VIII we summarize

related work and we draw conclusions in Section IX.

II. AN OVERVIEW OF JEDULE

A. Properties of a Task Schedule

Schedules are often visualized using Gantt charts, which

show the resource utilization over time. Hence, in these two-

dimensional Gantt charts, one dimension typically corresponds

to the resources of the system (e.g., processors, cores, hosts)

and the other dimension corresponds to the time. The utiliza-

tion of a resource for a limited amount of time is visualized

by a rectangle. To depict the utilization of a single resource,

the resource axis is equally divided into p segments, where p

denotes the number of resources.

In the present paper we focus on task schedules in parallel

systems. Many of these tasks are multiprocessor programs or

jobs, e.g., programs written on top of MPI (Message Passing

Interface) for distributed memory machines. On the other hand,

on a multicore machine, a task can be executed by multiple

threads. In both cases, a rectangle in the Gantt chart spans

multiple resources. Additionally, a task may require multiple

rectangles, when the resources allocated to a task are not

contiguous.

B. Requirements for Displaying Schedules

The design of Jedule was driven by the need to support

the development of scheduling algorithms on parallel sys-

tems. A major requirement is that the tool should be able

to support multiprocessor tasks and multi-clusters. Since the

viewer targets multitask systems, it is important that Jedule

can handle concurrently running tasks of different types, e.g.,

the overlapping of communication and computation time on

a specific host. In these scenarios the schedule viewer should

support user defined color maps. Thus, a user should be able

to define a color for each type of task.

The schedule viewer should also provide two different

modes: an interactive mode and a command line mode. An in-

teractive mode helps the user understand the specific properties

of a schedule. Hence, the interactive mode should allow the

selection of certain resources (e.g., a cluster) and also enable

the user to specify a time frame that he might be interested in

(zooming). In the interactive mode the user should be able to

retrieve meta information about a task, e.g., showing the list

of allocated processors or the node name by clicking on a task

in the schedule view.

Additionally, Jedule should also provide a command line

interface, which enables the user to leverage Jedule in batch

processing. Often the developer of a scheduling algorithm

runs many experiments producing hundreds or thousands of

schedules. So, Jedule could be used in a pipeline of batch

tasks to create schedule graphics for each experiment. In

order to provide a powerful command line interface, Jedule

should support different output formats like PNG, JPEG, or

PDF. Another important requirement is that it should support

different style files for drawing a schedule. The style file

defines properties of graphic primitives, e.g., font sizes and

colors. Supporting external style files makes it easier to tailor

schedule graphics for a specific use case. A user might only

be interested in a certain task type, so he may highlight this

task type by assigning a different color to this type.

C. Jedule in Detail

Schedules are often displayed by simple Gantt charts. Sev-

eral Gantt chart tools exist, but we needed one that is dedicated

to the development of scheduling algorithms. Jedule has been

developed to help us understand and tune different algorithms

for scheduling multiprocessor tasks.

For portability reasons Jedule was written in Java. Jedule

supports all the requirements that were discussed above, e.g.,

the support of multiple rectangles for a single task to show

the resource allocation of a multiprocessor task if the layout

of this task’s resources is not contiguous.

<n o d e s t a t i s t i c s>
<node property name= ” i d ” value= ” 1 ” />
<node property name= ” type ” value= ” computat ion ” />
<node property name= ” s t a r t t i m e ” value= ” 0.000 ” />
<node property name= ” end time ” value= ” 0.310 ” />
<c o n f i g u r a t i o n>

<conf proper ty name= ” c l u s t e r i d ” value= ” 0 ” />
<conf proper ty name= ” host nb ” value= ” 8 ” />
<h o s t l i s t s>

<hosts s t a r t = ” 0 ” nb= ” 8 ” />
</ h o s t l i s t s>

</ c o n f i g u r a t i o n>
</ n o d e s t a t i s t i c s>

Figure 1. XML definition of a task in Jedule (a node can have multiple
configurations, e.g., a communication between clusters).

1) Input format: The input file format of Jedule is a custom

XML structure. Jedule is bundled with a parser for the current

default XML input format. One can also extend Jedule with

a different parser and it is therefore possible to have different

input formats, not necessarily in XML. However, the basic

structure of a schedule that can be displayed by Jedule is

always the same, which is defined by the Jedule Java API. On

the lowest level, a schedule S consists of v tasks, where each

task vi has a start time ts and a finish time tf . A task in Jedule

has unique identifier and a type. The type can be arbitrarily

chosen by the user and is usually used to group certain tasks

together, e.g., computation, communication, or I/O tasks. Since

each task can allocate pv ≤ p resources of the system, a task

is also characterized by a list of resources Rv with Rv ⊆ P

(P is the set of all resources of the system). The developer of

scheduling algorithms often wants to group resources together.

One example is a multi-cluster, i.e., a system that consists of

multiple smaller clusters. These logical clusters might be a

commodity cluster running MPI programs or a set of multicore

machines. In order to support this notion of multi-clusters,

each task in the Jedule format has a reference identifier that

defines the corresponding cluster. It is also possible that a task

belongs to more than one cluster, so tasks may span different

clusters. This is useful if a communication task transfers data

between tasks on different clusters or if allocated resources

(possibly in a cloud) are scattered across clusters. The clusters

Cj , j ≥ 1, have to be defined in the header of the Jedule input

file, and at least one cluster is required. A cluster Cj is also

a subset of the overall resources P with
⋃

j Cj = P . The

resources between pairs of clusters are disjoint: Ci ∩ Cj = ∅.

