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Abstract—Applications structured as parallel task
graphs exhibit both data and task parallelism, and arise in
many domains. Scheduling these applications on parallel
platforms has been a long-standing challenge. In the case
of a single homogeneous cluster, most of the existing algo-
rithms focus on the reduction of the application completion
time (makespan). But in presence of resource managers
such as batch schedulers and due to accentuated pressure
on energy concerns, the produced schedules also have to
be efficient in terms of resource usage. In this paper
we propose a novel bi-criteria algorithm, called biCPA,
able to optimize these two performance metrics either
simultaneously or separately. Using simulation over a wide
range of experimental scenarios, we find that biCPA leads
to better results than previously published algorithms.

I. INTRODUCTION

Scientific applications executed on parallel computing

platforms can exploit two types of parallelism: task par-

allelism and data parallelism. A task-parallel application

is partitioned into a set of tasks with possible precedence

and communication constraints to form a task graph. A

data-parallel application typically exhibits parallelism at

the level of loops, so that iterations can be executed con-

ceptually in a Single Instruction Multiple Data (SIMD)

fashion. A way to expose increased parallelism, and

achieve higher scalability and performance, is to write

parallel applications that use both types of parallelism,

using what is often called mixed parallelism. With mixed

parallelism applications are structured as parallel task

graphs (PTGs), that is, task graphs of data-parallel tasks.

PTGs arises naturally in many applications (see [1] for

a discussion of the benefits of mixed parallelism and for

application examples.)

One well-known challenge for executing PTGs is

scheduling, that is, making decisions for mapping com-

putations to platform resources to optimize some perfor-

mance metric. Mixed parallelism adds another level of

difficulty to the already challenging scheduling problem

for task-parallel applications because data-parallel tasks

are moldable. A moldable task can be executed on

various numbers of processors, with more processors

hopefully leading to faster execution times. This raises

the question of how many processors should be allocated

to each data-parallel task. In other words, what is the

best trade-off between running more concurrent data-

parallel tasks each with fewer processors, or running

fewer concurrent tasks each with more processors?

Typical platforms for executing PTG are homogeneous

commodity clusters. The resources of such computing

platforms are often accessed through a batch scheduler

that is the most common resource management system

used in production. A batch scheduler allocates, in

a certain order, computing resources to the different

requests submitted by users [2]. A known drawback of

a batch scheduler is that users and resource owners have

disconnected aims. Users usually want their applications

to finish as soon as possible. A batch scheduler tries to

ensure a maximal usage of the resources even if some

particular requests have to be delayed in the process. In

the particular context of PTG scheduling, two scenarios

are possible. First, a user can build a pre-schedule of

his/her mixed-parallel application. Then he/she submits

a rigid version of it, i.e., in which all the processor

sets allocated to each task have been fixed, to the

batch scheduler. A second option is to let the scheduler

determine these processor sets, provided that tasks can

use different numbers of processors. Such a feature is

for instance available in the OAR resource management

system [3] and described in [4]. In this case the batch

scheduler tries to use the resources as efficiently as

possible. In other words it tries to minimize the work

associated to the execution. Using less resources can also

be one of the user’s goals. A less resource consuming

schedule will indeed be “greener”. It can also lead to a

lower bill if resource consumption is accounted.

In this paper we propose a new algorithm to schedule

a Parallel Task Graph on a cluster. The performance

objectives of this algorithm are: (i) to minimize the

completion time of the PTG; and (ii) to minimize the

amount of resources allocated for the schedule. We will

show how the proposed algorithm is able to find a



good trade-off between these two antagonistic objectives.

We will also see that both metrics can be optimized

separately to come up to either user or batch scheduler

expectations.

Several algorithms have been proposed in the literature

to schedule PTGs on clusters either in one [5] or two

steps [6], [7], [8]. Most of these algorithms focus only

on reducing the completion time of the scheduled appli-

cations and may lead to an inefficient use of the resources

as pointed out in [9]. Among the two-step algorithms, the

CPA (Critical Path and Area-based scheduling) algorithm

in [8] was a pioneering work. Some drawbacks of this

algorithm were the initial motivation of this work. We

will show the limitations of previous improvements of

this seminal algorithm. We will also demonstrate how

the algorithm proposed in this paper produces schedules

that outperform those of its competitors, both in terms

of makespan and work reduction.

This paper is organized as follows. Section II discusses

related work. Section III describes our application and

cluster models, and gives a precise problem statement.

Section IV details the proposed biCPA algorithm, which

we evaluate experimentally in Section V. Finally Sec-

tion VI summarizes our contribution and presents future

work.

