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Extreme values of the Dedekindl function
Patrick Soé Michel Planat

Abstract

Let U(n) :==n]],,(1+ %) denote the Dedekin@ function. Define, forn > 3, the ratioR(n) := nlfg(ﬁ))gn.

We prove unconditionally thaR(n) < e¢” for n > 31. Let N,, = 2---p,, be the primorial of orden. We prove
that the statemenR(N,,) > % for n > 3 is equivalent to the Riemann Hypothesis.

MsC codes. 11N56, 11A25, 11M06
Keywords: Dedekind¥ function, Euler totient function, Mertens formula, Nicsldound, Primorial
numbers

. INTRODUCTION
The Dedekind¥ function is an arithmetic multiplicative function defineadrfevery integem > 0 by

1
U(n) =n]J@+ 5).

pln

It occurs naturally in questions pertaining to dimensionspbces of modular formq][2] and to the
commutation of operators in quantum physigs [6]. It is mdato the sum of divisor function

o(n) = Z d
dln

by the inequalities
¥(n) < o(n),

and the fact that they coincide far squarefree. It is also related to Eulerfunction by the inequalities

n* > p(n)¥(n) > @

derived in Propositiofi 5 below.

In view of the studies of large values of [[]] and of low values ofy [f], it is natural to study both
the large and low values of. To that end, we define the ratiB(n) := —~__ The motivation for

nloglogn®

this strange quantity is the asymptotics of Proposifion &. pkbve unconditionally thaR(n) < €7, for
n > 31 in Corollary[2. Note that this bound would follow also frometiRobin inequality

o(n) < e’nloglogn

for n > 5041 under Riemann Hypothesis (RH]J [7], sing@&n) < o(n).

In the direction of lower bounds, we prove that the statenfeny,,) > %) for n > 3 is equivalent to
RH, whereN,, = 2---p, is the primorial of ordem. The proof relies on Nicolas's work on the Euler
totient function [#].
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I[I. REDUCTION TO PRIMORIAL NUMBERS
Define the primorial numben,, of indexn as the product of the first primes

n
N, = lem
k=1

so thatV, = 2, N, = 6, --- and so on. As in[J4], the primorial numbers play the role hérguperabundant
numbers in[[[7']. They are champion numbers (ie left to righkima) of the functionz — ¥ (z)/x :
W(m) _ ¥(n)

< —= for anym < n, (1)
m n

We give a proof of this fact, which was observed [h [5].
Proposition 1: The primorial numbersV,, are exactly the champion numbers of the function—
Proof: The proof is by induction om. The induction hypothesi#/,, is that the statement is true up
to N,,. It is clear thatH, is true. LetN,, < m < N, be a generic integer. The numberhas at most
distinct prime factors. This, in combination with the oh&gion thatl + 1/« is monotonically decreasing
as a function ofr, shows thatv(m)/m < ¥(N,,)/N,. Further¥(N,,)/N,, < ¥(N,+1)/Nn+1. The proof
of H,,, follows. [
In this section we reduce the maximization 8fn) over all integersn to the maximization over
primorials.
Proposition 2: Let n be an integer> 2. For anym in the rangeN,, < m < N,;; one hasR(m) <
R(N,,).
Proof: Like in the preceding proof we have

W(m)/m < W(Np)/Ny

Since0 < loglog 6 < loglog N,, < loglogm, the result follows. [ ]

I1l. ¥ AT PRIMORIAL NUMBERS

We begin with an easy application of Mertens formula [3, TRl
Proposition 3: We have, asi — oo
Y

lim R(N,) = % ~ 1.08.

Proof: Writing 1+1/p = (1—1/p?)/(1—1/p) in the definition of¥(n) we can combine the Eulerian
product for((2) with Mertens formula

LI —1/p)" ~ ¢ log(x)

p<w

to obtain
U(N,) e
N, ¢(2

Now the Prime Number Theorerf] [3, Th. 6, Th. 420] states that0(z) for = large. whered(z) stands
for Chebyshev’s first summatory function:

0(z) = Z log p.

p<w

) 10g<pn>7



This shows that, taking = p,, we have

Pn ~ 6(])”) = log(NTL)'

The result follows. ]
This motivates the search for explicit upper boundgv,,) of the form%)(lJro(l)). In that direction
we have the following bound.
Proposition 4: For n large enough to havg, > 20000, that isn > 2263, we have

U(Nn) _ exp(y+2/pn) 1125
< loglog N,, +
N, @ log b

So, armed with this bound, we derive a bound of the fat(V, ) < ¢” for n > A, with A a constant.