A sample definition of a multiprocessor task in the Jedule input

format is shown in Figure 1. In this example, a multiprocessor

task with identifier “1” is described. The task is of type

“computation” and has been executed on cluster “0” by eight

processors (0, 1, . . . , 7).

2) Meta data: Additional to the basic information about

tasks and clusters, Jedule also supports generic meta informa-

tion. The meta information is later shown in the Jedule output

for a better identification of the schedules. Meta information is

simply defined by key/value pairs that characterize the current

algorithm or the platform. The meta information helps the

developer to later evaluate the impact of different parameters

<cmap name= ” standard map ”>
<conf name= ” min fon t s i ze labe l ” value= ” 11 ” />
<conf name= ” f o n t s i z e l a b e l ” value= ” 13 ” />
<conf name= ” font s ize axes ” value= ” 12 ” />

<task i d = ” computat ion ”>
<co l o r type= ” fg ” rgb= ”FFFFFF” />
<co l o r type= ” bg ” rgb= ” 0000FF” />

</ task>

<task i d = ” t r a n s f e r ”>
<co l o r type= ” fg ” rgb= ” 000000 ” />
<co l o r type= ” bg ” rgb= ” f10000 ” />

</ task>

<composite>
<task i d = ” computat ion ” />
<task i d = ” t r a n s f e r ” />
<co l o r type= ” fg ” rgb= ”FFFFFF” />
<co l o r type= ” bg ” rgb= ” f f6200 ” />

</ composite>
</ cmap>

Figure 2. Sample color map with one composite type. Figure 3. Example schedule featuring composite tasks (orange), which denote
the overlapping of computation (blue) and communication time (red).

to an algorithm. A sample XML tag defining meta information

for a scheduling algorithm is shown below.

<meta info>
<meta name= ” mindel ta ” value= ”−2” />
<meta name= ” maxdelta ” value= ” 2 ” />
<meta name= ” s o r t ” value= ”comm” />

</ meta info>

3) Composite tasks and time alignment: A parallel system

may execute tasks concurrently on the same resources, i.e., a

resource might be shared between tasks for an amount of time.

Jedule supports overlapping tasks. For each resource which is

shared by several tasks, Jedule creates a composite task. The

identifier of a composite task is the concatenation of the single

task IDs and the type is set to “composite”. An example of the

use of composite tasks is depicted in Figure 3. The schedule in

this example contains two types of tasks, communication tasks,

marked red, and computation tasks, marked blue. In order

to mark the time when a host performs communication and

computation operations at the same time, an orange composite

task is introduced.

Another feature of Jedule is time alignment between clus-

ters in a schedule. Each cluster schedule is a self-contained

schedule, containing all tasks within this cluster. A schedule

SCj for cluster Cj starts at time t
Cj

s and ends at time t
Cj

f . The

time t
Cj

s (t
Cj

f) is defined as the minimal starting time (maximal

finish time) of all tasks of cluster Cj . Each cluster may have

totally different start and finish times. If all cluster schedules

are displayed side by side, the developer is often interested in

the overall utilization over all resources. Thus, Jedule supports

two view modes: a scaled view and an aligned view. In the

scaled view all clusters are displayed using their local minima

and maxima of start and finish times. In the aligned view, the

global minima and maxima of the task times are used to draw

the schedules.

4) Color maps: One of the most important features of

schedule visualizations is the coloring of tasks. Jedule supports

user-defined color maps. The user can define a background and

a foreground color for each task type. An example of a color

map is presented in Figure 2. This color map defines the colors

of the task types “computation” and “transfer” (data transfer).

Moreover, the example also shows how the color of composite

tasks can be specified. It would also be possible to add another

composite task color scheme that contains a third type besides

“computation” and “transfer”. This method of coloring tasks

gives the users enough flexibility to highlight the parts of the

schedule that are important to them.

D. Using Jedule

Jedule supports two different modes to visualize schedules.

The first mode is the interactive mode, which, when started,

opens a window on the respective operating system and

displays the schedule. The other is the command line mode,

which is used to produce high quality graphics of schedules

to be included in articles or reports.

1) Interactive mode: When Jedule is started in interactive

mode, a Java Swing window is opened. The interactive mode

is usually used when developing new scheduling algorithms.

It supports several keyboard and mouse events that let the

user investigate the details of schedules. The user can select

which cluster, thus, which subset of the resources, should be

displayed. Within each schedule graphic, the user can retrieve

information about the tasks. Each task rectangle is labeled

with the task identifier and painted with the predefined color.

Additionally, the user can request detailed information for

a task by clicking on the task. When information about a

task is requested, Jedule displays the start and finish time of

the task and the list of resources that were assigned to this

task. This becomes very useful when tasks are overlapping

or when multiprocessor tasks are scattered across resources

and have no contiguous representation. The interactive mode

also allows the user to zoom into the schedule or to move the

current bounds of the schedule. To move the schedule (move

the virtual window/frame above the schedule) the user can

drag the schedule with the mouse. The mouse wheel lets the

user adapt the current view boundaries of the schedule (zoom

in/out). The user can also zoom in by selecting a rectangular

part of the current schedule. Jedule also supports fast rereads

and redraws of the current schedule file using key strokes.