II. RELATED WORK

Several algorithms have been recently proposed to

schedule a single PTG on a cluster. Most of these

algorithms decompose the scheduling in two phases.

First they determine a resource allocation for each

task of the PTG. Then they map the allocated tasks

on the computing resources. Determining an allocation

consists in fixing the number of processors to execute

a moldable task. Previously published results show that,

among the two-step algorithms, the CPA (Critical Path

and Area-based scheduling) algorithm in [8] has low

computational complexity and was shown to lead to

good results when compared to its competitors. CPA

aims at finding a good tradeoff between the length of

the critical path and the average area (which measures

the sum of the processor-time area required by the PTG

tasks). A glaring drawback of CPA has been highlighted

by [6] and [9]. Indeed for some application and platform

configurations, CPA produces allocations that are too

large and reduce concurrency in a way that is detrimental

to performance.

The MCPA (Modified CPA) algorithm in [6] addresses

this drawback by preventing the tasks belonging to

a same level of precedence to be allocated on more

processors than the cluster comprises. Nevertheless this

improvement is limited to PTGs structured as a sequence

of levels comprising independent tasks. For more irreg-

ular tasks graphs, MCPA is likely to build the same

schedules as CPA.

A modified version of the HCPA (Heterogeneous

CPA) algorithm in [9] uses a more stringent stopping

criterion in allocation procedure. Stopping this allocation

process earlier results in smaller allocations and thus

increase the possible concurrency. This criterion was

determined empirically and leads to a formulation of

the average area that is no more homogeneous with the

critical path length. Furthermore, HCPA is sometimes

too conservative and stops the allocation process while

some improvement is still possible.

On the other hand, the one-step iCASLB algorithm

was shown to lead to better performance than some two-

step algorithms, including CPA, at the price of a higher

complexity [5]. This algorithm performs allocation and

mapping simultaneously with a look-ahead mechanism

to avoid being trapped in local minima and a backfilling

approach to improve the schedule.

Finally there exist some theoretical results on the

scheduling of moldable tasks with dependencies. In [10],

the authors present a guaranteed two-step algorithm.

Its allocation step relies on a relaxed linear program

minimization and which also results in fractional pro-

cessor allocations. A rounding procedure is then used

to obtain integral allocations. The second step applies

a simple list scheduling approach to map tasks. The

guaranteed performance ratio is defined as the maximum

ratio between the produced makespan and the optimal

makespan. It is shown that the guaranteed performance

ratio of this algorithm is ∼5.24 in the general case.

This result was improved in [11], leading to a ∼4.73

performance ratio in the general case. The algorithm pro-

posed in [10] was implemented and compared to HCPA

in [12]. It was shown that non-guaranteed algorithms

were competitive with the guaranteed one on the average

but with tremendously shorter scheduling times.

III. PROBLEM STATEMENT

A. Platform and Application Models

A cluster consists of P compute nodes, or processors.

We use the term “processor” to refer to an individually

schedulable compute resource. With this terminology, a

“processor” may in fact be a physical compute node

that is a multi-processor and/or multi-core computer.

Processors are interconnected by a high-speed, low-

latency network. Each processor is able to execute a

certain amount of floating operations (or flop) per sec-

ond that represents its computing speed. A processor

can communicate with several other processors simul-

taneously under the bounded multi-port model. All the
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concurrent communication flows share the bandwidth of

the communication link that connects this processor to

the remaining of the cluster.

A PTG is modeled as a directed acyclic graph G =
(V , E), where V = {vi | i = 1, . . . , V } is a set of vertices

representing data-parallel tasks, or “tasks” for short, and

E = {ei,j | (i, j) ∈ {1, . . . , V } × {1, . . . , V }} is a set

of E edges representing precedence constraints between

tasks. We distinguish two PTGs models that correspond

to two different execution scenarios. These models differ

on the weight assigned to the edges.

In the first model the edges are zero-weighted. This

means that we do not model any communication network

or any data transfer between tasks, with the following

rationale. A schedule can be seen as a set of resource

reservations, one per task, submitted to a batch sched-

uler. We may construct schedules in which a task may

complete well before the beginning of one or more of

its successors. Then it precludes the use of network

communication between tasks. One solution is then to

implement communication using disk I/O via files. The

overhead of such communication is comprised in the task

performance model described hereafter (as a sequential

overhead).

Conversely the second PTG model considers that the

execution takes place within a single reservation. It is

then possible to resort to network communication for

data transfers. Each edge ei,j is weighted by the amount

of data (in bytes) that task vi must send to task vj . Note

that in addition to data communication itself, there may

be an overhead for data movements, e.g., when task vi is

executed on a different number of processors than task

vj .