Corollary 1. Forn > 4, we haveR(N,) < ¢’ =1.78---
Proof:
For p,, > 20000, we use the preceding proposition. We need to check that

exp(2/p) (1 + i ) < ().

Since the LHS is a decreasing functionsoft is enough to check this inequality for the firstsuch that
pn = 20000.
For 5 < p, < 20000, that is3 < n < 2262 we simply computeR(N,,), and check that it is< e7.

[
We can extend this Corollary to all integers30 by using the reduction of preceding section, combined
with some numerical calculations f80 < n < Nj,.
Corollary 2: Forn > 30, we haveR(n) < €.

We prepare for the proof of the preceding Proposition by a pllLemmas. First an upper bound on
a partial Eulerian product fronf][8, (3.30) p.70].
Lemma 1. Forxz > 2, we have

[[a-1/p)7" <e¥(loga +

p<z

)

log x

Next an upper bound on the tail of the Eulerian productdf).
Lemma 2: Forn > 2 we have

TT=1/p")7" < exp(2/pa)

pP>pn
Proof: Use Lemma 6.4 in[J1] withc = p,, andt = 2. [ |
We are now ready for the proof of Propositign 4.
Proof:
Write .
LEDIN § EallVi
Nn k=1 11— 1/pk
and use both lemmas to derive
U (N, 2/pn 1
(Nn) < exp(y +2/p )(logme )
N, ¢(2) log .

Now we get rid of the firstog in the RHS by the bound of][7, p.206]



0.125
log p,

log(p,) < loglog N,, +

The result follows.

IV. LOWER BOUNDS

We reduce first to Euler's> function.

Proposition 5: Forn > 2 we have

n2

@)

Proof: The first inequality follows at once upon writing

cp(n)‘lf(n) _ H(l _ 1/])2),

n2
pln

a product of finitely many terms: 1. Notice for the second inequality that

M =[Ja -1/ > -1/p%,

n
pln
an infinite product that is the inverse of the Eulerian pradac ((2).

n* > p(n)¥(n) >

u
Theorem 1: Under RH the ratia?(XN,,) is > %) for n > 3. If RH is false, this is still true for infinitely
many n.

Proof:
Follows by Propositiorj]5, combined with] [4, Theorem 2]. [
In view of this result and of numerical experiments the ratgeonjecture is
Conjecture 1. For alln > 3 we haveR(N,) > %)
The main result of this note is the following.
Theorem 2: Conjecture[]l is equivalent to RH.

Proof: If RH is true we refer to the first statement of Theorgm 1. If RHfalse we consider the

function

2 8 0(x) g(l +1/p)7,

Observing thalog 0(p,) = loglog N,,, we see thay(p,) < 1 is equivalent toR(N,,) > %) We need
to show that there exists an > 3 such thatg(x,) > 1 or equivalentlylog g(z¢) > 0. Using once again
the identityl — 1/p? = (1 — 1/p)(1 + 1/p), and [}, Lemma 6.4], we obtain, upon writing

~log((2) = log(1—1/p%) + > log(1 —1/p"),

p<z p>x

g(x) =

the bound

log g(z) > log f(z) — 2/,
where f is the function introduced ][4, Theorem 3], that is

f(@) = e logf(z) T (1 — 1/p).
p<w
We know by [#, Theorem 3 (c)] that, if RH is false, there i8 & b < 1 such thatlim sup 2= f(z) > 0
and hencdimsup log f(z) >> logz. Since2/z = o(log ), the result follows.
[



V. CONCLUSION

In this note we have derived upper and lower bounds on the Kdedler function. We show uncon-
ditionally that the functionV(n) satisfies the Robin inequality. Sinegn) < o(n) this could be proved
under RH [[] or by referring to [lL]. Of special interest is Conjectutewhich is shown here to be
equivalent to RH. We hope this new RH criterion will stimelaesearch on the Dedekinid function.
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