This enables the developer of an algorithm to run a simulation

and immediately see the produced schedule. In the interactive

mode the user can also export the current view to one of the

supported image formats or take a snapshot.

2) Command line mode: Jedule also has a command line

interface. The command line interface is useful when the

user wants an automated generation of a number of schedule

graphics by using a script. Since Jedule is built upon the Swing

toolkit, Jedule can easily support all file formats for which an

export of the Swing graphics object exist. Currently, Jedule

supports the graphic formats PNG, JPEG, and PDF. When

a schedule is exported to a graphics format, the choice of

the color map becomes essential as style guides of journals

sometimes require gray scale graphics. Thus, the Jedule com-

mand line interface provides several parameters for adjusting

the properties of the output graphic. The most important ones

are the desired color map and the type of the output format.

Besides that, the user can also specify the height and the

width of the resulting graphic, or if the start and finish time

of clusters should be aligned.

III. CASE STUDY – MULTIPROCESSOR TASK SCHEDULING

In the following sections, we introduce several use cases of

Jedule. We show how Jedule has been used in these scenarios

to improve an algorithm or to solve the investigated problem.

A. Introduction to M-Task Scheduling

In the present case study, we examine algorithms for the

scheduling of mixed-parallel applications onto homogeneous

clusters. A mixed-parallel application can be described as a

directed acyclic graph (DAG) G = (V, E), where V = {vi | i =
1, . . . , V } is a set of vertices representing moldable tasks and

E = {ei,j | (i, j) ∈ {1, . . . , V }×{1, . . . , V }} is a set of edges

representing communication between tasks. A moldable task is

a computational task that can be executed on varying numbers

of processors. We denote by T (v, p) the execution time of

task v if it were to be executed on p processors (cores).

A homogeneous cluster H consists of h individual hosts,

where each host has the same configuration (processors, mem-

ory, etc.). The hosts are interconnected by a network switch.

The objective of the scheduling algorithm is to find a

mapping of the moldable tasks to the homogeneous cluster

by minimizing the resulting makespan of the application.

The scheduling algorithm has to determine the number of

processors for each task, which increases the complexity of the

problem. The algorithm also has to respect the computational

order of the tasks, which is defined by the edges.

Several algorithms have been proposed that schedule mixed-

parallel applications onto clusters [6], [7], [8], [9]. These

algorithms reduce the completion time of the scheduled appli-

cations with regard to schedules that only exploit either task-

or data-parallelism.

Over the last years we have worked on new algorithms as

well as improving existing scheduling algorithms for mixed-

parallel applications. Jedule has helped us understand the

strengths and weaknesses of various algorithms.

B. Application of Jedule

One of the most recent algorithms for scheduling mixed-

parallel algorithms onto homogeneous cluster is MCPA2 [10].

This algorithm is an extended version of the CPA algorithm

(Critical Path and Area-based scheduling). The CPA algorithm

attempts to find a good trade-off between the number of

processors allocated to tasks and the length of the critical path.

The critical path TCP is longest path from the source node to

the target node of a DAG, i.e., the sum of the execution times

of the nodes along this path. CPA also relies on the metric

TA, which is defined as TA = 1

P

∑
v(T (v, p(v)) · p(v)). The

time (or area) TA is a measure of how much a processor

has to work on average. Both, TCP and TA are theoretical

lower bounds of the makespan. CPA is a so-called two-step

algorithm as it decouples the scheduling problem into two

sub-problems. The first is the allocation phase, in which the

algorithm determines the number of processors for each task.

In the second step, the mapping phase, the algorithm tries to

map the tasks with the precomputed allocation to the parallel

platform. The decoupling of both steps usually decreases the

computational complexity and thus, algorithms that implement

this pattern are more likely to be used in practice. A main

problem of CPA was addressed by Bansal et al. [7]. They

showed that CPA often reduces the potential task parallelism

of a DAG by letting allocations grow too big, as it does

not consider the precedence levels of the graph. Bansal et

al. proposed a new algorithm, called MCPA (modified CPA),

which checks the total number of processors that are allocated

to a precedence level. MCPA ensures that the number of

processors allocated to a precedence level does not exceed

the total number of processors in the system. It therefore

favors task-parallelism for data-parallelism, which works well

in many situations.

We compared the scheduling performance in terms of re-

sulting makespan of CPA and MCPA in several scenarios. We

conducted several thousand experiments with different types of

DAGs (long, wide, serial, etc.) and multiple parallel platforms

(from smaller cluster with 32 processors to bigger ones). The

experiments were performed using a simulator, which was

built on top of SimGrid [11]. We used Jedule to analyze the

schedules obtained from the simulator. This allowed us to get

a fast overview of the scheduling performance by viewing

the scheduling output of CPA and MCPA side by side. By

quickly browsing through the resulting schedules, we could

isolate the case that is shown in Figure 4. The figure shows

the visualization of the schedules produced by CPA (left) and

MCPA. Both schedules have been created using the same

DAG and parallel platform. However, one can observe that

Figure 4. Jedule output for schedules produced by CPA (left) and MCPA (right). MCPA entails a load imbalance problem for this case.

the CPA algorithm exploits the computational resources of

the cluster better than MCPA. In case of MCPA (on the

right), the schedule contains large holes that correspond to

idle CPU time. The main objective of any scheduler is to

leave as few resources idle as possible. In this example, it can

clearly be seen that the strategy of favoring task parallelism

for data parallelism does not work. In the beginning, MCPA

allocates one processor to each task in one precedence layer.