Without loss of generality we assume that G has a sin-

gle entry task and a single exit task. Since data-parallel

tasks can be executed on various numbers of processors,

we denote by T (v, p) the execution time of task v if it

were to be executed on p processors. In practice, T (v, p)
can be measured via benchmarking for several values of

p, or it can be calculated via a performance model. We

also denote by W (v) = T (v, p) × p the work needed

to execute the task v on p processors and by BL(v) its

bottom level, i.e., its distance in terms of execution time

to the end of the application. The overall execution time

of G, or makespan, is defined as the time between the

beginning of G’s entry task and the completion of G’s
exit task. The makespan is denoted by C in the remaining

of this work.

B. Metrics and Problem Statement

We consider the execution of a PTG on a cluster.

The problem is to allocate resources to the tasks of this

PTG and to schedule it so as to minimize its makespan

and minimize the resource usage associated with this

execution. These objectives are antagonistic and are

respectively related to user and batch scheduler concerns.

Indeed using more resources is likely to lead to smaller

makespans while a lesser resource usage may increase

the overall execution time. We thus have to solve a bi-

criteria optimization problem.

In the following we define the makespan as C =
maxi C(vi) where C(vi) is the finish date of task vi.

To express the resource usage of a schedule, we denote

by W the total work needed to execute the PTG. The

definition of W depends on the model of PTG. In

absence of network communications, it corresponds to

the sum of the work needed to execute each allocated

task, i.e., W =
∑

i W (vi). When the schedule is exe-

cuted within a single resource reservation, it graphically

corresponds to a box whose width is equal to the number

of processors (”size” or peakAlloc) and height is equal

to the makespan. The total work is then defined as the

area of this box. The reservation’s width corresponds to

maximal number of processors simultaneously alloted in

the schedule. We represent this value by peakAlloc. We

then have W = C × peakAlloc.

IV. A BI-CRITERIA SCHEDULING ALGORITHM

In this section we first recall the principle of the

allocation procedure of the CPA algorithm in [8]. We

also explain how MCPA [6], and HCPA [9] algorithms

modify this procedure. Then we detail the principle of

the proposed Bi-criteria CPA (biCPA) algorithm.

A. Existing Allocation Procedures

Algorithm 1 *CPA allocation procedure

1: for all v ∈ V do

2: p(v)← 1
3: end for

4: while TCP > TA do

5: v ← task ∈ CP |
“

T (v,p(v))
p(v)

− T (v,p(v)+1)
p(v)+1

”

is maximum

6: and prec alloc(v) < P // for MCPA only

7: p(v)← p(v) + 1
8: Update TA and TCP

9: end while

Algorithm 1 presents the pseudo-code of the alloca-

tion procedure common to the CPA, MCPA and HCPA

algorithms. This allocation procedure starts by allocating

one processor to each task (lines 1-3). Then it increases

some of these allocations to balance the length of the

critical path, TCP = maxi BL(vi), and the average area,

TA = 1
P

∑
i W (vi) (lines 4-9). As task mapping has not

been computed yet, the critical path computation does
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not take into account the communications costs due to

data dependencies.

Note that HCPA uses an other definition of TA to

stop this procedure before producing too large alloca-

tions. In HCPA, the average area is defined as TA =
1

min(P,
√

V ×P )

∑
i W (vi). Each iteration of the procedure

increases the allocation of the task belonging to the

current critical path that will benefit the most of being

allocated on one more processor (lines 5-7). MCPA adds

another condition to the selection of this task. It ensures

that the sum of the allocations of the tasks in a same

precedence level does not exceed the capacity of the

cluster (line 6). Finally the values of TCP and TA are

updated (line 8).

As stated in Section II, the allocation procedure of

the CPA algorithm may reduce concurrency in a way

that is detrimental to performance. This occurs when the

number of processors in the cluster is much bigger than

the number of tasks in the PTG. In such a configuration,

the average area TA grows very slowly due the division

by P . This implies a large number of iterations to reach

the tradeoff between the length of the critical path and

the average area. This may lead to large allocations for

some independent tasks that cannot be executed concur-

rently. The solution proposed in the HCPA algorithm

allows the allocation procedure to converge faster. But

it does not preserve the homogeneity of the TCP > TA

relation. Indeed TCP represents a time while TA is a

ratio between a time and a number of tasks.

