Patrick Solé 
  
Michel Planat 
  
Extreme values of the Dedekind Ψ function

Keywords: 11N56, 11A25, 11M06 Dedekind Ψ function, Euler totient function, Mertens formula, Nicolas bound, Primorial numbers

Let Ψ(n) := n p|n (1 + 1 p ) denote the Dedekind Ψ function. Define, for n ≥ 3, the ratio R(n) := Ψ(n) n log log n . We prove unconditionally that R(n) < e γ for n ≥ 31. Let N n = 2 • • • p n be the primorial of order n. We prove that the statement R(N n ) > e γ ζ(2) for n ≥ 3 is equivalent to the Riemann Hypothesis.

I. INTRODUCTION

The Dedekind Ψ function is an arithmetic multiplicative function defined for every integer n > 0 by

Ψ(n) := n p|n (1 + 1 p ).
It occurs naturally in questions pertaining to dimension of spaces of modular forms [START_REF] Csirik | On the genera of X0(N )[END_REF] and to the commutation of operators in quantum physics [START_REF] Planat | Pauli graphs when the Hilbert space dimension contains a square: why the Dedekind psi function ?[END_REF]. It is related to the sum of divisor function

σ(n) = d|n d by the inequalities Ψ(n) ≤ σ(n),
and the fact that they coincide for n squarefree. It is also related to Euler ϕ function by the inequalities

n 2 > ϕ(n)Ψ(n) > n 2 ζ(2)
derived in Proposition 5 below.

In view of the studies of large values of σ [START_REF] Robin | Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann[END_REF] and of low values of ϕ [START_REF]Jean-Louis Petites valeurs de la fonction d'Euler[END_REF], it is natural to study both the large and low values of Ψ. To that end, we define the ratio R(n

) := Ψ(n)
n log log n . The motivation for this strange quantity is the asymptotics of Proposition 3. We prove unconditionally that R(n) < e γ , for n ≥ 31 in Corollary 2. Note that this bound would follow also from the Robin inequality σ(n) ≤ e γ n log log n for n ≥ 5041 under Riemann Hypothesis (RH) [START_REF] Robin | Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann[END_REF], since Ψ(n) ≤ σ(n). In the direction of lower bounds, we prove that the statement R(N n ) > e γ ζ(2) for n ≥ 3 is equivalent to RH, where N n = 2 • • • p n is the primorial of order n. The proof relies on Nicolas's work on the Euler totient function [START_REF]Jean-Louis Petites valeurs de la fonction d'Euler[END_REF].
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N n = n k=1 p k , so that N 1 = 2, N 2 = 6,
• • • and so on. As in [START_REF]Jean-Louis Petites valeurs de la fonction d'Euler[END_REF], the primorial numbers play the role here of superabundant numbers in [START_REF] Robin | Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann[END_REF]. They are champion numbers (ie left to right maxima) of the function x → Ψ(x)/x :

Ψ(m) m < Ψ(n) n for any m < n, (1) 
We give a proof of this fact, which was observed in [START_REF] Planat | Riemann hypothesis from the Dedekind psi function[END_REF].

Proposition 1: The primorial numbers N n are exactly the champion numbers of the function x → Ψ(x)/x.

Proof: The proof is by induction on n. The induction hypothesis H n is that the statement is true up to N n . It is clear that H 2 is true. Let N n ≤ m < N n+1 be a generic integer. The number m has at most n distinct prime factors. This, in combination with the observation that 1 + 1/x is monotonically decreasing as a function of x, shows that

Ψ(m)/m ≤ Ψ(N n )/N n . Further Ψ(N n )/N n < Ψ(N n+1 )/N n+1 . The proof of H n+1 follows.
In this section we reduce the maximization of R(n) over all integers n to the maximization over primorials.

Proposition 2: Let n be an integer ≥ 2. For any m in the range

N n ≤ m < N n+1 one has R(m) ≤ R(N n ).
Proof: Like in the preceding proof we have

Ψ(m)/m ≤ Ψ(N n )/N n
Since 0 < log log 6 < log log N n ≤ log log m, the result follows.

III. Ψ AT PRIMORIAL NUMBERS We begin with an easy application of Mertens formula [START_REF] Hardy | An introduction to the theory of numbers[END_REF]Th. 429

]. Proposition 3: We have, as n → ∞ lim R(N n ) = e γ ζ(2) ≈ 1.08. Proof: Writing 1 + 1/p = (1 -1/p 2 )/(1 -1/p) in the definition of Ψ(n) we can combine the Eulerian product for ζ(2) with Mertens formula p≤x (1 -1/p) -1 ∼ e γ log(x) to obtain Ψ(N n ) N n ∼ e γ ζ(2) log(p n ),
Now the Prime Number Theorem [3, Th. 6, Th. 420] states that x ∼ θ(x) for x large. where θ(x) stands for Chebyshev's first summatory function:

θ(x) = p≤x log p.
This shows that, taking x = p n we have

p n ∼ θ(p n ) = log(N n ).
The result follows. This motivates the search for explicit upper bounds on R(N n ) of the form e γ ζ(2) (1+o(1)). In that direction we have the following bound.