However, MCPA restricts allocations from growing bigger as

the number of processors of the corresponding precedence

layer would exceed the total number of processors of the

cluster. This strategy would still work well if each task in

one layer had similar costs (operations to perform). But in the

case considered, tasks in the precedence layer have different

costs (e.g., tasks 2 and 5), which leads to a load imbalance.

We could find a workaround to this problem by introducing a

poly-algorithm (MCPA2) that uses CPA or MCPA depending

on the DAG and the parallel platform. For the example shown

in Figure 4 the poly-algorithm MCPA2 generates the same

schedule as CPA.

In the case study presented, Jedule has helped us tremen-

dously to quickly obtain an overview of different scheduling

scenarios. We have used the PDF export function of Jedule to

create documents with hundreds of schedule pictures.

IV. CASE STUDY – MULTI-DAG SCHEDULING ON

HOMOGENEOUS CLUSTERS

A. Introduction

Here we extend the framework presented in the previous

section to the case of scheduling several mixed-parallel appli-

cation on homogeneous clusters. The definitions of a mixed-

parallel application and a homogeneous cluster still hold in

this section. The main change is that a batch of N distinct

applications has to be scheduled.

In this scheduling problem two performance metrics have

to be optimized simultaneously. The first metric measures the

performance of the whole batch of mixed-parallel applications,

i.e., the overall makespan defines the maximum completion

time among the scheduled applications. The second metric

quantifies the fairness of a schedule. A perfectly fair schedule

is one in which all applications have the same stretch. The

stretch of an application is defined as the makespan achieved

in the presence of resource contention divided by the makespan

that would have been achieved if the application had had

dedicated use of the cluster. For instance, if a mixed-parallel

application could have run in 2 hours using the entire cluster,

but instead ran in 6 hours due to competition with other appli-

cations, then its stretch is 3. This is the most widely accepted

definition in the literature, with a lower value denoting better

performance.

Three approaches have been proposed in the literature that

relate to the above problem. In the first approach multiple

task graphs are combined into one and then a standard task

graph scheduling heuristic is used. Algorithms following the

second approach give a subset of the available processors

to each application and schedule each of them on its subset

using a known scheduling algorithm. The third approach relies

on bi-criteria algorithms for scheduling independent moldable

jobs, based on an approximation algorithm for optimizing

the makespan. Enhanced algorithms derived from these ap-

proaches have been described and evaluated in [12].

B. Application of Jedule

Jedule was a great help for the evaluation conducted in [12].

Here we detail how it helped to check the validity of one of

the proposed approaches to schedule multiple mixed-parallel

applications on a single cluster. The approach proposed in [13]

consists of distributing the processors of the cluster among the

applications to schedule. Each application then has to build

its own schedule according to this constraint resource alloca-

tion (CRA). The initial distribution of the processors can be

done according to different characteristics of the submitted ap-

plications. For instance, in the CRA_WORK algorithm proposed

in [13], each application i gets a share of resources βi propor-

Figure 5. Jedule output for the schedule produced by the CRA_WIDTH

algorithm. Four mixed-parallel applications, each having its own color, are
scheduled on a cluster of 20 processors. The resource constraints imposed by
the algorithm are respected.

tional to its own work. The work needed by a mixed-parallel

application i is equal to W (i) =
∑

vj∈Vi
(T (vj , p(vj)) ·p(vj))

and βi is formally defined as

βi =
µ

|A|
+

(1 − µ)W (i)
∑

j∈A W (j)
,

where A is the set of concurrent applications and µ can vary

in [0; 1] to give more importance to the work while distributing

the resources.

A critical issue for such an algorithm is to ensure that each

schedule respects its resource constraint. Thanks to the color

map that assigns a different color to each application, it is easy

to see the distribution of resources among the applications.

Figure 5 shows a schedule produced by CRA_WORK algorithm

for four mixed-parallel applications. We can see that the tasks

of each application are mapped on distinct processors. The

visualization offered by Jedule confirms that the algorithm

does what it was designed for. It also points out that the initial

distribution of the processors among the applications can be

too restrictive. For instance, processors 17 to 19 are clearly

underused. Such information which could be extracted from

text logs, but with more efforts, immediately highlights the

need for more complex algorithms.

In this context, Jedule was also used to see the impact

of a conservative backfilling step applied at the end of the

scheduling process. A comparison of the Jedule outputs with

and without backfilling allows for a check that no task is

delayed by this step. The reduction of the total idle time can

also be easily quantified.