B. The biCPA Algorithm

Figure 1 shows how the critical path length TCP and

the average area TA evolve during the allocation proce-

dure of CPA. Note that it corresponds to the allocation

of a PTG of 50 tasks on a cluster that comprises 20

processors. Then it is a case unfavorable to CPA with

V << P . We can see that 96 iterations are needed to

reach the desired tradeoff between TCP and TA.

The number of iterations of this allocation procedure

strongly depends on how TA and TCP evolve. Due to

the speedup model, the gain on TCP tends to decrease as

more processors are allocated. The slope of the evolution

curve of TA depends on the number of processors P . By

taking the average over a value P ′ smaller than P , this

slope will be steeper. The allocation procedure will then

converge faster. For instance, if P ′ = 10 in Figure 1, the

allocation procedure will stop after 34 iterations. Now

we need to find the appropriate value of P ′.

biCPA will base its new allocation procedure on a new

definition of the average area denoted as T ′
A. This variant

of the average area is defined by
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Figure 1. Evolution of TCP , TA, and T ′

A throughout the allocation
procedure of CPA for a random PTG of 50 tasks on a cluster of 20
processors.

T ′
A =

1

P ′

∑

i

W (vi), (1)

Figure 1 shows the evolution of T ′
A throughout the

allocation procedure. The value of P ′ is incremented

each time T ′
A becomes larger than TCP . The evolution

of P ′ is depicted by the labels on Figure 1.

An interesting thing is that each time P ′ is incre-

mented the current task allocations correspond to those

that would have been determined by CPA if the clus-

ter has comprised P ′ processors. Moreover all these

intermediate allocations can be determined during the

execution of the original allocation procedure of CPA.

These intermediate allocations are the key information

needed by biCPA to find the best compromise between

makespan and work.

Algorithm 2 presents the allocation procedure of

biCPA which relies on the definition of T ′
A. As explained

before, the main difference with the allocation procedure

of CPA lies in the most extern for loop (lines 4-14).

This loop is used to set the value of T ′
A that will be

used in the inner loop (lines 6-10). Note that this inner

loop actually corresponds to an interval of iterations of

the seminal allocation procedure of CPA, as shown in

Figure 1. Each time TCP ≤ T ′
A, the current allocation

is stored for each task (lines 11-13). At the end of this

procedure, P different allocations are associated with

each task in the PTG.

Then the second step of the biCPA algorithm consists

in getting an estimation of the makespan and total work

that can be achieved with each of these allocations. To

obtain these performance indicators, the biCPA algo-

rithm uses a classical list scheduling function. The task
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Algorithm 2 The biCPA allocation procedure

1: for all v ∈ V do
2: p(v)← 1
3: end for

4: for i = 1 to P do

5: T ′

A = 1
i

P

j W (vj)
6: while TCP > T ′

A
do

7: v ← task of the critical path |
“

T (v,p(v))
p(v)

− T (v,p(v)+1)
p(v)+1

”

is maximum
8: p(v)← p(v) + 1
9: Update T ′

A
and TCP

10: end while
11: for all v ∈ V do

12: Store pi(v) ← p(v)
13: end for

14: end for

are first prioritized by decreasing bottom level. Then

for each task, the set of processors that leads to the

earliest finish time is selected. Once a mapping has

been found for each task of the PTG, we determine the

values of CA and WA. These value are stored in an

array of structures. From these makespan and total work

estimations, the biCPA algorithm is able to output four

interesting schedules among all the schedules computed.

The first two schedules aims at optimizing one metric

only. We can first select the allocation leading to the

shortest estimation of the makespan. This allocation is

found by sorting the array of structures by increasing

makespan and picking out the first element. The second

schedule produced by biCPA is the one that requires the

smallest amount of work to execute the PTG. As for the

first schedule, the corresponding allocation is found by

sorting the array of structures, this time by increasing

total work. Recall that our main aim is to design a

bi-criteria scheduling algorithm. We then discard the

solutions that leads to an improvement of the criterion

to optimize but degrades the performance with regard

to the other criterion, i.e., such that Ci > CP or

Wi > WP . Such a situation often occurs when trying

to minimize the work needed to execute a PTG as only

a few processors are used.

The process leading to the third and fourth schedules

is more complex. The objective is now to optimize both

metrics simultaneously. A first step is to determine, for

each candidate allocation, the gain it offers with regard

to each metric. This gain is measured by dividing the

makespan and work achieved with the considered alloca-

tion respectively by the makespan and work obtained for

P processors. A value less than one indicates a shorter

completion time or less required work. Conversely, a

ratio greater than one shows a performance degradation.

Note that these relative makespan and work also tell

us if the schedule produced by CPA can be improved.