Proposition 4: For n large enough to have p n ≥ 20000, that is n ≥ 2263, we have

Ψ(N n ) N n ≤ exp(γ + 2/p n ) ζ(2) (log log N n + 1.125 log p n )
So, armed with this bound, we derive a bound of the form R(N n ) < e γ for n ≥ A, with A a constant.

Corollary 1: For n ≥ 4, we have R(N n ) < e γ = 1.78 • • • Proof: For p n ≥ 20000, we use the preceding proposition. We need to check that

exp(2/p n )(1 + 1.125 log(p n ) log log(N n ) ) ≤ ζ(2).
Since the LHS is a decreasing function of n it is enough to check this inequality for the first n such that p n ≥ 20000. For 5 ≤ p n ≤ 20000, that is 3 ≤ n ≤ 2262 we simply compute R(N n ), and check that it is < e γ .

We can extend this Corollary to all integers > 30 by using the reduction of preceding section, combined with some numerical calculations for 30 < n ≤ N 4 .

Corollary 2: For n > 30, we have R(n) < e γ .

We prepare for the proof of the preceding Proposition by a pair of Lemmas. First an upper bound on a partial Eulerian product from [8, (3.30) 

p.70].

Lemma 1: For x ≥ 2, we have

p≤x (1 -1/p) -1 ≤ e γ (log x + 1 log x )
Next an upper bound on the tail of the Eulerian product for ζ(2). Lemma 2: For n ≥ 2 we have

p>pn (1 -1/p 2 ) -1 ≤ exp(2/p n )
Proof: Use Lemma 6.4 in [START_REF] Choie | Patrick On Robin's criterion for the Riemann hypothesis[END_REF] with x = p n and t = 2. We are now ready for the proof of Proposition 4.

Proof:

Write Ψ(N n ) N n = n k=1 1 -1/p k 2 1 -1/p k
and use both lemmas to derive

Ψ(N n ) N n ≤ exp(γ + 2/p n ) ζ(2) (log p n + 1 log p n ).
Now we get rid of the first log in the RHS by the bound of [7, p.206]

log(p n ) < log log N n + 0.125 log p n .
The result follows.

IV. LOWER BOUNDS We reduce first to Euler's ϕ function. Proposition 5: For n ≥ 2 we have

n 2 > ϕ(n)Ψ(n) > n 2 ζ(2)
Proof: The first inequality follows at once upon writing

ϕ(n)Ψ(n) n 2 = p|n (1 -1/p 2 ),
a product of finitely many terms < 1. Notice for the second inequality that

ϕ(n)Ψ(n) n 2 = p|n (1 -1/p 2 ) > p (1 -1/p 2 ),
an infinite product that is the inverse of the Eulerian product for ζ(2).

Theorem 1: [START_REF] Csirik | On the genera of X0(N )[END_REF] . We need to show that there exists an x 0 ≥ 3 such that g(x 0 ) > 1 or equivalently log g(x 0 ) > 0. Using once again the identity 1 -1/p 2 = (1 -1/p)(1 + 1/p), and [1, Lemma 6.4], we obtain, upon writing

Under RH the ratio R(N n ) is > e γ ζ(2) for n ≥ 3. If RH
(1 + 1/p) -1 , Observing that log θ(p n ) = log log N n , we see that g(p n ) < 1 is equivalent to R(N n ) > e γ ζ ( 
-log ζ(2) = p≤x log(1 -1/p 2 ) + p>x log(1 -1/p 2 ), the bound log g(x) ≥ log f (x) -2/x,
where f is the function introduced in [4, Theorem 3], that is f (x) := e γ log θ(x) p≤x (1 -1/p).

We know by [START_REF]Jean-Louis Petites valeurs de la fonction d'Euler[END_REF]Theorem 3 (c)] that, if RH is false, there is a 0 < b < 1 such that lim sup x -b f (x) > 0 and hence lim sup log f (x) >> log x. Since 2/x = o(log x), the result follows.

V. CONCLUSION In this note we have derived upper and lower bounds on the Dedekind Ψ function. We show unconditionally that the function Ψ(n) satisfies the Robin inequality. Since ψ(n) ≤ σ(n) this could be proved under RH [START_REF] Robin | Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann[END_REF] or by referring to [START_REF] Choie | Patrick On Robin's criterion for the Riemann hypothesis[END_REF]. Of special interest is Conjecture 1 which is shown here to be equivalent to RH. We hope this new RH criterion will stimulate research on the Dedekind Ψ function.

  is false, this is still true for infinitely many n.
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