V. CASE STUDY – DAG SCHEDULING ON

HETEROGENEOUS PLATFORMS

A. Introduction

In this third case study, we consider simpler applications,

i.e., scientific workflows represented by task graphs made of

single-processor tasks, and more complex execution platforms,

i.e., a heterogeneous multi-cluster. More precisely, we select

for this case study the scheduling of an instance of the

Montage workflow [14], [15] with 50 compute nodes on a

heterogeneous platform. Montage is a popular application in

astronomy to create mosaics from distinct input images. The

structure of the Montage workflow is given in Figure 6.

The target execution platform is depicted in Figure 7. For

the sake of simplicity, this platform is composed of only

four clusters. Two of them comprise four processors running

at 1.65 Gflop/s (billions of operations per second), while the

two other clusters only have two processors running twice as

fast (3.3 Gflop/s). Each processor has its own communication

link. Processors within a cluster are interconnected through

a switch. Finally all clusters are interconnected by a single

backbone. Note that such an infrastructure can easily be trans-

formed into a set of bi- and quad-core processors connected

on a LAN.

To schedule an instance of the Montage workflow on this

platform, we selected the well-known Heterogeneous Earliest

Finish Time (HEFT) algorithm [16]. The HEFT algorithm

sorts the ready tasks of the application task graph by decreas-

ing upward rank. Basically, the upward rank is the length of

the critical path from a task to the exit task, including the

computation cost of this task. It is the sum of the average

execution cost of this task over all available processors and a

maximum computed over all its successors. The terms of this

maximum are the average communication cost of an edge and

the upward rank of the successor. HEFT then uses the Earliest

Finish Time (EFT) as the objective function for selecting the

best processor for a node. The EFT of a task is the sum of its

Earliest Start Time (EST) and its execution time on a candidate

processor. The EST is the moment when the execution of a

task can actually begin on a processor. An execution can start

either when a processor becomes available or when all needed

data has arrived on the processor.

B. Application of Jedule

Figure 8 shows the Jedule output of the schedule produced

by HEFT for the considered Montage instance on the platform

of Figure 7. This schedule was obtained in simulation.

In this figure we can see the multi-cluster view of Jedule

mentioned in Section II. More interestingly, we can see that the

last task executed on processor 2 implies a strange scheduling

decision. This task is an mBackground task, according to

the Montage workflow. The three other tasks of this kind are

respectively executed on processors 9, 10, and 11.

This output tends to indicate a flaw in the scheduling algo-

rithm. To confirm this graphical intuition allowed by Jedule,

we checked the logs of the scheduling process. It appeared

Figure 6. Structure of the Montage workflow (nodes with the same color
are of same task type).

0 1

2 3

4 5

6 78 9

10 11

Figure 7. Heterogeneous platform used for the case study.

that processor 2 led to the earliest finish time for this task,

and thus, the scheduling decision was correct. Nevertheless a

problem exists. In presence of inter-task communications, as

in Montage, moving a task from one cluster to another with

exactly the same type of processors should lead to a greater

finish time. This scheduling decision shows the opposite:

sending data to another cluster is as costly as executing the

task locally. The reason for the strange behavior, pointed

out by Jedule, was in fact the description of the execution

platform used for the simulation. The latency of the backbone

connecting the different clusters was the same as the one

for the links connecting the processors of a same cluster.

In a reality the inter-cluster latency is usually much higher

than the intra-cluster latency. We modified our description

of the execution platform to obtain a more realistic setting.

The schedule obtained on this modified platform is shown in

Figure 9. We can see that this schedule does not exhibit odd

scheduling decisions. The two fast clusters (processors 0-1 and

6-7) are chosen first and then the slower clusters are used. With

regard to Figure 8, we can see that one of these slow clusters

is more heavily used. This reflects the impact of the greater

backbone latency on the scheduling decisions.

In this case study the overall makespan is the same for both

schedules (140.9 seconds). If we had only relied on this metric

to detect suspect behaviors, we would have missed the issue

highlighted by Jedule.

VI. CASE STUDY – LOAD BALANCING ON NUMA

ARCHITECTURES

A. Introduction

Dynamic load balancing of work units is often used to han-

dle irregular computations. In case of parallel loop scheduling

some iterations may require more computations than other

iterations if, for example, the number of computations depends

on input data or the amount of data sent or received differs.

Using a static loop distribution may induce a load imbalance.

Applications with recursive computations may use parallel

tasks for each recursive function call. Often the number

of calls and therefore the number of tasks is not known

beforehand, and so a dynamic task scheduling is required to

balance the parallel work across all processors. Identifying

load imbalance in these applications is important in order to

improve the execution scheme by changing the application or

the scheduling algorithm.

In the present case study, we consider a task pool, which

stores executable tasks in a virtually shared data structure

accessible by all processors. Figure 10 shows an example of

the task-based execution scheme. The actual storing may use

central or distributed data structures for efficient access but

these details are hidden behind the task pool interface. The task

pool framework considered here especially targets fine-grained

tasks. Hence, a low overhead of the task pool is an important

requirement, which makes finding bottlenecks harder.

Similar approaches to exploit irregular parallelism are used,

for example, in Intel’s Threading Building Blocks (TBB) [4]

for C++. Cilk [17] utilizes a fork-join-model to detach tasks

for parallel execution. Task parallelism is also supported in

OpenMP 3.0 [18].