Then we can determine which allocations lead to non-

dominated solutions. The best trade-off between our two

objectives can be found among these allocations.

In a multi-objective optimization problem, there are

at least two ways of defining what should be a good

trade-off. A first definition is to find a solution that

leads to the same improvement on each criterion. In our

particular context this means an allocation that reduces

the makespan and work with regard to the allocation of

CPA in the same proportion formalized by Equation 2

Ci

CP
=

Wi

WP
, (2)

where CP and WP represent the makespan and work

achieved when using all the processors (as in CPA).

Ci and Wi correspond to the same quantities but when

the allocations are determined for a cluster of only i
processors. If several solutions satisfy to Equation 2,

the best one will be the one with the smallest relative

makespan.

Another definition of a good trade-off is to maximize

the sum of the improvements that a solution achieves on

each criterion. In our context, small values for relative

makespan or work mean better performance. The best

trade-off will be the allocation that minimizes

Ci

CP
+

Wi

WP
. (3)

Ties produced by this equation are broken by selecting

the one with the smallest work.
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Figure 2 illustrates and summarizes the different al-

locations selected by our biCPA algorithm. This fig-

ure shows the relative makespan (Ci/CP ) and work
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(Wi/WP ) when i varies for the scheduling a random

PTG of 20 tasks without inter-task communications on

a cluster of 20 processors. The crosses depicts the dis-

carded options, either because they are dominated (from

16 to 20) or degrading one of the criterion (from 1 to 5).

The triangles correspond to the non dominated solutions

while the black circles are the four values selected

by our algorithm: (i) the best makespan improvement

is achieved with i = 15; (ii) the best work without

makespan degradation is obtained when i = 6; (iii) with
i = 11, Equation 2 (whose solutions are shown by on

the dashed line) is satisfied; and (iv) the sum of the two

relative values is minimized when i = 8. The pointed

line shows the system efficiency which corresponds to

this minimal value.

In the remaining of this paper we distinguish the four

schedules produced by our biCPA algorithm. biCPA-

M is the schedule that minimizes the makespan while

biCPA-W minimizes the work without degrading the

makespan. The two schedules that optimizes both criteria

are biCPA-E and biCPA-S. The former looks for the

best solution to Equation 2 while the latter minimizes

Equation 3.

C. Complexity Analysis

In this section we analyze the worst case complexity

of the proposed biCPA algorithm. We first recall the

complexity of the seminal CPA algorithm. MCPA and

HCPA share the same complexity.

In the allocation step, the main loop (lines 4-9 in

Algorithm 1) updates the bottom level of each task, to in

turn update TA. It also browses the critical path looking

for the task to select and to update TCP . In the worst

case, both operations imply to consider all the nodes

and edges of the PTG, e.g., for a chain graph, and take

O(V +E) time. This loop can be executed V ×P times

as the allocation of each task can be incremented by one

processor, starting from 1 and up to P . Note that this

worst case can happen with a chain graph whose critical

path is much larger than the area corresponding to a pure

data-parallel execution of its tasks. However, the number

of iterations needed by the allocation procedure to reach

an equilibrium between TCP and TA is considerably less

than V × P in more general cases. Consequently the

worst case complexity of the allocation step of CPA is

O(V P (V + E)).
The mapping step of CPA can be divided in three

components. It is first mandatory to set the priority of

each task. As it corresponds to determining the bottom

level in CPA, the associate complexity is O(V + E).
Then the scheduling list is sorted according to these

priorities in O(V log V ). Finally, it takes O(V × P )

time to schedule tasks on processors. This results in a

total complexity of O(E +V log V +V P ). The overall
complexity of the CPA like algorithms is then dominated

by the allocation step and is O(V P (V + E)).
As mentioned in Section IV, computing the P in-

termediary allocations does not increase the complexity

of the allocation step of biCPA. However to select the

allocation that optimizes the target metric, biCPA needs

to build P different mappings. A factor of P is then

added to the worst case complexity of the mapping

step of CPA leading to O(P (E + V log V + V P )).
The overall complexity of the biCPA algorithm is then

O(V P (V + E + P )). Thus it only adds O(V P 2) to

CPA’s complexity but it optimizes two criteria instead

of one.

We finally recall the worst case complexity of the

iCASLB algorithm in [5]. In the worst case of chain-like

PTG, iCASLB takes O(V 3P 2 + V P 2E′) time to build

a schedule. E′ corresponds to the number of edges in

a modified version of the task graph. This modification

adds an edge between two independent tasks vi and vj

if vj has to wait for the completion of vi to start its

execution due to resource constraints.