B. Application of Jedule

The task pool run-time environment is able to log run-time

information about each tasks for offline analysis in Jedule. The

run-time environment stores for each thread the time used for

executing a task and the time to get new tasks (or wait for

new tasks if necessary). In Figure 10 the so-called waiting

time covers the time for get() and free() calls while the so-

called task size covers the time for execution(). Jedule can

be used to visualize these run-time information to show more

details about the actual utilization over time. In a case study

we consider the parallel Quicksort, which creates two tasks

for sorting each sub-array. At the beginning, there is only one

task for the whole input array. After array partitioning there

will be two new tasks, which will create another four tasks

in total and so on. It is clear that due to the initial limited

parallelism a linear speedup cannot be achieved. However, in

theory, after log(p) steps (with p being the number of total

processors used for computation) every processor takes part

in the sorting. Figure 11 shows the results for sorting 10

million random integers on an SGI Altix 4700 with 32 dual-

core Itanium2 processors running at 1.6 GHz. Task execution

times are highlighted in blue and waiting times are colored

red. It can be noticed that due to an accidental bad choice

Figure 8. Jedule output of the schedule of a Montage instance on the
heterogeneous platform described by Figure 7.

Figure 9. Jedule output of the schedule of a Montage instance on the
heterogeneous platform with a greater latency on the backbone link.

s t r u c t Task { Fu nc t io n , Argument } ;

/ / i n i t i a l i z a t i o n (m a s t e r t h r e a d)

f o r (each i n i t i a l work u n i t U) {
TaskPool . c r e a t e i n i t i a l t a s k (U. Fu nc t i o n , U. Argument) ;

}

/ / work ing phase

p a r a l l e l f o r (each t h r e a d 1. . .p) {
f o r e v e r () {

Task T = TaskPool . g e t () ;

i f (T == ∅) e x i t ;

T . e x e c u t e () ; / / may c r e a t e new t a s k s

T . f r e e () ;

}
}

Figure 10. Task-based execution scheme.

of the pivot element, the initial array is not split into nearly

equal-sized sub-arrays. In the actual situation, the small sub-

array is split into other arrays creating small tasks for the

other processors. The large sub-array takes more time to be

partitioned into sub-arrays, so there is a long delay of the

parallel execution. But even after a short period of parallel

execution there are still some periods with low utilization with

only 2-4 processors actually running.

With a specially crafted input array (inversely sorted num-

bers and selecting the middle element as pivot element) it is

possible to force the Quicksort algorithm to equally partition

the input array in each recursive step. One might expect a

better utilization as after log(p) steps enough tasks should

be available for all processors. Figure 12 shows the actual

utilization for 32 processors. In this case, only one processor

is busy in almost half the total execution time. Since the

processor has to swap every pair of numbers, it take much

longer than for the random input case. After this initial tasks is

finished two processors can start working concurrently, than 4

and so on. Interestingly, after some time of parallel execution

with all processors, there is another hole where only a few

processors are used. This is due to the high memory bandwidth

requirements and the NUMA architecture of the machine. So,

even two tasks with equal-sized arrays may take a different

time to execute and therefore create new load imbalance.

The application of Jedule gives detailed information about

the processor utilization of the system, which is harder to

retrieve otherwise. The visualization helps to find unexpected

waiting periods and gives an overview of the parallel execution

and possible bottlenecks. Jedule can handle big data sets

required to analyze fine-grained task parallel applications. In

this case study, some experiments with the parallel Quicksort

have created more than 200,000 individual tasks.

VII. CASE STUDY – PARALLEL WORKLOADS OF

PRODUCTION SYSTEMS

Studying the workload of parallel systems is important to

improve the job scheduler decisions and therefore to increase

the throughput and efficiency of these systems. Several traces

of parallel workloads are publicly available for scientific

purposes. The Grid Workload Archive (GWA) and the Parallel

Workload Archive (PWA) [19] contain several workload traces

for different parallel architectures.

In a last case study, we use Jedule to obtain a bird’s eye

view of a parallel workload. Figure 13 shows the workload

distribution for a 1024 node cluster (Thunder) at the Lawrence

Livermore National Laboratory (LLNL). The graphic shows

the workload of the cluster that was obtained on one day in

2007 (log file: LLNL-Thunder-2007-0, jobs: all jobs that

finished on 02/02, log file source: PWA). On this day, 834

jobs were executed on that cluster. 20 nodes of this cluster

were reserved as login and debug nodes, which can be seen in

the graphic as jobs get only executed by nodes with a number

greater than 20. We also highlighted in yellow the jobs of

user 6447 to demonstrate how Jedule can support the analysis

of parallel workloads of clusters or grids.

Figure 11. Quicksort with random 10,000,000 integers. Figure 12. Quicksort with inversely sorted 200,000,000 integers.

VIII. RELATED WORK

Visualization tools are often used to support the devel-

opment of parallel programs. In many cases, the graphical

representation of an executed application can help to identify

bottlenecks and therefore scalability issues of the program.

A visualization tool that enables the developer to interac-

tively investigate a trace of a parallel program is Pajé [20].

The tool is designed to support a potentially large number

of communicating threads, primarily designed to tune a mul-

tithreaded molecular dynamic code. Pajé displays a program

trace that has to be generated by running an instrument code.

The tool supports many low level events like communication

and synchronization between threads, using graphical elements

like arrows between communicating threads. The Visual Trace

Explorer (ViTE) is an extended version of Pajé, which also

visualizes a sequence of events from a trace and additionally

presents several statistics about the trace [21].

A tool that is also dedicated to understand scheduling

algorithms is VizzScheduler [22]. It is part of a framework

to develop and evaluate scheduling algorithms for the LogP

cost model. So, one can improve the scheduling algorithms in

a simulator before going to a real platform. VizzScheduler can

be used to visualize program points during the actual execution

of the program. It also visualizes scheduling algorithms by

Gantt charts. The user can also alter several parameters of the

LogP model via a graphical interface.

The GridSim-based Grid Scheduling Simulator Alea2 [23]

also allows a graphical evaluation of the simulation. The tool

provides graphical visualizations of several scheduling statis-

tics, e.g., average system utilization, the number of running

and waiting jobs, or the cluster usage.

A few other tools exist that help developers of parallel

applications to analyze and tune their programs. Well known

are VAMPIR [24] and TAU [25]. VAMPIR is usually used for

visualizing MPI traces. The sequence of events is shown for

each process using Gantt chart. It provides fine grained statis-

tics of the program traced, e.g., PAPI counters. TAU is another

tracing (and profiling) tool for HPC systems targeted to MPI

applications. The generated traces can be graphically displayed

in different viewers, e.g., Jumpshot [26] or VAMPIR.

For programs based on the PVM (Parallel Virtual Machine)

the programming environment GRADE [27] provides graphi-

cal support. GRADE offers the developer a graphical program

editor and contains a visualization tool to analyze the message-

passing parallel programs.

A parallel program can also be visualized as a parallel

execution graph [28]. The authors have shown how these

execution graphs can be used to evaluate the performance of

parallel programs that uses a distributed thread system (DTS).

Graphs are generated from program traces and expose the

structure of multithreaded programs.

IX. CONCLUSIONS

In this article we have introduced Jedule, a software tool

that visualizes task schedules on parallel platforms. Jedule’s

main purpose is to provide an easy-to-use and generic tool

for displaying arbitrary schedules as Gantt charts. It helps

developers to get a first abstract overview (bird’s eye view) of

the decisions of the scheduling algorithms. Moreover, it can be

used educationally to demonstrate how scheduling algorithms

work. Jedule can be used to display the utilization of a parallel

platform, e.g., a homogeneous cluster. Additionally, Jedule

supports the grouping of resources into clusters. A cluster

might be a real commodity cluster of PCs or just a single

multicore machine, where each core is part of the bigger

cluster. The schedule of each cluster can be viewed separately.

The rectangles in the Jedule Gantt charts that represent user-

defined events (a running job, a waiting time, or an I/O

operation) can take a different color according to their type.

Color maps can also be changed on the fly, thus, the user can

highlight different events when investigating a schedule. Jedule

provides two different modes to investigate schedules, the

interactive mode and the command line mode. The command

line mode helps users to produce high quality graphics of

Figure 13. Visualization of the parallel workload of the LLNL Thunder Cluster on one day in 2007. Yellow rectangles denote jobs of a selected user.

schedules, which can later be embedded into documentations

or articles. The interactive mode enables the user to focus

on specific parts of the schedule by filtering or zooming into

schedule events.

REFERENCES

[1] D. Thain, T. Tannenbaum, and M. Livny, “Distributed Computing
in Practice: The Condor Experience,” Concurrency and Computation:

Practice and Experience, vol. 17, pp. 2–4, 2005.
[2] “OpenPBS website.” [Online]. Available: http://www.openpbs.org/
[3] D. B. Jackson, Q. Snell, and M. J. Clement, “Core Algorithms of

the Maui Scheduler,” in Revised Papers from the 7th International

Workshop on Job Scheduling Strategies for Parallel Processing (JSSPP

’01). Springer, 2001, pp. 87–102.
[4] J. Reinders, Intel threading building blocks. Sebastopol, CA, USA:

O’Reilly & Associates, Inc., 2007.
[5] H. Brunst, D. Kranzlmüller, M. S. Muller, and W. E. Nagel, “Tools for

scalable parallel program analysis: Vampir NG, MARMOT, and DeWiz,”
Int. J. Comput. Sci. Eng., vol. 4, no. 3, pp. 149–161, 2009.

[6] N. Vydyanathan, S. Krishnamoorthy, G. Sabin, U. Catalyurek, T. Kurc,
P. Sadayappan, and J. Saltz, “An Integrated Approach for Processor
Allocation and Scheduling of Mixed-Parallel Applications,” in Proc. of

the 35th Int. Conf. on Parallel Processing (ICPP’06), Aug. 2006, pp.
443–450.

[7] S. Bansal, P. Kumar, and K. Singh, “An Improved Two-Step Algorithm
for Task and Data Parallel Scheduling in Distributed Memory Machines,”
Parallel Computing, vol. 32, no. 10, pp. 759–774, 2006.

[8] S. Hunold, T. Rauber, and F. Suter, “Redistribution Aware Two-Step
Scheduling for Mixed-Parallel Applications,” in Proc. of the IEEE Int.