V. EXPERIMENTAL EVALUATION

A. Experimental Methodology

We use simulation to compare and evaluate the algo-

rithms. It allows us to perform a statistically significant

number of experiments for a wide range of application

and platform configurations (in a reasonable amount of

time). We use the SIMGRID v3.3 toolkit [13] as the basis

for our simulator. SIMGRID provides the required funda-

mental abstractions for the discrete-event simulation of

parallel applications in distributed environments and was

specifically designed for the evaluation of scheduling

algorithms. We present hereafter how we instantiate the

models described in Section III-A for the simulation

experiments and then present and discuss the results.

B. Platforms

We consider three clusters of the Grid’5000 plat-

form [14]. One, named chti, is located in Lille, while

the two others, named grillon and grelon, are located in

Nancy. Each cluster uses a Gigabit switched interconnect

internally (100µsec latency and 1Gb/sec bandwidth).

The chti cluster comprises 20 processors with a comput-

ing speed of 4.311 Gflop/sec, while the grillon cluster

has 47 processors that computes 3.379 Gflop/sec. Finally

the grelon cluster is made of 120 nodes, each of a com-

puting speed of 3.185 Gflop/sec. These computing speed

values were obtained with the HP-LinPACK benchmark

over ACML.
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C. Applications

To instantiate the PTG models described in Sec-

tion III-A we need to define specific models for exe-

cution times of data-parallel tasks and for the structure

of the task graph.

We take a simple approach for modeling data-parallel

task execution times. We assume that a task operates on

a dataset of d double precision elements (for instance

a
√

d ×
√

d square matrix). We arbitrarily assume that

processors have at most 1GByte of memory and thus

d ≤ 121M . We also assume that d is above 4M . The

volume of data communicated between two tasks is equal

to 8× d bytes. We model the computational complexity

of a task, in number of operations, with one of the

three following expressions, which are representative of

common applications: a · d, a · d log d, and d3/2. For

the first two types of complexity a is picked randomly

between 26 and 29, to capture the fact that some of these

tasks often perform multiple iterations. We consider four

scenarios: three in which all tasks have one of the three

computational complexities above, and one in which

complexities are chosen randomly among the three.

The above provides a model for sequential task execu-

tion, but we also need to model parallel executions, i.e.,

how T (v, p) varies with p. We use a simple model based

on Amdahl’s law that is used extensively in the literature.

It specifies that a fraction α of a task’s sequential execu-

tion time is non-parallelizable. We simply pick random

α values uniformly between 0% and 25%. With this

“Amdahl model”, an application task exhibits different

execution times for different numbers of processors.

We consider random tasks graphs that consist of 20 or

50 data-parallel tasks. We use four popular parameters

to define the shape of the PTG: width, regularity, den-

sity, and “jumps”. The width determines the maximum

parallelism in the PTG, that is the number of tasks in the

largest level. A small value leads to “chain” graphs and

a large value leads to “fork-join” graphs. The regularity

denotes the uniformity of the number of tasks in each

level. A low value means that levels contain very dis-

similar numbers of tasks, while a high value means that

all levels contain similar numbers of tasks. The density

denotes the number of edges between two levels of the

PTG, with a low value leading to few edges and a large

value leading to many edges. These three parameters

take values between 0 and 1. In our experiments we

use values 0.2, 0.5, and 0.8 for width, and 0.2 and 0.8
for regularity and density. Furthermore we add random

“jumps edges” that go from level l to level l + jump,
for jump = 1, 2, 4 (the case jump = 1 corresponds

to no jumping “over” any level). The parameters have

been chosen to cover a broad range of applications

characteristics. They are not described into details due

to the lack of space. We refer the reader to our DAG

generation program and its documentation [15] for more

details. This generator is voluntarily available to ease

the reproduction of presented results. For each model,

we generate 864 different PTGs.

While the above specifies a way to generate a pop-

ulation of synthetic PTGs, we also consider real PTGs

from the Strassen matrix multiplication algorithm and

from the Fast Fourier Transform (FFT) application. Both

are classical test cases for PTG scheduling algorithms

and we refer the reader for instance to [16] for details

on their structure. These PTGs are more regular than

our synthetic PTGs, which are more representative of

workflow applications. The FFT PTGs have 2, 4, 8, or

16 levels (that is 5, 15, 39, or 95 tasks) while all the

Strassen PTGs have the same number of tasks (25). For

each model, we generate 400 different FFT task graphs

and 100 Strassen PTGs.