Conf. on Cluster Computing (Cluster 2008), 2008, pp. 50 – 58.
[9] A. Radulescu and A. van Gemund, “A Low-Cost Approach towards

Mixed Task and Data Parallel Scheduling,” in Proc. of the 15th Int.

Conf. on Parallel Processing, 2001.
[10] S. Hunold, “Low-Cost Tuning of Two-Step Algorithms for Scheduling

Mixed-Parallel Applications onto Homogeneous Clusters,” in Proc. of

the 10th IEEE/ACM Int. Symp. on Cluster, Cloud and Grid Computing

(CCGrid 2010), 2010.
[11] H. Casanova, A. Legrand, and M. Quinson, “SimGrid: a Generic

Framework for Large-Scale Distributed Experiments,” in Proc. of the

10th IEEE Int. Conf. on Computer Modeling and Simulation, Mar. 2008.
[12] H. Casanova, F. Desprez, and F. Suter, “On Cluster Resource Allocation

for Multiple Parallel Task Graphs,” Institut National de Recherche en
Informatique et en Automatique, Research Report 7724, Mar. 2010.
[Online]. Available: http://hal.archives-ouvertes.fr/inria-00461692/

[13] T. N’takpé and F. Suter, “Concurrent Scheduling of Parallel Task
Graphs on Multi-Clusters Using Constrained Resource Allocations,” in
Proceedings of the 10th IEEE International Workshop on Parallel and

Distributed Scientific and Engineering Computing (PDSEC), May 2009.

[14] “Montage Project,” http://montage.ipac.caltech.edu/.
[15] A. Laity, N. Anagnostou, G. B. Berriman, J. C. Good, J. C. Jacob, D. S.

Katz, and T. Prince, “Montage: An Astronomical Image Mosaic Service
for the NVO,” in Proceedings of Astronomical Data Analysis Software

and Systems (ADASS) XIV, 2004.
[16] H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Performance-Effective and

Low-Complexity Task Scheduling for Heterogeneous Computing,” IEEE

Transactions on Parallel and Distributed Systems, vol. 13, no. 3, pp.
260–274, 2002.

[17] R. Blumofe, C. Joerg, B. Kuszmaul, C. Leiserson, K. Randall,
and Y. Zhou, “Cilk: An Efficient Multithreaded Runtime System,”
in Proceedings of the 5th Symposium on Principles and Practice

of Parallel Programming (PPOPP’1995. ACM, 1995, pp. 55–69.
[Online]. Available: citeseer.nj.nec.com/blumofe95cilk.html

[18] OpenMP Application Program Interface, Version 3.0, OpenMP Archi-
tecture Review Board, May 2008.

[19] D. Feitelson, “Parallel Workloads Archive (PWA).” [Online]. Available:
http://www.cs.huji.ac.il/labs/parallel/workload/

[20] J. C. D. Kergommeaux, B. D. O. Stein, and M. S. Martin, “Paje:
An Extensible Environment for Visualizing Multi-Threaded Program
Executions,” in Proc. Euro-Par 2000, Springer-Verlag, LNCS, 1900, pp.
133–144.

[21] “Vite (visual trace exlporer).” [Online]. Available: http://vite.gforge.
inria.fr

[22] W. Löwe and A. Liebrich, “VizzScheduler - A Framework for the
Visualization of Scheduling Algorithms,” in Euro-Par ’01: Proceedings

of the 7th International Euro-Par Conference Manchester on Parallel

Processing. Springer, 2001, pp. 62–66.
[23] D. Klusáček and H. Rudová, “Alea 2 – Job Scheduling Simulator,” in

Proceedings of the 3rd International Conference on Simulation Tools

and Techniques (SIMUTools 2010), 2010.
[24] W. E. Nagel, A. Arnold, M. Weber, H.-C. Hoppe, and K. Solchenbach,

“VAMPIR: Visualization and Analysis of MPI Resources,” Supercom-

puter, vol. 12, pp. 69–80, 1996.
[25] S. S. Shende and A. D. Malony, “The Tau Parallel Performance System,”

Int. J. High Perform. Comput. Appl., vol. 20, no. 2, pp. 287–311, 2006.
[26] O. Zaki, E. Lusk, W. Gropp, and D. Swider, “Toward Scalable Per-

formance Visualization with Jumpshot,” Int. J. High Perform. Comput.

Appl., vol. 13, no. 3, pp. 277–288, 1999.
[27] P. Kacsuk, J. Cunha, G. Dózsa, J. Lourenço, T. Fadgyas, and

T. Antão, “A graphical development and debugging environment for
parallel programs,” Parallel Computing, vol. 22, no. 13, pp. 1747
– 1770, 1997, distributed and parellel systems: Environments and
tools. [Online]. Available: http://www.sciencedirect.com/science/article/
B6V12-3VV6MW4-P/2/26592872c685a5fb6d823063dab89a2a

[28] B. Steckelbach, T. Bubeck, U. Fößmeier, M. Kaufmann, M. Ritt, and
W. Rosenstiel, “Visualization of parallel execution graphs,” in Graph

Drawing, ser. Lecture Notes in Computer Science, S. Whitesides, Ed.,
vol. 1547. Springer, 1998, pp. 403–412.