D. Comparison of Scheduling Times

Before assessing the performance of the different al-

gorithms, we compare these algorithms in terms of time

to compute a schedule. This allows us to experimentally

confirm the complexity study presented in Section IV-C.

Times shown in Table I are measured on an Intel

2.20GHz processor and averaged over the whole range

of simulation scenarios.

As our biCPA algorithm adds a factor P , the number

of processors in the target cluster, to the complexity of

the seminal CPA algorithm, we present this timing results

on a per cluster basis.

chti grillon grelon

CPA 0.01 sec. 0.11 sec. 1.49 sec.

(0.03%) (0.22%) (3.04%)

HCPA 0.01 sec. 0.07 sec. 0.23 sec.

(0.03%) (0.10%) (0.48%)

MCPA 0.01 sec. 0.06 sec. 0.85 sec.

(0.03%) (0.14%) (1.92%)

biCPA 0.02 sec. 0.10 sec. 1.00 sec.

(0.04%) (0.19%) (1.88%)

iCASLB 11.71 sec. 265.44 N/A

(11.62%) (365.4%) N/A

Table I
AVERAGE SCHEDULING TIMES AND PART OF THE EXECUTION

TIMES OF THE DIFFERENT SCHEDULING ALGORITHMS DEPENDING

ON THE TARGET CLUSTER.

We can see that the scheduling times of the algorithms

derived from CPA, including biCPA are negligible with

regard to the application execution time. Moreover the
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scheduling time of biCPA is very competitive in spite

of its higher complexity. HCPA, and to a smaller extent

MCPA, build schedule faster as their allocation proce-

dure may stop earlier.

The last line of Table I shows the scheduling time of

the algorithm with the highest worst case complexity,

iCASLB. These times are orders of magnitude higher

than those of its competitors. They even exceed the

time needed to execute the scheduled application on a

cluster of 47 processors. It prevented us to test iCASLB

on the largest cluster. Nevertheless, these bad results

mainly come from the most unfavorable type of PTG,

i.e., chain-like task graphs. For such PTGs, iCASLB

requires a large number of iterations to converge. If we

do not count these PTGs in the average, the scheduling

time of iCASLB becomes more competitive. It then

takes 0.78 sec. and 8.83 sec. on average to schedule

the remaining PTGs on the chti and grillon clusters

respectively. iCASLB still requires up to 31% of the

execution time to schedule our set of PTGs. In the

remaining of our study, we compare the other algorithms

to iCASLB only for the chti and grillon cluster.

E. Simulation Results

Figure 3 shows the distribution of the makespan

across the whole range of simulation scenarios for

each algorithm. The results are presented in box-and-

whiskers fashion. The box represents the inter-quartile

range (IQR), i.e., all the values comprised between the

first (25%) and third (75%) quartiles, while the whiskers

show the minimal and maximal values. The horizontal

line within the box indicates the median value (second

quartile), while the cross indicates the average value.

The first observation is that the CPA algorithm is

outperformed by all the other competitors for both types

of PTGs (worst mean, median and maximum values).

On the other hand the biCPA-M variant is the best

performing. It is closely followed by the two bi-criteria

variants, i.e., biCPA-S and biCPA-E. This shows the

efficiency our optimization approach. The previously

published modifications of CPA have a lesser impact,

HCPA being better than MCPA. Finally biCPA-W is

the worst performing of our proposed heuristics, but

still better than CPA. This was expected as this variant

only tries to not degrade the makespan while minimizing

the work. An interesting thing to see is that biCPA-M

reduces the maximum value by 25% with regard to CPA.

We now study the performance of the algorithm with

regard to our second optimization objective. Figure 4 is

similar to Figure 3 but shows the work distribution.

Almost the same comments as for the makespan can

be made for the CPA, HCPA, MCPA, biCPA-S, and
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Figure 3. Distribution of overall makespan values for all algorithms
for PTGs without (top) and with (bottom) inter-task communications.

biCPA-E. But the relative performance of biCPA-M and

biCPA-W is exactly the opposite. biCPA-M which was

the best algorithm is now one of the worse, while

biCPA-W is now the best performing algorithm. Such

an inversion is actually obvious. Each variant performs

the best with regard to the metric it aims at optimizing.

Results so far have highlighted the conflict between

makespan maximization and work minimization, which

is often seen in multi-criteria optimization problems. In

this section we present results that provide some insight

regarding which algorithms achieve the best trade-offs

between makespan and work. To this end, we use the

CPA algorithm as a baseline comparator. For each sim-

ulation scenario and for each algorithm we compute the

achieved makespan and work, relative to those achieved

by CPA. We then compute these relative values averaged

over all simulation scenarios. Figure 5 shows the relative

performance of each algorithm with regard to CPA. The

x-axis is the average relative makespan and the y-axis

is the average relative work. It allows us to evaluate the

gain with regard to contradictory metrics and to highlight
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Figure 4. Distribution of overall work values for all algorithms for
PTGs without (top) and with (bottom) inter-task communications.

dominant algorithms. Algorithms located toward the

bottom-left corner of the graph are thus preferable.

As the quality of the schedules produced by CPA is

supposed to decrease as the size of the cluster increases,

we plot three distinct data sets. Performance on the

chti cluster is represented by •, that achieved on the

grillon cluster by N while � represent performance on

the grelon cluster. For each target cluster, a pointed line

shows the system efficiency. We also plot of perfect

equity on this figure (dashed line). Note that in Fig-

ure 5 (bottom), biCPA-E is not plotted as it behaves

exactly as biCPA-M. Indeed for PTG without commu-

nications, makespan and work are proportional. Hence

a reduction of the makespan leads to an equivalent gain

on the work, and satisfies Equation 2.

Figure 5 shows that all biCPA variants do improve

CPA for both criteria. The only exception is for biCPA-

W on the largest cluster with PTG with inter-task com-

munication. In this particular case, the average makespan

suffers an increase of 2.6% with regard to CPA. Despite

our restriction to allocations that do not degrade one
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Figure 5. Bi-criteria average performance of all algorithms relatively
to the CPA algorithm depending on the target cluster – small (chti –
•), medium (grillon – N) and large (grelon – �) – for PTGs without
(top) and with (bottom) inter-task communications.

metric while optimizing the other, the communications

negatively impact the makespan. Moreover our proposed

heuristics outperform their competitors. Even iCASLB,

whose complexity is higher is outclassed. HCPA, whose

allocation stopping criterion is heterogeneous, is the only

competitive one. HCPA actually becomes interesting

when the number of processors always exceeds the

number of tasks in the PTG. For instance on the smallest

cluster, HCPA produces the same schedules as CPA. Our

proposed biCPA algorithms are more generic and always

lead to significant gains over CPA.

We also see that the gain offered by biCPA increases

with the cluster size. This does not come from a degra-

dation of CPA but from a constant improvement of our

heuristics. While CPA reduces the average completion

time of the PTG set by 10% when going from the small

to the medium cluster, biCPA-M decreases it by 19%.

The same occurs when going from the medium to the

large cluster.
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VI. CONCLUSION AND FUTURE WORK

Applications represented by parallel task graphs ex-

hibit a lot of parallelism. Several algorithms have been

proposed for the scheduling of such applications on com-

modity clusters over the last years. All these algorithms

focus on the reduction of the completion time of the

application and assume dedicated access to the whole

cluster. But the vast majority of the clusters in production

are accessible through resource managers whose objec-

tives are contradictory to that of users. Indeed if users

aims at reducing their application execution time, batch

schedulers are more interested in preventing the waste

of resources. A common objective though, driven by

energy saving concerns, is to reduce the resource usage

associated with the execution of the application.

In this paper we proposed the biCPA bi-criteria

scheduling algorithm that aims at optimizing two per-

formance metrics: makespan and work. This algorithm

produces four schedules that reach different trade-offs

at the cost of an affordable complexity increase. All

of them improve CPA and also outperform previously

published optimizations of CPA. The performance of

the four variants of the biCPA algorithm also clearly

show their target audience. biCPA-M is typically a user

oriented scheduling heuristic. On the other hand biCPA-

W should be preferred by batch scheduler as it leads

to almost the same completion time as CPA but with a

drastic reduction of the resource usage. biCPA-E offers

the fairest trade-off between both user’s and resource

manager’s requirements. But the biCPA-S variant is the

best candidate for a production use. Indeed it leads to a

resource usage reduction similar to biCPA-W but with a

higher benefit for the users. With regard to biCPA-E, it

slightly favors the resource manager. On average biCPA-

S reduces the makespan of 14% and the work of 34%

compared to CPA.

As a future work we aim at transposing this work

to the context of the scheduling workflows of multi-

threaded routines on many-core architectures. This

highly related scheduling problem is a very interesting

and promising way to fully exploit the capacity of this

emerging execution context. We would also like to assess

the performance of our algorithm in a production context

resorting to the OAR [3] resource manager or the work-

flow management system of the DIET middleware [17].

Finally more than two criteria could be considered. For

instance adding energy concerns is an interesting topics.

A common solution to deal with three criteria is to fix

objectives for two of them and then try to optimize the

third criterion.
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